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(e problem of intelligent L2-L∞ consensus design for leader-followers multiagent systems (MASs) under switching topologies is
investigated based on switched control theory and fuzzy deep Q learning. It is supposed that the communication topologies are time-
varying, and the model of MASs under switching topologies is constructed based on switched systems. By employing linear trans-
formation, the problem of consensus of MASs is converted into the issue of L2-L∞ control. (e consensus protocol is composed of the
dynamics-based protocol and learning-based protocol, where the robust control theory and deepQ learning are applied for the two parts
to guarantee the prescribed performance and improve the transient performance. (e multiple Lyapunov function (MLF) method and
mode-dependent average dwell time (MDADT) method are combined to give the scheduling interval, which ensures stability and
prescribed attenuation performance. (e sufficient existing conditions of consensus protocol are given, and the solutions of the
dynamics-based protocol are derived based on linearmatrix inequalities (LMIs).(en, the online design of the learning-based protocol is
formulated as a Markov decision process, where the fuzzy deep Q learning is utilized to compensate for the uncertainties and achieve
optimal performance. (e variation of the learning-based protocol is modeled as the external compensation on the dynamics-based
protocol.(erefore, the convergence of the proposed protocol can be guaranteed by employing the nonfragile control theory. In the end,
a numerical example is given to validate the effectiveness and superiority of the proposed method.

1. Introduction

In recent years, the coordination control of MASs has
attracted considerable attention for their broad applications
in many fields [1, 2], such as formation control, cooperative
attack, and attitude alignment. (e MAS consists of a series
of agents, which can communicate and interact with each
other to realize multiple missions and adapt to the complex
environment [3, 4]. In particular, much attention has been
paid to the problem of consensus of MASs because of their
great potential applications in both economic and military.
(e purpose of MASs is to construct a relationship between
the agents to achieve an agreement for the state/output. In
the past decades, fruitful research studies have emerged to

contribute to the development in theory and applications. To
mention a few, the problem of distributed formation control
for MASs is studied in [5], the time-varying formation
design for MASs with disturbances is proposed in [6], and
the problem of finite-time consensus for switched nonlinear
MASs is investigated in [7].

In practical applications, it is well known that the
communication topology among the agents may change
dramatically over time to adjust to multiple missions and
complex environments [8, 9], such as the MASs can realize
obstacle avoidance and higher flight efficiency by formation
transformation [10, 11]. (e design flexibility, security, and
performance of convergence will be improved, which mo-
tivated the studies on the switching topologies of MASs
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[1, 12]. Recently, because of the broad potential applications
of switching topologies, considerable significant research
studies have been proposed by scholar at home and abroad.
(e communication topologies among interacting agents
will change according to the flight conditions and missions,
which can be modeled as switched systems. (e switched
systems consist of a series of continuous-time (or discrete-
time) subsystems and a switching signal, which determines
the switching strategy between subsystems. It provides an
efficient approach to deal with the problem of fast time-
varying conditions. (erefore, it can be inferred that the
switching of topologies can be viewed as the switching
between subsystems, and it is essential to study the problem
of consensus protocol design to make sure the state/output
can converge to the given value. In [13], the problem of time-
varying formation control of MASs is investigated. (e
communication topologies switching among given con-
nected topologies and the switching signal depend on the
Markovian process. (e Lyapunov function method is
utilized to analyze the convergence. In the work of [14], the
problem of event-triggered leader-following consensus
problem formultiagent systems with external disturbances is
addressed under switching topologies. A novel distributed
event-triggered protocol is proposed to realize disturbance
rejection based on extended state observer. (e average
dwell time (ADT)method is utilized to ensure the stability of
the event-triggered protocol. In [15], the time-varying
practical formation problem is studied for spacecraft, where
switching topologies and time-delays are taken into con-
sideration. Sufficient conditions are provided to ensure that
the error system is convergent, which are derived based on
the ADTmethod. It is well known that the research studies
mentioned above are proposed to deal with the problem of
switching topologies. However, the convergence is guar-
anteed based on the ADTmethod. It can be inferred that the
common parameters are applied for all subsystems in the
ADTmethod, which will lead to conservativeness. To obtain
tighter bounds on dwell time and improve the design
flexibility of the algorithm, MDADT is applied during last
decades. In [16], the MDADT method and multiple dis-
continuous Lyapunov function (MDLF) method are com-
bined to analyze the stability of switched systems with
unstable modes. (e sufficient conditions are established,
and the results in existing literature are covered as a special
case.(e fast switching and slow switching in the framework
of MDADTare applied to unstable modes and stable modes.
In [17], the global adaptive control algorithm for switched
systems is proposed based on the MDADT method. (e
different properties of subsystems are taken into consider-
ation.(en, the adaptive tracking controller is applied to the
nonlinear switched systems with external disturbance and
unmodeled dynamics, which illustrates the effectiveness and
superiority of the MDADTmethod. In the work of [18], the
event-triggered sliding mode controller is proposed. By
employing the MDADT method and event-triggered strat-
egy, less conservative and more practical results are ob-
tained. Sufficient conditions are given to ensure
stochastically exponential stability by the aid of the LMI
technique. (e literature mentioned has provided fruitful

results on consensus protocol design for MASs under
switching topologies. However, stability and convergence
are ensured by the traditional ADT method. (e different
properties of subsystems cannot be considered, which will
lead to conservativeness. (erefore, how to obtain less re-
strictive results is still an open and challenging problem,
which has been fully investigated, and it has an important
value and potential applications in practice.

Moreover, in practical environment, there always exist
uncertainties and disturbances, which will lead to perfor-
mance degradation and even instability [19, 20].(erefore, it
is essential to investigate the robust consensus problem to
improve the performance in the uncertain environment
[21–23]. In the work of [24], the problem of distributed H∞
containment control for MASs with switching topologies is
studied. An observer-based containment control scheme is
proposed. (e external disturbance and time delay in the
environment are taken into consideration, which is more
applicable than the traditional method. By employing the
Lyapunov function method and LMIs technique, the suffi-
cient existing conditions and solutions of control protocol
are given in the form of LMIs. In [25], the problem of time-
varying formation of second-order discrete-time MASs
under switching topologies and the time delay is investi-
gated. (e sufficient conditions are given to ensure MASs
accomplish the mission of time-varying formation based on
the state transformation method. (e time delay and un-
certainties are considered. Compared with the existing lit-
erature, the proposed can overcome the undesirable
response caused by time delay and improve the transient
performance. In the work of [26], the problem of formation
control for tail-sitters in flight mode transitions is studied.
(e nonlinear dynamics and uncertainties are considered,
and the robust time-varying formation control protocol is
proposed. It is proven that the tracking errors can converge
to the origin in finite time. (e problem of L2-gain robust
protocol for time-varying output formation-containment of
MASs is addressed in [27]. (e PID-based output-feedback
control protocol is provided to ensure that all followers can
track a time-varying formation reference, where commu-
nication delays and external disturbance are taken into
consideration.(e asymptotic stability of MASs is proved by
the Lyapunov functionmethod. However, as well known, the
transient performance and robustness cannot achieve si-
multaneously. (erefore, we need to make comprise of the
transient performance and robustness, which still remains
an open and challenging problem.

In addition, with the development of computing ability,
the intelligent technique has been an attractable problem
during the last decades [28–30]. It is widely applied in the
areas of target recognition, machine vision, robotic systems,
and controller design [31, 32]. It provides an efficient
method to improve the autonomy and design flexibility of
the system [33]. (e most widely used methods are the deep
learning and reinforcement learning. As a combination of
deep learning and reinforcement learning, the advantages of
deep learning and reinforcement learning are adopted,
which include the characteristics of self-fitting and self-
learning. In the work of [34], the automatic completion of
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multiple peg-in-hole assemble tasks is realized. Because the
traditional method requires an accurate contact model and
complex analysis, the intelligent control method is formu-
lated by constructing the task as a Markov decision process.
(e deep deterministic policy gradient (DDPG) algorithm is
proposed to accomplish the task to achieve optimal policy
and avoid risky actions. In [35], a noninteger PID controller
is proposed based on the DDPG algorithm. (e measure-
ment noises and external disturbances are taken into con-
sideration. (e kinematic controller and dynamic controller
are proposed to achieve optimal performance. (e DDPG
algorithm is given to compensate for the uncertainties and
disturbances in the framework of actor-critic. A numerical
example is given to illustrate the effectiveness of the pro-
posed method. Cheng et al. [36] proposed the real-time
controller for the problem of fuel-optimal moon landing.
Because the traditional method cannot meet the demand of
high requirements of real-time performance and autonomy,
the deep reinforcement learning algorithm is proposed for
the real-time optimal control based on actor-indirect
method architecture. (e deep neural networks are applied
for initial guesses, and the efficiency of training data is
guaranteed. (e literature mentioned above has provided
considerable meaningful results in the area of machine
learning. However, to the best of the authors’ knowledge, the
intelligent consensus design for MASs with considerations
of stability, robustness, and optimal transient performance
has not been fully studied yet. It is essential and important to
achieve optimal comprise of robustness and transient
performance.

Based on the statement above, it can be inferred that
the problem of the improvement of autonomy and design
flexibility for the system needs to be studied. (e problem
of consensus protocol design for MASs under switching
topologies has not been fully investigated yet. (e design
flexibility can be improved by employing tighter bounds
on dwell time because less conservative results can be
obtained, and it leaves more room to ensure the switching
logic stays in the subsystems with better performance for
long enough time. Moreover, it is of great importance to
combine the advantages of the traditional method and
intelligent technique, which can ensure convergence,
robustness, and transient performance simultaneously.
(erefore, the problem of intelligent L2-L∞ consensus
design of MASs under switching topologies is investi-
gated. (e convergence and robustness are guaranteed by
the Lyapunov function method and the MDADTmethod,
which are more applicable. (e transient performance is
improved by fuzzy deep Q learning, in which the fuzzy
reward function is proposed for the complex scheduling
process. (e main contributions of this study can be
summarized as follows:

(1) (e L2-L∞ consensus protocol of MASs under
switching topologies is designed. (e problem of L2-
L∞ consensus ofMASs is converted into the problem
of stability analysis for switched systems, which is
more applicable than the traditional method. (e
MDADT method and multiple Lyapunov function

method are combined to guarantee the stability and
prescribed attenuation performance index, which
can obtain tighter bounds on dwell time and less
conservative results.

(2) (e consensus protocol is composed of the dy-
namics-based consensus protocol and learning-
based consensus protocol. Compared with the tra-
ditional method, the proposed strategy can ensure
the stability, robustness, and transient performance
simultaneously.

(3) (e fuzzy reward function is utilized to improve the
efficiency of the deep reinforcement learning algo-
rithm. (e design of reward function for the tradi-
tional method mainly depends on the experience of
designer, which will lead to complexity. (e fuzzy
reward function can improve the data efficiency and
ensure optimal performance.

(e rest of the study is organized as follows: the pre-
liminaries and problem statement are provided in Section 2;
in Section 3, the main results of the study are given; the
numerical example is given in Section 4, which is followed by
the conclusion in Section 5.

2. Preliminaries and Problem Statement

In this study, it is supposed that MASs are composed of a
leader labelled as 0 and n followers labelled as 1, 2, . . ., n.
(e connection topology among n followers can be de-
scribed as a time-varying model with Nf topologies. We
define Gσ(k) � (G1,G2, . . . ,GNf

) as undirected connected
graph, respectively. H � (1, 2, . . . , n), n> 1 represents the
set of finite nodes. s � σ(k): [0,∞)⟶ R � 1, 2, . . . , Nf􏽮 􏽯

denotes the switching signal, which is a piecewise con-
tinuous function of time and takes value in the finite set
H. Aσ(k) � (a

σ(k)
ij )n×n and Lσ(k) � (l

σ(k)
ij )n×n are the adja-

cency matrices of the undirected graph Gσ(k) and the
Laplacian matrix at time instant k, where a

σ(k)
ij stands for

the element of adjacency matrix, where a
σ(k)
ij � 1 repre-

sents that the node i can obtain information from node j,
and l

σ(k)
ij is defined in the following equation.

l
σ(k)
ij � − a

σ(k)
ij i≠ j,

l
σ(k)
ii � 􏽘

n

j�1
a
σ(k)
ij i � j.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

(en, for given node i ∈H, we can define the neighbors
of node i as Ni,σ(k) � j ∈H: a

σ(k)
ij � 1􏽮 􏽯.

Another undirected connected graph is defined as
􏽥Gσ(k) � ( 􏽥G1,

􏽥G2, . . . , 􏽥GNf
) to indicate the information

transformation between the leader and the followers with n
nodes. Define a diagonal matrix
Θσ(k) � diag θσ(k)

1 , θσ(k)
2 , . . . , θσ(k)

n􏽮 􏽯, where θσ(k)
i � 1 stands

for that the node i ∈H can obtain information from the
leader; otherwise, we define θσ(k)

i � 0.
(erefore, MASs with leader-followers can be described

as in the following equations:
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x0(k + 1) � Ax0(k), (2)

xi(k + 1) � Axi(k) + Bui(k) + Dωi(k)

zi(k) � Cυi(k)
, i ∈H,􏼨 (3)

where A, B, C, and D are the system matrices with ap-
propriate dimensions, x0(k) � [x01(k), x02(k), . . . ,

x0p(k)]T ∈ Rp represents the state vector of leader, xi(k) �

[xi1(k), xi2(k), ..., xip(k)]T ∈ Rp is the state of the ith fol-
lower, ui(k) � [ui1(k), ui2(k), . . . , uil(k)]T ∈ Rl is the input
of the ith follower, zi(k) � [zi1(k), zi2(k), . . . , ziq(k)]T ∈ Rq

stands for the output of the ith follower, and ωi(k) ∈ Rm

denotes the external disturbance belonging to L2[0,∞). It is
supposed that the agent i can obtain information from its
neighbors and leader. (erefore, we define υi(k) as relative
state measurements of the ith agent, which can be described
as follows:

υi(k) � 􏽘
j∈Ni,σ(k)

xi(k) − xj(k)􏼐 􏼑 + θσ(k)
i x0(k) − xi(k)( 􏼁.

(4)

In this study, the control input of the ith agent to ensure
the consensus of leader-followers is proposed.

ui(k) � Kσ(k) + Kc,σ(k)􏼐 􏼑υi(k), (5)

where Kσ(k) is the control parameter to be determined by
robust control theory, and Kc,σ(k) is the compensated
parameter obtained by deep Q learning. In this study, the
gained parameters Kc,σ(k) are supposed to vary in a finite
set with given bounds. (e Kc,σ(k) can be viewed as ad-
ditional perturbance of Kσ(k), which can be described as
follows:

Kc,σ(k) � Mσ(k)Fσ(k)Nσ(k), (6)

where Mσ(k) ∈ Rl×lΔ and Nσ(k) ∈ RqΔ×q are the known ma-
trices with appropriate dimensions, and Fσ(k) ∈ RlΔ×qΔ are
the unknown matrices with FTσ(k)Fσ(k) ≤ I.

For the ith agent, the error of state is defined as
ei(k) � xi(k) − x0(k). (en, the closed-loop system can be
rewritten as

e(k + 1) � 􏽥Aσ(k)e(k) + ω􏽥B(k),

z(k) � 􏽥Cσ(k)e(k),

⎧⎨

⎩ (7)

where e(k) � [eT1(k), . . . , eTn (k)]T, z(k) � [zT1(k), . . . , zTn
(k)]T, ω(k) � [ωT

1(k), . . . ,ωT
n (k)]T, 􏽥Aσ(k) � In ⊗A−

(Lσ(k)+ Θσ(k))⊗B(Kσ(k) + Kc,σ(k)), 􏽥B � In ⊗D, and 􏽥Cσ(k) �

− (Lσ(k) + Θσ(k))⊗C.
To facilitate the proof, the definitions and lemmas are

given as follows.

Definition 1 (see [37]). For given switching signal σ(k) and
k1 > 0, define Nσ,s(0, k1) as the number of switching instants
over the time interval (0, k1). Tσs(0, k1) is set to be the
activated time of undirected graph Gs during (0, k1). (ere
exist constant scalars N0 ≥ 0 and τas > 0, such that

Nσ,s 0, k1( 􏼁≤N0 +
Tσs 0, k1( 􏼁

τas

. (8)

(en, τas is called the mode-dependent average dwell
time and Nσ,s(0, k1) is the mode-dependent chatter bound,
respectively. In this study, we set N0 � 0.

Definition 2 (see [37]). If there exist control protocol in
equation (5), all agents asymptotically track the state tra-
jectory of the leader, such that

lim
k⟶∞

xi(k) − x0(k)
����

����
2

� 0,

for any initial conditionsxi(0), i ∈H
(9)

Definition 3 (see [38]). For given constant scalars 0< δ < 1
and c> 0, the prescribed L2 − L∞ attenuation performance c

is satisfied such that

(1) (e MASs in equations (2)-(3) are asymptotically
stable when ω(k) � 0.

(2) (e following inequation holds for all nonzero
ω(k) ∈ l2(0,∞].

‖z(r)‖
2
L∞
≤ c

2
‖ω(r)‖

2
L2

. (10)

Lemma 1 (see [35]). The matrices Lσ(k) + Θσ(k) are sym-
metric and positive definite if and only if the graphs 􏽥Gσ(k) are
connected for t≥ 0. Moreover, there exist a transformation
matrix Tσ(k), such that the following equation holds.

Tσ(k) Lσ(k) +Θσ(k)􏼐 􏼑T− 1
σ(k) � Zσ(k) � diag λσ(k)

1 , . . . , λσ(k)
n􏼐 􏼑,

(11)

where λσ(k)
i , i ∈H are the nonzero eigenvalues of matrices

Lσ(k) + Θσ(k).

Lemma 2 (see [39]). For given constant a> 0 and real
matrices Θ,U,V ,W, it is concluded that equation (12) is
equivalent to equation (13).

Θ U + aV

∗ − a W + WT
􏼐 􏼑

⎡⎣ ⎤⎦< 0, (12)

Θ + UW− 1VT
+ VW− TUT < 0. (13)

Lemma 3 (see [39]). For given symmetric matrix T and
matricesM,N, if there exist constant scalar ε> 0, such that

T + MM
Tε− 1

+ εNT
N< 0 (14)

(en, the following equation holds for any appropriate
F with FTF≤ I.

T + MFN + N
T
F

T
M< 0. (15)
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3. Main Results

3.1. L2-L∞Consensus Protocol Design. In this section, the L2-
L∞ consensus protocol is proposed, and the stability and
prescribed performance are guaranteed.

Lemma 4. For given constant scalars 0< δ < 1, c> 0. Ee
system in (7) with control input in (5) is asymptotic stable
with L2-L∞ attenuation performance c if and only if the
following equation holds.

􏽥e(k + 1) � In ⊗A − Zσ(k) ⊗B Kσ(k) + ΔKσ(k)􏼐 􏼑􏼐 􏼑􏽥e(k) + In ⊗D( 􏼁􏽥ω(k),

􏽥z(k) � − Zσ(k) ⊗C􏼐 􏼑􏽥e(k),

⎧⎪⎨

⎪⎩
(16)

where

􏽥ω(k) � Tσ(k) ⊗ Il􏼐 􏼑ω(k),

􏽥z(k) � Tσ(k) ⊗ Iq􏼐 􏼑z(k),

􏽥e(k) � Tσ(k) ⊗ Ip􏼐 􏼑e(k).

(17)

Proof. Substituting equation (17) to (7), one can obtain
equation (16). It can be inferred that the transformation
matrix Tσ(k) is unique; therefore, we have the following
equations.

‖􏽥ω(k)‖
2
L2

� 􏽘
∞

0
‖􏽥ω(k)‖

2
2,

� 􏽘
∞

0
ωT

(k) Tσ(k) ⊗ Il􏼐 􏼑
T
Tσ(k) ⊗ Il􏼐 􏼑ω(k),

� ‖ω(k)‖
2
L2

,

(18)

‖􏽥z(r)‖
2
L∞

� sup 􏽥zT(k)􏽥z(k)􏼚 􏼛,

� sup zT(k) Tσ(k) ⊗ Il􏼐 􏼑
T
Tσ(k) ⊗ Il􏼐 􏼑z(k)􏼚 􏼛,

� ‖z(r)‖
2
L∞

.

(19)

It is obvious that the problem of robust consensus
protocol design can be converted to the controller
design of (16). □

Remark 1. (e system in equation (16) consists of the in-
dependent system in equation (20).(erefore, the stability of
equation (7) is equivalent to the stability of n subsystems in
equation (20); the attempt to ensure the prescribed atten-
uation performance of (7) can be converted to guarantee the
attenuation performance of (16).

􏽥ei(k + 1) � Ai
􏽥ei(k) + D􏽥ωi(k)

􏽥zi(k) � Ci
􏽥ei(k)

, i ∈H,
⎧⎨

⎩ (20)

where Ai � (A − λσ(k)
i B(Kσ(k) + Kc,σ(k))), and Ci � − λσ(k)

i C.

In (eorem 1, the sufficient conditions to guarantee the
stability and prescribed attenuation performance index are
presented.

Theorem 1. For given constant scalars μs > 1, 0< δs < 1,
c> 0, if there exist Lyapunov functions Vi,s(􏽥ei(k)), i ∈H,
and class functions κ1, κ2, the switched systems in equation
(20) with MDADT satisfying equation (25) are globally
uniformly asymptotically stable with prescribed L2-L∞ at-
tenuation performance c, such that

κ1 􏽥ei(k)
����

����􏼐 􏼑≤Vi,s
􏽥ei(k)( 􏼁≤ κ2 􏽥ei(k)

����
����􏼐 􏼑, (21)

Vi,s
􏽥ei(k)( 􏼁≤ μsVi,r

􏽥ei(k)( 􏼁, s≠ r, (22)

ΔVi,s
􏽥ei(k)( 􏼁≤ − δsVi,s

􏽥ei(k)( 􏼁 +‖􏽥ω(k)‖
2
2, (23)

􏽥zi(k)
����

����
2
2 ≤ c

2
Vi,s

􏽥ei(k)( 􏼁, (24)

τas ≥ τ
∗
as � −

ln μs

ln 1 − δs( 􏼁
. (25)

Proof. (e entire proof can be divided into two steps.

(1) (e stability of equation (20).
(e switching instants in the time interval (0, k) are
set to be k1, k2, . . ., kt with kt+1 � k. (en, (26) holds
when ‖ωi(k)‖ ≡ 0.

Vi,σ kt( )
􏽥ei(k)( 􏼁≤ 1 − δσ kt( )􏼒 􏼓

k− kt

Vi,σ kt( )
􏽥ei kt( 􏼁( 􏼁. (26)

Together with (22), we can conclude that

Vi,σ kt( )
􏽥ei(k)( 􏼁≤ μσ kt( ) 1 − δσ kt( )􏼒 􏼓

k− kt

Vi,σ kt( )
􏽥ei kt( 􏼁( 􏼁.

(27)

Based on equations (26)-(27), the following equation
can be obtained by iteration.
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Vi,σ kt( )
􏽥ei(k)( 􏼁≤ μσ kt( ) 1 − δσ kt( )􏼒 􏼓

k− kt

Vi,σ kt( )
􏽥ei kt( 􏼁( 􏼁,

≤ μσ kt( )μσ kt− 1( ) 1 − δσ kt( )􏼒 􏼓
k− kt

1 − δσ kt− 1( )􏼒 􏼓
kt− kt− 1

Vi,σ kt− 1( )
􏽥ei kt− 1( 􏼁( 􏼁,

· · ·

≤􏽙
t

r�0
μσ kr( ) 1 − δσ kr( )􏼒 􏼓

kr+1− kr

􏼨 􏼩Vi,σ(0)
􏽥ei(0)( 􏼁,

≤􏽙

Nf

s�1
μNσ,s(0,k)

σ ks( )
1 − δσ ks( )􏼒 􏼓

Tσs(0,k)

􏼨 􏼩Vi,σ(0)
􏽥ei(0)( 􏼁.

(28)

Combining with Definition 1, we have

Vi,σ kt( )
􏽥ei(k)( 􏼁≤ exp 􏽘

Nf

s�1
Nσ,s(0, k)ln μσ ks( ) + Tσs(0, k)ln 1 − δσ ks( )􏼒 􏼓􏼒 􏼓

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
Vi,σ(0)

􏽥ei(0)( 􏼁,

≤ exp 􏽘

Nf

s�1

Tσs(0, k)

τas

ln μσ ks( ) + Tσs(0, k)ln 1 − δσ ks( )􏼒 􏼓􏼠 􏼡

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
Vi,σ(0)

􏽥ei(0)( 􏼁,

≤ exp 􏽘

Nf

s�1
Tσs(0, k)

ln μσ ks( )

τas

+ ln 1 − δσ ks( )􏼒 􏼓􏼠 􏼡􏼠 􏼡

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
Vi,σ(0)

􏽥ei(0)( 􏼁.

(29)

(en, we can obtain (29) based on (21).

􏽥ei(k)
����

����
2 ≤ κ− 1

1 κ2 exp 􏽘

Nf

s�1
Tσs(0, k)

ln μσ ks( )

τas

+ ln 1 − δσ ks( )􏼒 􏼓􏼠 􏼡􏼠 􏼡

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
􏽥ei(0)

����
����
2
. (30)

(erefore, the system in (20) withMDADTsatisfying
(25) is globally uniformly asymptotically stable.

(2) (e system in equation (20) has prescribed L2-L∞
attenuation performance c.

Together with equations (22)-(23), one has

Vi,σ kt( )
􏽥ei(k)( 􏼁≤ 1 − δσ kt( )􏼒 􏼓

k− kt

Vi,σ kt( )
􏽥ei kt( 􏼁( 􏼁 + 􏽘

k− 1

r�kt

1 − δσ kt( )􏼒 􏼓
k− r− 1

‖􏽥ω(r)‖
2
2,

≤ μσ kt( ) 1 − δσ kt( )􏼒 􏼓
k− kt

Vi,σ kt− 1( )
􏽥ei kt( 􏼁( 􏼁 + 􏽘

k− 1

r�kt

1 − δσ kt( )􏼒 􏼓
k− r− 1

‖􏽥ω(r)‖
2
2.

(31)

6 Computational Intelligence and Neuroscience



(en, one can obtain the equation as follows by iteration.

Vi,σ kt( )
􏽥ei(k)( 􏼁≤ μσ kt( ) 1 − δσ kt( )􏼒 􏼓

k− kt

Vi,σ kt− 1( )
􏽥ei kt( 􏼁( 􏼁 + 􏽘

k− 1

r�kt

1 − δσ kt( )􏼒 􏼓
k− r− 1

‖􏽥ω(r)‖
2
2,

≤ μσ kt( ) 1 − δσ kt( )􏼒 􏼓
k− kt

μσ kt− 1( ) 1 − δσ kt− 1( )􏼒 􏼓
kt− kt− 1

Vi,σ kt− 2( )
􏽥ei kt− 1( 􏼁( 􏼁, + 􏽘

kt − 1

r�kt− 1

1 − δσ kt− 1( )􏼒 􏼓
k− r− 1

‖􏽥ω(r)‖
2
2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + 􏽘
k− 1

r�kt

1 − δσ kt( )􏼒 􏼓
k− r− 1

‖􏽥ω(r)‖
2
2,

· · ·

≤ μσ k1( ) · · · μσ kt( ) 1 − δσ k0( )􏼒 􏼓
k1− k0

· · · 1 − δσ kt( )􏼒 􏼓
k− kt

Vi,σ(0)
􏽥ei(0)( 􏼁,

+ μσ k1( ) · · · μσ kt( ) 1 − δσ k0( )􏼒 􏼓
k1− k0

· · · 1 − δσ kt( )􏼒 􏼓
k− kt

􏽘

k1 − 1

r�k0

1 − δσ k0( )􏼒 􏼓
k1− r− 1

‖􏽥ω(r)‖
2
2,

+ μσ k2( ) · · · μσ kt( ) 1 − δσ k1( )􏼒 􏼓
k2− k1

· · · 1 − δσ kt( )􏼒 􏼓
k− kt

􏽘

k2 − 1

r�k1

1 − δσ k1( )􏼒 􏼓
k2− r− 1

‖􏽥ω(r)‖
2
2,

+ · · · + 􏽘
k− 1

r�kt

1 − δσ kt( )􏼒 􏼓
k− r− 1

‖􏽥ω(r)‖
2
2,

≤ 1 − δσ kt( )􏼒 􏼓
k− kt

􏽙

t− 1

r�0
μσ kr+1( ) 1 − δσ kr( )􏼒 􏼓

kr+1− kr

􏼨 􏼩Vi,σ(0)
􏽥ei(0)( 􏼁,

+ μσ kt( ) 1 − δσ kt( )􏼒 􏼓
k− kt

􏽘
t− 1

q�1
􏽙
t− 1

p�q

μσ kp( 􏼁
1 − δσ kp( 􏼁􏼒 􏼓

kp+1− kp

􏽘

kq− 1

r�kq− 1

1 − δσ kq− 1( 􏼁􏼒 􏼓
kq− r− 1

‖􏽥ω(r)‖
2
2

⎛⎜⎜⎝ ⎞⎟⎟⎠,

+ μσ kt( ) 1 − δσ kt( )􏼒 􏼓
k− kt

􏽘

kt− 1

r�kt− 1

1 − δσ kt− 1( )􏼒 􏼓
kt− r− 1

‖􏽥ω(r)‖
2
2,

+ 􏽘
k− 1

r�kt

1 − δσ kt( )􏼒 􏼓
k− r− 1

‖􏽥ω(r)‖
2
2,

≤􏽙

Nf

s�1
μNσ,s(0,k)

σ ks( )
1 − δσ ks( )􏼒 􏼓

Tσs(0,k)

􏼨 􏼩Vi,σ(0)
􏽥ei(0)( 􏼁,

+ 􏽘
t

q�1
􏽙

Nf

s�1
μNσ,s kq,k( 􏼁
σ ks( )

1 − δσ ks( )􏼒 􏼓
Tσs kq,k( 􏼁⎧⎨

⎩

⎫⎬

⎭ 􏽘

kq− 1

r�kq− 1

1 − δσ kq− 1( 􏼁􏼒 􏼓
kq− r− 1

‖􏽥ω(r)‖
2
2), + 􏽘

k− 1

r�kt

1 − δσ kt( )􏼒 􏼓
k− r− 1

‖􏽥ω(r)‖
2
2.

⎛⎜⎜⎝

(32)

Substituting the equation above into (8), one can obtain
that

Vi,σ kt( )
􏽥ei(k)( 􏼁≤ exp 􏽘

Nf

s�1
Tσs(0, k)

ln μσ ks( )

τas

+ ln 1 − δσ ks( )􏼒 􏼓􏼠 􏼡

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
Vi,σ(0)

􏽥ei(0)( 􏼁,

+ 􏽘
t

q�1
exp 􏽘

Nf

s�1
Tσs kq, k􏼐 􏼑

ln μσ ks( )

τas

+ ln 1 − δσ ks( )􏼒 􏼓􏼠 􏼡⎛⎝ ⎞⎠, × 􏽘

kq − 1

r�kq− 1

1 − δσ kq− 1( 􏼁􏼒 􏼓
kq − r− 1

‖􏽥ω(r)‖
2
2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

+ 􏽘
k− 1

r�kt

1 − δσ kt( )􏼒 􏼓
k− r− 1

‖􏽥ω(r)‖
2
2.

(33)
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According to the conditions μs > 1, 0< δs < 1, and (25),
we have

0< 1 − δσ ks( )< 1, (34)

0< exp 􏽘

Nf

s�1
Tσs kq, k􏼐 􏼑

ln μσ ks( )

τas

+ ln 1 − δσ ks( )􏼒 􏼓􏼠 􏼡⎛⎝ ⎞⎠< 1.

(35)

Combining equations (32)–(34), one can obtain equa-
tion (35).

Vi,σ kt( )
􏽥ei(k)( 􏼁≤ 􏽘

t

q�1
􏽘

kq− 1

r�kq− 1

‖􏽥ω(r)‖
2
2 + 􏽘

k− 1

r�kt

‖􏽥ω(r)‖
2
2,

� 􏽘

kt− 1

r�0
‖􏽥ω(r)‖

2
2 + 􏽘

k− 1

r�kt

‖􏽥ω(r)‖
2
2,

� 􏽘
k− 1

r�0
‖􏽥ω(r)‖

2
2.

(36)

Together with (24), it is obvious that

􏽥zi(k)
����

����
2
2 ≤ c

2
Vi,s

􏽥ei(k)( 􏼁,

≤ c
2

􏽘

k− 1

r�0
‖􏽥ω(r)‖

2
2,

(37)

which implies that sup ‖􏽥z(r)‖
2
2􏽮 􏽯≤ c2‖􏽥ω(r)‖2L2

, and the proof
is complete. □

Corollary 1. For given constant scalars μs > 1, 0< δs < 1,
c> 0, if there exist positive-definite matrices Pi,s ∈ Rp×p sat-
isfying equations (37)–(39), the switched systems in equation
(20) with MDADT satisfying equation (25) are globally
uniformly asymptotically stable with prescribed L2-L∞ at-
tenuation performance c.

Pi,s ≤ μsPi,r, s≠ r, (38)

AT
i Pi,sAi − 1 − δs( 􏼁Pi,s AT

i Pi,sD

∗ DTPi,sD − I
⎡⎢⎢⎣ ⎤⎥⎥⎦≤ 0, (39)

λs
i( 􏼁
2CTC< c

2Pi,s. (40)

Proof. (e Lyapunov function Vi,s(􏽥ei(k)), i ∈H, is de-
fined as follows:

Vi,s
􏽥ei(k)( 􏼁 � 􏽥eTi (k)Pi,s

􏽥ei(k). (41)

According to (20) and (39), we can conclude that (38) is
equivalent to (24). Along the trajectory of Vi,s(􏽥ei(k)), one
has

ΔVi,s
􏽥ei(k)( 􏼁 � 􏽥eTi (k + 1)Pi,s

􏽥ei(k + 1) − 􏽥eTi (k)Pi,s
􏽥ei(k),

� Ai
􏽥ei(k) + D􏽥ωi(k)( 􏼁

T
× Pi,s Ai

􏽥ei(k) + D􏽥ωi(k)( 􏼁,

− 􏽥eTi (k)Pi,s
􏽥ei(k),

� 􏽥eTi (k) AT
i Pi,sAi − Pi,s􏼔 􏼕􏽥ei(k) + 􏽥ωT

i (k) DTPi,sD􏽨 􏽩􏽥ωi(k),

+ 􏽥eTi (k)AT
i Pi,sD􏽥ωi(k) + 􏽥ωT

i (k)DTPi,sAi
􏽥ei(k).

(42)

Together with equations (40)-(41), we have

ΔVi,s
􏽥ei(k)( 􏼁 + δsVi,s

􏽥ei(k)( 􏼁 − 􏽥ωT
i (k)􏽥ωi(k),

� 􏽥eTi (k) AT
i Pi,sAi − 1 − δs( 􏼁Pi,s􏼔 􏼕􏽥ei(k) + 􏽥eTi (k)AT

i Pi,sD􏽥ωi(k),

+ 􏽥ωT
i (k)DTPi,sAi

􏽥ei(k) + 􏽥ωT
i (k) DTPi,sDi − I􏽨 􏽩􏽥ωi(k),

�

􏽥ei(k)

􏽥ωi(k)

⎡⎢⎢⎣ ⎤⎥⎥⎦

T AT
i Pi,sAi − 1 − δs( 􏼁Pi,s AT

i Pi,sD

∗ DTPi,sD − I

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

􏽥ei(k)

􏽥ωi(k)

⎡⎢⎢⎣ ⎤⎥⎥⎦,

≤ 0.

(43)

According to (eorem 1, we can conclude that the
system in (20) with MDADT satisfying (25) is globally
uniformly asymptotically stable with prescribed L2-L∞ at-
tenuation performance c.

Based on (eorem 1 and Corollary 1, the solutions of
consensus protocol are given in (eorem 2. □

Theorem 2. For given constant scalars μs > 1, 0< δs < 1,
c> 0, as > 0, and εs > 0, if there exist positive-definite matrices
Pi,s ∈ Rp×p, matrices Xs ∈ Rl×l, Ys ∈ Rl×q, the MASs in (2)-(3)
with control input in equation (5) are asymptotically stable
with prescribed L2-L∞ attenuation performance c such that
equation (43) holds.
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Ξ11 0 Ξ13 asλ
s
iY

T
s 0

∗ − I DTPi,s 0 0

∗ ∗ − In− 1 ⊗Ps( 􏼁 BXs − Pi,sB Pi,sBMs

∗ ∗ ∗ − as Xs + XT
s􏼐 􏼑 0

∗ ∗ ∗ ∗ − εsI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (44)

Ee parameters of control protocol can be derived in (43).

Ks � X− 1
s Ys, (45)

where Γ11 � − (1 − δs)Pi,s + εs(λ
s
i )
2NT

s Ns, Γ13 � ATPi,s−

λs
iY

T
s B

T.

Proof. According to Schur complement, it is obvious that
equation (43) is equivalent to equation (45).

Ξ11 0 Ξ13 asλ
s
iY

T
s

∗ − I DTPi,s 0

∗ ∗ − Pi,s BXs − Pi,sB

∗ ∗ ∗ − as Xs + XT
s􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ε− 1
s

0

0

Pi,sBMs

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0

0

Pi,sBMs

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,

�

Ξ11 0 Ξ13 asλ
s
iY

T
s

∗ − I DTPi,s 0

∗ ∗ − Pi,s + ε− 1
s Pi,sBMsM

T
s B

TPi,s BXs − Pi,sB

∗ ∗ ∗ − as Xs + XT
s􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

< 0.

(46)

DefineΘs � Ts + ε− 1
s MT

s + εsN
T
s Ns,Us � 0 0 XT

s B
T−􏽨

BTPi,s]
T, and Vs � λs

i Ys 0 0􏼂 􏼃
T, where Ts �

− (1 − δs)Pi,s 0 A
T
Pi,s − λs

i Y
t
sB

T

∗ − I D
T
Pi,s

∗ ∗ − Pi,s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,Ms �

0
0

Pi,sBMs

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, and

Ns � − λs
i Ns 0 0􏼂 􏼃.

Together with Lemma 2, we have

Θs + UsX
− 1
s V

T
s + VsX

− T
s U

T
s ,

� Ts + ε− 1
s MsM

T
s + εsN

T
s Ns + UsX

− 1
s V

T
s + VsX

− T
s U

T
s < 0.

(47)

Moreover, based on Lemma 3, one has

T + MFN + N
T
F

T
M

T
+ UsX

− 1
s V

T
s + VsX

− T
s U

T
s

�

− 1 − δs( 􏼁Pi,s 0 A
T

i Pi,s

∗ − I D
T
Pi,s

∗ ∗ − Pi,s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0.

(48)

According to Schur complement, it is obvious that (46) is
equivalent to (37), which completes the proof. □

4. Compensated Consensus Protocol Design
Based on FDQL

In this section, the learning-based consensus protocol is pro-
posed based on deep reinforcement learning, where fuzzy deep
Q learning is utilized. (e stability and prescribed attenuation
performance are guaranteed by the robust control theory, and
the learning-based control protocol is introduced to improve
the transient performance and realize optimal control policy.
(e output of the learning-based control protocol can be viewed
as an additional variation of robust consensus protocol. (e
online scheduling of control protocol is established as a Mar-
kovian process. (erefore, the advantages of robust control
theory and deep reinforcement learning are combined.

It is well known that reinforcement learning is composed
of state, action, agent, and environment. (e state of kth step
is defined as sk, and the chosen action is supposed to be ak;
then, the reward function rk and the state sk+1 are generated
based on the interaction with the environment. (erefore,
the optimal control policy can be obtained by maximum the
reward function.

To improve the convergence of consensus protocol, the
state is defined as sk � 􏽥ei(k) 􏽥zi(k)􏼂 􏼃 and the action is
defined as ak � [Kc,σ(k)].

In Q learning, the deep neural network is utilized to
approximate the action-state value function Q∗(sk, ak),
which can be described as

f sk, ak,ω( 􏼁 � Q
∗

sk, ak( 􏼁, (49)

where f(sk, ak,ω) denotes the function of deep neural
networks.

(e action is chosen based on the maximum Q value:

a
∗

� arg max
a

Q sk, ak( 􏼁. (50)

(ere exist two neural networks in the deep Q learning
algorithm, whose structures are the same and can be called as
the critic neural network and target neural network. (e
parameters of the critic neural network are updated based on
temporal-difference learning. (e output of the critic neural
network is defined as Q(sk, ak,ω) and the output of the
target neural network is defined as Q(sk, ak,ω− ). (erefore,
the parameters of the critic neural network are updated
based on the equation as follows:

Q sk, ak,ω−
( 􏼁 � Lr R + csmaxa′ Q s′, a′,ω−

( 􏼁( 􏼁􏼂 􏼃

+ 1 − Lr( 􏼁Q sk, ak,ω( 􏼁,
(51)

where Lr is the learning rate, cs denotes the discount factor,
R represents the reward of state transition from sk to s′
through action ak, and maxa′(Q(s′, a′,ω− )) stands for the
maximum Q value of the target neural network.

It can be inferred that the reward function has an im-
portant influence on the final performance. (e design of
traditional deep Q learning mainly depends on the expe-
rience of designers, which can not achieve optimal perfor-
mance and will improve the computational complexity. In
this study, the reward function is applied to design the

Computational Intelligence and Neuroscience 9



reward function. (e input value of fuzzy reward function
can be divided into five categories, which can be described as
VB, B, N, G, and VG. (e five categories represent very bad,
bad, normal, good, and very good. In this study, it is sup-
posed that there are four followers. (erefore, the inputs of
the fuzzy reward system are set to be |e1|, |e2|, |e3|, and |e4|. It
can be inferred that each fuzzy set includes 25 rules, and the
total number of the fuzzy rules is 75. (e output of the fuzzy
reward function is limited in the interval [− 1,0), and the
defuzzifier of the fuzzy reward function is defined as

f(z) �
􏽐

25
p�1C

i
􏽑

m
q�1 s

p
q zq􏼐 􏼑

􏽐
25
p�1 􏽑

m
q�1 s

p
q zq􏼐 􏼑

. (52)

Based on the statement above, the learning-based con-
sensus protocol design algorithm can be summarized as
follows:

Remark 2. (e FDQN algorithm proposed in this study can
improve the transient convergence performance of MASs.
(e output of the deepQ network is supposed to be variation
of parameters of consensus protocol. As well known, the
design of reward function in the traditional method depends
of the experience of the designers. To overcome the problem,
the fuzzy reward function is developed to improve the
learning efficiency in this study.

5. Numerical Example

In this section, an example is provided to illustrate the ef-
fectiveness of the method.(emodel of MASs is constructed
as follows:

A �
− 1 · 3 − 1 · 5

1 · 3 1 · 2
􏼢 􏼣,

B �
1 · 2

1 · 5
􏼢 􏼣,

C � 1 · 1 0 · 9􏼂 􏼃,

D � 0 · 13 0 · 12􏼂 􏼃.

(53)

(e external disturbance is

d(k) � 0 · 1e
− 0.2k cos(0 · 4k). (54)

(e switching topologies are shown in Figure 1.(en, we
can obtain the Laplace matrices as follows:

L1 �

1 0 0 − 1

0 1 − 1 0

0 − 1 1 0

− 1 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L2 �

1 0 0 − 1

0 1 0 − 1

0 0 1 − 1

− 1 − 1 − 1 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(55)

(e parameters of switching topologies are given as
follows:

a1 � 1 · 01

a2 � 1 · 11

a3 � 1 · 08

,

μ1 � 1 · 25

μ2 � 1 · 31

μ3 � 1 · 38

,

δ1 � 0 · 51

δ2 � 0 · 52

δ3 � 0 · 53

.

⎧⎪⎪⎨

⎪⎪⎩

⎧⎪⎪⎨

⎪⎪⎩

⎧⎪⎪⎨

⎪⎪⎩
(56)

(erefore, we can obtain MDADT according to (25).

τ1 � 0 · 3128, τ2 � 0 · 3679, τ3 � 0 · 4266. (57)

It is well known that the ADTmethod can be viewed as a
special case of the MDADT method. (erefore, it can be
inferred that τa � max τai􏼈 􏼉 � 0 · 4266. It is obvious that
tighter bounds on dwell time and less conservative results
can be obtained. (en, we define the attenuation perfor-
mance index c � 0 · 9, and we can obtain the parameters of
consensus protocol based on (eorem 2.

(e switching logic is shown in Figure 2. In order to
illustrate the effectiveness and superiority of the proposed
method, the traditional ADTmethod and MDADTmethod
are given as comparisons. From the statement above, we
have realized that MDADT can obtain tighter bounds and
less conservative results. Moreover, the comparisons of state
response of the ADT method and MDADT method are
shown in Figures 3–6. (e state responses of MASs with
ADT switching topologies are shown in Figures 3-4. (e
state responses of MASs with MDADT switching topologies
are shown in Figures 5-6. We can see that the transient
performance of the ADT method is better than that of the
MDADT method because the different characteristics of
subsystems are taken into consideration, which will no
doubt improve the design flexibility and make it more ap-
plicable for practical conditions.

Validate the superiority of the proposed method. (e state
response of the proposedmethod is shown in Figures 7–11.(e
state responses of the proposedmethod are shown in Figures 7-
8. We can conclude that the transient performance can be
improved by the aid of fuzzy deepQ learning.(e advantages of
the traditional method and intelligent method are combined.
Compared with the traditional method, the transient perfor-
mance can be improved, and compared with the intelligent
method, stability and training efficiency can be guaranteed.(e
attenuation performance index is shown in Figure 9, from
which we can see that the robustness of the proposed is ensured.
(e episodes reward response is shown in Figure 10, andwe can
see that the reward function of the fuzzy deep Q learning al-
gorithm can converge to the neighbor of the origin, which
demonstrates the effectiveness of the algorithm in this study. In
addition, the response of the action is shown in Figure 11, from
which we can see that the learning-based consensus protocol is
provided to compensate the additional input caused by the
uncertainties.

Based on the statement above, we can conclude that
the convergence, robustness, and prescribed attenuation
performance index are guaranteed. (e less conservative
results and tighter bounds on dwell time can be obtained
by the MDADTmethod. (e transient performance of the
system can be improved based on the fuzzy deep Q
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learning algorithm. It is worth mentioning that the tra-
ditional robust cannot make comprised of robustness and
transient performance, and the intelligent method always

cannot guarantee convergence. By employing the pro-
posed method, convergence, robustness, and transient
performance are guaranteed simultaneously.

(1) Design the dynamics-based consensus protocol according to (eorem 2
(2) Define the bounds of learning-based consensus protocol parameters
(3) Initialize the weights of the Q value network
(4) Initialize the weights of the target Q value network
(5) Initialize the replay buffer R, episode� 0
(6) for episode� 1 to M do
(7) Initialize a random state s1 and receive the initial observation
(8) For t� 1 to K do
(9) Select an action based on the state and reward function
(10) Execute the action ak, and then, one can obtain the reward function rk and the state sk+1
(11) Store the pair (sk, ak, rk, sk+1) in the replay buffer
(12) Sample a random minibatch of transitions (sm, am, rm, sm+1) from the replay buffer
(13) Update the target Q value function
(14) Update the weights of the target Q value network
(15) end for
(16) end for

ALGORITHM 1: Learning-based control protocol design based on FDQN.

1 2

4 3

0

(a)

1 20

3

4

(b)

Figure 1: Switching topologies of MASs. (a) Interacting topology G1. (b) Interacting topology G2.
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Figure 2: (e switching logic.

Computational Intelligence and Neuroscience 11



x11
x21
x31

x41
x51

-8

-6

-4

-2

0

2

4

6

8

x 1

86 100 2 4
Time (s)

Figure 3: (e state response of (x)1 under the ADT method.
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Figure 4: (e state response of (x)2 under the ADT method.
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Figure 5: (e state response of (x)1 under the MDADT method.
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Figure 6: (e state response of (x)2 under the MDADT method.
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Figure 7: (e state response of (x)1 with the proposed method.
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Figure 8: (e state response of (x)2 with the proposed method.
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Figure 9: (e response of attenuation performance index.
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6. Conclusions

(eproblem of intelligent L2-L∞ consensus design forMASs
under switching topologies is investigated in this study. (e
switching topologies of MASs are modeled as switched
system theory by employing linear transformation.(en, the
problem of consensus protocol design can be converted to
the problem of L2-L∞ control. To ensure the convergence,
robustness, and transient performance simultaneously, the
proposed consensus protocol is composed of dynamics-
based consensus protocol and learning-based consensus
protocol, which provides baseline and compensation of
uncertainties. (e baseline of consensus protocol is obtained
by dynamics-based consensus protocol, which is provided
based on the MDADT method and MLF method. (e
scheduling interval of learning-based protocol is given by
nonfragile control theory. (en, the learning-based con-
sensus protocol is proposed based on the fuzzy deep Q
learning algorithm to improve the transient performance
and achieve optimal policy, where the fuzzy reward function
is introduced to improve the learning efficiency.
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