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Pedestrian trajectory prediction is an essential but challenging task. Social interactions between pedestrians have an immense
impact on trajectories. A better way to model social interactions generally achieves a more accurate trajectory prediction. To
comprehensively model the interactions between pedestrians, we propose a multilevel dynamic spatiotemporal digraph con-
volutional network (MDST-DGCN). It consists of three parts: a motion encoder to capture the pedestrians’ specific motion
features, a multilevel dynamic spatiotemporal directed graph encoder (MDST-DGEN) to capture the social interaction features of
multiple levels and adaptively fuse them, and a motion decoder to produce the future trajectories. Experimental results on public
datasets demonstrate that our model achieves state-of-the-art results in both long-term and short-term predictions for both high-
density and low-density crowds.

1. Introduction

&e task of pedestrian trajectory prediction is to predict
pedestrians’ future trajectories given their historical tra-
jectories in the scenario. Pedestrian trajectory prediction
plays a notable role in many aspects, such as automatic
driving [1] and robot navigation [2–5]. To predict an ac-
curate trajectory, only considering the historical trajectory
of the target pedestrian is not enough. Other pedestrians’
influences on the target pedestrian, which are called “social
interaction features,” can often help make a better pre-
diction. With the longer prediction horizon and denser
crowds, the temporal correlations in the trajectories be-
tween current and previous time steps grow weaker and the
impact of interactions on pedestrians’ motion grows
stronger.

To model social interactions, traditional methods use
rule-based functions [6–10]. While rule-based methods can
only capture simple interactions, data-driven methods use

neural networks to automatically extract the social inter-
action features from the data, which can make use of the
interaction features more effectively. Many data-driven
methods obtained social interaction features based on
pooling [11–14] or attention mechanisms [1, 15–20]. &e
graph convolutional neural networks have developed rapidly
in recent years, and the graph structure is naturally suitable
for directly describing the interactions between pedestrians.
As a result, graph convolutional neural networks [21–25]
have achieved excellent results in pedestrian trajectory
prediction.

Although there are many graph convolutional neural
network-based methods, they do not make full use of them.
For example, Social-BiGAT [21] only uses the graph rep-
resentation as the pooling mechanism on the states of the
recurrent neural networks. &e new methods STGAT [22]
and Social-STGCNN [23] constructed spatiotemporal
graphs to model social interactions and achieved excellent
results in predictions.
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However, they ignore a crucial point that even if the
social interactions with nearby pedestrians or distant pe-
destrians are of the same type, they will result in different
actions of the target pedestrian. As shown in Figure 1, at time
steps t1 and t2, when the target pedestrian marked with the
red circle avoids the nearby pedestrians and the distant
pedestrians, respectively, his avoidance movements will be
different. &e former is a sudden avoidance producing a
trajectory with high curvature, while the latter is an early
avoidance producing a trajectory with low curvature.
Moreover, with the increase in prediction horizon, pedes-
trians far from the target pedestrian may become more
important. From time step t1 to t2, pedestrian B has little
impact on the target pedestrian, but in the total period from
t1 to t3, the merging of them is the main factor affecting the
target pedestrian’s trajectory. In other words, the influence
of nearby pedestrians is mainly sudden and short-term,
while faraway pedestrians have long-term effects on the
target pedestrian’s movement tendency.

Most previous methods [21–25] use a single graph to
model these two types of influences and tend to capture
“average social interaction features.” However, these two
types of influences are more suitable to be modeled sepa-
rately at different levels of a multilevel graph. Besides, many
methods [23, 25] build an undirected graph to model social
interactions. However, social interactions between pedes-
trians are nonsymmetrical. &erefore, building a digraph is
more suitable for social interactions. Other methods [24]
build a directed graph by predefined rules, such as inserting
edges from all people inside the view area. But predefined
rules are incomplete. For example, a pedestrian may slow
down to wait for his companion without looking at him.
&us, a data-driven way to build a directed edge is much
better.

To address the limitations of these works, we propose a
multilevel dynamic spatiotemporal directed graph repre-
sentation to model the interactions between pedestrians
comprehensively. In our graph, different levels model in-
teractions of pedestrians at different distance ranges. As
shown in Figure 1, whether there is a spatial edge from a
pedestrian to the target pedestrian at a level depends on
whether their distance is within the corresponding distance
range. With the change of time, the spatial edge between two
pedestrians may break at one level and link at another. Even
if the edge keeps linking at the same level, the influence of the
neighbour also changes dynamically over time. To process
the multilevel graph, we propose a multilevel dynamic
spatiotemporal digraph convolutional network (MDST-
DGCN). At each level of the graph, we use a node aggregator
architecture to generate social interaction embedding by
sampling and aggregating features from a node’s spatial
neighborhood like GraphSAGE [26]. Because social inter-
actions are location independent, we do an aligning oper-
ation before aggregating features, which can advance
performance significantly. &rough the orderly use of
sampling, aligning, and aggregating, the aggregator archi-
tecture becomes a naturally data-driven way to describe a
directed edge. For each level of the graph, after the spatial
interactions are captured, an LSTM [27] is used to capture

the temporal correlations of interactions. And then, MDST-
DGCN fuses interaction features of all levels adaptively.
&rough modelling social interactions at different levels, our
multilevel dynamic spatiotemporal digraph convolutional
network (MDST-DGCN) can fully extract pedestrians’ social
interaction features.

In summary, our contribution is twofold. First, we
propose using the spatiotemporal dynamic map with a
multilevel concept to separate pedestrian nodes, resulting
in varying effects on the trajectory depending on the
distance between pedestrians, which may aid in the ex-
traction of social interaction features by partitioning pe-
destrian distances at various levels. Second, we create an
aggregator based on the GraphSAGE that converts the
original static adjacency graph structure into a dynamic
directed graph structure by sampling, aligning, and ag-
gregating, reducing the effect of individual coordinates on
the model and the overfitting phenomenon. We verified the
performance of the model on the general pedestrian tra-
jectory datasets. &e experimental results show that our
model has achieved state-of-the-art results in both long-
term and short-term predictions for both high-density and
low-density crowds.

2. Related Work

2.1. Pedestrian Trajectory Prediction. Pedestrian trajectory
prediction has become a focal task in recent years, and
corresponding solutions have been springing up. Compre-
hensively modelling the interactions between pedestrians is a
crucial point to obtain better prediction results.

Traditionally, researchers created hand-crafted functions
[3, 6–10] to predict trajectories, but hand-crafted functions
are limited, so they are unable to model all types of social
interactions. Recently, deep learning-based methods have
become popular because they can learn to model various
interactions from data.

Some researchers designed their methods based on
pooling mechanisms [11–14] to capture dependencies be-
tween pedestrians. &e S-LSTM [11] introduces a “social”
pooling layer which allows the LSTMs of spatially proximal
sequences to share their hidden states with each other.
Group-LSTM [12] adjusts the pooling layer by dropping the
information of pedestrians who are moving coherently with
the target pedestrian. MX-LSTM [13] has a pooling layer,
which exploits the Vislet information. &e above three
pooling methods only consider the pedestrians in the local
area and fuse their features averagely, while SGAN intro-
duces a pooling module considering all pedestrians in a
computationally efficient way and adaptively select their
features with a max-pooling operation.

While most pooling-based methods treat pedestrians
equally, attention-based methods [1, 15–20] assign different
weights to interactive pedestrians. Most of these methods
[1, 11–14, 16–20] assign an LSTM for each pedestrian, and
the pooling mechanisms or the attention mechanisms
usually work on the hidden states of pedestrians’ LSTMs to
adaptively fuse other pedestrians’ motion features with the
target pedestrian. More recently, STAR [28] captures
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complex spatiotemporal interactions by interleaving be-
tween spatial and temporal transformers [29].

As the graph structure is naturally suitable for directly
describing the interactions between pedestrians, graph
convolutional neural networks are introduced to this task.
Social-BiGAT [21] replaced the pooling mechanisms with
the graph attention network, which also works on the hidden
states of LSTMs. In other words, Social-BiGAT did not
model the whole duration of the crowds’ interactions as a
spatiotemporal graph but only used the graph attention
network to capture the spatial social interactions. Social-
STGCNN [23] and STGAT [22] both constructed spatio-
temporal graphs to model social interactions. However, the
graph of Social-STGCNN is a complete undirected graph. It
does not conform to the asymmetry of pedestrian interac-
tions. Zhang et al. [24] built a directed graph by inserting
edges from all people inside the view area. However, all of
these graphs model all the social interactions at only one
level. Instead, we build a multilevel dynamic spatiotemporal
directed graph to overcome their limitations.

2.2. Graph Convolutional Neural Network. Graph convolu-
tional neural network is an emerging topic in deep learning
research, and it provides a practical approach to process
graph data with nongrid structures. We can divide graph
convolutional neural networks into spectral approaches
[30–32] and spatial approaches [26, 33, 34]. Spectral ap-
proaches work with a spectral representation of the graphs,
while spatial approaches define convolutions directly on the
graph, operating on groups of spatially close neighbours.
Spectral approaches’ learned filters depend on the Laplacian
eigenbasis, which depends on the graph structure. &us, a
model trained on a specific structure cannot be directly
applied to a graph with a different structure. However, the
graph used to model pedestrians’ social interactions changes

with time. &us, spectral approaches are not suitable for
pedestrian trajectory prediction. And, our approach belongs
to the spatial approaches.

In fact, our approach follows the methodology of
GraphSAGE [26]. However, our graph is a multilevel dy-
namic spatiotemporal directed graph, while GraphSAGE can
only process a fixed spatial graph without multiple levels.
ST-GCN [34] built a dynamic spatiotemporal graph to
automatically learn both the spatial and temporal patterns of
human actions to recognize skeleton-based actions. Social-
STGCNN [23], which is a variant of ST-GCN that builds a
single-level undirected graph to model all the social inter-
actions, has achieved excellent results in pedestrian trajec-
tory prediction.

3. Methods

3.1. Problem Definition. Given the historical trajectories of
all pedestrians in the scenario, the task of trajectory pre-
diction is to predict their future trajectories simulta-
neously. &e notations p1, p2, . . ., pN represent N

pedestrians in the scenario. &e position of a specific pe-
destrian pi(i ∈ [1, N]) at any historical time step
t(t ∈ [1, Tobs]) is defined as Xt

i � (xt
i , yt

i ). Our goal is to
predict the positions of pedestrians at any future time step
t tε[Tobs + 1 + Tobs + Tpred] , and for a specific pedestrian
pi, the predicted position is denoted as Y

t

i � (xt
i , yt

i), while
the ground truth is defined as Yt

i � (xt
i , yt

i). &e first-order
difference trajectory of a pedestrian pi is defined as
ΔXt

i |t ∈ [1, Tobs + Tpred] , where ΔXt
i � Xt

i − Xt−1
i .

3.2. Overall Model. As shown in Figure 2(b), MDST-DGCN
consists of three parts: a motion encoder, a multilevel dy-
namic spatiotemporal directed graph encoder (MDST-
DGEN), and a motion decoder. &e motion encoder is used

Level 1

Level 2

Target pedestrian
pedestrian B

Figure 1: &e influences of pedestrians in the nearby area and the faraway area on the target pedestrian are more suitable to be modeled
separately at different levels.
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to capture the pedestrian-specific motion features, and the
MDST-DGEN is used to capture the social interaction
features. We construct a multilevel dynamic spatiotemporal
digraph processed by the MDST-DGEN to model the social
interactions between pedestrians. After the motion features
and social interaction features are extracted, they are fed into
the motion decoder to predict future trajectories.

3.3. GraphConstruction. We construct a multilevel dynamic
spatiotemporal directed graph to model the multilevel social
interactions between pedestrians. &e nodes of the graph are
the pedestrians in the scenario. Given the hyperparameter
level distance list d1, d2, . . . , dK , we construct a graph with
K levels. At each time step, if the distance from node vj to
node vi is more than dk−1 and less than dk, a spatial edge
from vj to vi will exist in the kth(k ∈ [1, K]) level. Specifi-
cally, in the 1st level, a spatial edge exists when the distance is
less than d1. For each node at all levels, we add a loop spatial
edge. Figure 2(a) shows how to build a two-level spatial
graph with the level distance list d1, +∞  at a certain time
step. In addition to spatial edges, there are temporal edges,
which connect the same pedestrians in consecutive frames. If
there is only one level and d1 � +∞, the graph will degrade
into a complete graph, which is of the same structure as
STGAT. At the time step t, the attribute of node vt

i is the
position Xt

i of pedestrian pi.

3.4. Motion Encoder. &e motion encoder is used to extract
pedestrian-specific motion features. &e input is the first-
order difference trajectory ΔXt

i |t ∈ [1, Tobs] . &e motion
encoder is composed of a linear layer and an LSTM. &e
linear layer transforms the ΔXt

i into a higher dimension
vector. &en, it is fed into the LSTM to get a motion feature
vector. For each pedestrian pi, the process can be formulated
as

h
t
mo(i) � LSTMmo h

t−1
mo(i), Linearen ΔX

t
i ; Wen ; Wmo . (1)

Here, Wen denotes the trainable weights of the linear layer,
Wmo is the trainable weights of the LSTM (LSTMmo), and
the hidden states of LSTMmo at the previous time step and
the current time step of pedestrian pi are denoted as ht−1

mo(i)

and ht
mo(i), respectively. At last, the motion encoder obtains

each pedestrian’s motion feature vector h
Tobs
mo (i), which is

marked as hmo(i) in the following sections.

3.5.MDST-DGEN. MDST-DGEN is a crucial component of
our model. It processes the multilevel dynamic spatiotem-
poral directed social graph to obtain the social interaction
features. If the graph is of K levels, MDST-DGEN will have
K DGCN-LSTMs to process each level of it and an MSFM to
fuse the features extracted from each level. In our imple-
mentation, K DGCN-LSTMs share the weights, so in-
creasing the number of levels does not increase the
parameters of the model.

3.6. DGCN-LSTM. After building the multilevel graph, each
level of the graph is fed into a DGCN-LSTM. A DGCN-
LSTM consists of a node aggregator architecture to process
the spatial edges and an LSTM to process the temporal edges.
We follow the design of GraphSAGE [26], which processes
graphs by sampling and aggregating. Our node aggregator
architecture generates embedding by sampling, aligning, and
aggregating features from a node’s spatial neighbourhood at
each level.

3.6.1. Sampling. Due to the different numbers of pedestrians
in the scene, to process all nodes of different graphs in
parallel, we expand the number of neighbours to a fixed
number m by uniformly sampling a certain number of
neighbours. Here, if there is an edge from node vj to node vi,
vj will be the neighbour of vi. We denote them neighbours of
any node v as the neighbourhood set N(v).

3.6.2. Aligning. For the node vi, its attribute is the pedes-
trian’s position Xt

i and the attributes of its neighbourhood
set can be denoted as Xt

j|∀vj ∈N(vi) . Social interaction is
location independent, so we design an aligning operation to
make the node aggregator architecture more generalizable.
After aligning is done, the aligned attributes of any node vi’s
neighbourhood set can be denoted as
Xt

j − Xt
i |∀vj ∈N(vi) . &e intuitive understanding of the
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Figure 2: (a) Illustration of how to build a two-level spatial graph with the level distance list d1, +∞  at a certain time step. Level 1 shows the
relation between pedestrians within the distance of d1, and Level 2 shows it beyond the distance of d1. &e left graphs show the edges from
others to a specific pedestrian at different levels, and the right ones show all edges in the graphs of different levels. (b) &e architecture of
MDST-DGCN.
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alignment operation is that we change the origin of coor-
dinates to the position of node vi.

3.6.3. Aggregating. After the aligning, we aggregate the
aligned attributes of vi’s neighborhood set to obtain the new
feature embedding of vi. It can be formulated as follows:

V
t
i � MAX f X

t
j − X

t
i |∀vj ∈N vi(   , (2)

where MAX is the max operator that take the elementwise
max of the transformed attribute vectors
f(Xt

j − Xt
i)|∀vj ∈N(vi)  and f is the trainable linear

mapping to convert a low-dimension vector to high di-
mension. We implement the max operator by using a max-
pooling layer. &rough the orderly use of sampling, aligning,
and aggregating, our model can meet the requirement of a
directed graph that the relation between two nodes in the
directed graph is asymmetric.

After the spatial edges are processed, an LSTM is used to
process the temporal edges as follows:

h
t
g(i) � LSTMg h

t−1
g (i), V

t
i ; Wg , (3)

where Wg is the trainable weights of the LSTM (LSTMg)

and the hidden states of LSTMg at previous time step and
current time step are correspondingly denoted as ht−1

g (i) and
ht

g(i). At last, the DGCN-LSTM obtains each pedestrian’s
social interaction feature vector h

Tobs
g (i) at a certain level, and

in the following sections, we denote h
Tobs
g (i) of the kth level as

Hk
g(i).

3.7. MSFM. &ere are K levels in our graph, so there are K

DGCN-LSTMs and the node vi’s social interaction feature
vectors obtained by them can be denoted as
H1

g(i), H2
g(i), . . . , HK

g (i) . We use an MSFM to fuse all
levels’ social interaction feature vectors of node vi. &e
MSFM computes the weighted sum of
H1

g(i), H2
g(i), . . . , HK

g (i) . &e formulations are as follows:

αk
i �

exp hmo(i)
T
H

k
g(i) 

j∈[1,K]exp hmo(i)
T
H

j
g(i) 

,

Hg(i) � 
k∈[1,K]

αk
i H

k
g(i).

(4)

Here, hmo(i) is the motion feature vector of pedestrian pi, ·T

represents transposition, Hk
g(i) is the corresponding social

interaction feature vector at level k, the fusion weight αk
i is a

scalar, and Hg(i) is the final fused social interaction feature
vector.

3.8. Motion Decoder. &e motion decoder is used to predict
future trajectories based on the motion features and the
fused social interaction features. &ere are two types of
motion decoders: motion decoders without noise and mo-
tion decoders with noise.&e formermakes the whole model
a deterministic one, and the latter makes it a stochastic one.
For the deterministic type, we only concatenate Hg(i) and

hmo(i) as the initial hidden state of an LSTM and we train the
model with L1 loss. For the stochastic type, we con-
catenateHg(i), hmo(i), and a noise vector z sampled from a
standard Gaussian distribution to work as the initial hidden
state of an LSTM. &e formulation which shows how to get
the initial hidden state of the stochastic motion decoder is as
follows:

hde(i) � Linearh concat Hg(i), hmo(i), z ; Wh . (5)

Moreover, we train the whole model with the variety loss
proposed by SGAN [14] to encourage it to produce diverse
samples. At the first prediction time step Tobs + 1, the de-
coder gets ΔXTobs

i as the initial input and predicts the next
position offset Δ X

Tobs+1
i . &e predicted position offset is

marked as Δ X
t

i |t ∈ [Tobs + 1, Tobs + Tpred] . &e formula-
tions which show how the stochastic motion decoder works
are as follows:

h
t
de(i) � LSTMde h

t−1
de (i), Linearde Δ X

t

i ; Lde ; Wde ,

Δ X
t+1
i � Linearpred h

t
de(i); Wpred ,

Y
t+1
i � Y

t

i + Δ X
t+1
i ,

(6)

where Lde and Wpred are the trainable weights of the cor-
responding linear layers, concat means concatenating op-
eration, and Wde denotes the trainable weights of the LSTM
(LSTMde).

4. Experiments

4.1. Datasets, Baseline Methods, and Metrics

4.1.1. Datasets. We evaluate our method on three commonly
used datasets, ETH [35], UCY [36], and a high-density pe-
destrian dataset, pedestrian walk path dataset [37], which is
referred to as PEDWALK in the rest of the article. ETH and
UCY contain 1536 pedestrians’ real-world trajectories, while
PEDWALK contains the manually labeled trajectories of
12684 pedestrians, and coordinates are provided in pixels.&e
image size of PEDWALK is 1920 × 1080 pixels. ETH and
UCY consist of a total of five unique scenes: ETH, HOTEL
(from ETH), ZARA1, ZARA2, and UNIV (from UCY). For
ETH and UCY, we follow the leave-one-out evaluation
methodology in SGAN [14], training on 4 scenes and testing
on the remaining one. For PEDWALK, we use 70% of its total
frames for training and leave the remaining 30% for evalu-
ation.&e interval of trajectory sequences of ETH and UCY is
0.4 seconds, while the interval of trajectory sequences of
PEDWALK is 0.8 seconds. We take 8 ground truth positions
as observation and predict the trajectories of the following 12
time steps. It means, for ETH and UCY, we observe for 3.2
seconds and predict the future at 4.8 seconds (short-term
prediction), while for PEDWALK, we observe for 6.4 seconds
and predict the future at 9.6 seconds (long-term prediction).

4.1.2. Baseline Methods. We compare MDST-DGCN of
deterministic type (MDST-DGCN-D) with deterministic
models, e.g., LSTM [27], S-LSTM [11], Social Attention [15],
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and CIDNN [19]. Furthermore, we compare MDST-DGCN
of stochastic type (MDST-DGCN-S) with stochastic models,
e.g., SGAN [14], SGAN-P [14], SoPhie [16], GAT [21],
Social-BiGAT [21], STGAT [22], and Social-STGCNN [23].

4.1.3. Metrics. &ere are two commonly used metrics: av-
erage displacement error (ADE) and final displacement
error (FDE). ADE is the average L2 distance between ground
truth and the predicted trajectory over all the predicted time
steps, and FDE is the distance between the predicted final
position and the actual final position at the end of the
prediction period Tobs + Tpred. For stochastic models, similar
to prior work [14, 22], 20 samples are generated and the
closest sample to the ground truth is selected to compute
ADE and FDE. After checking the codes of SGAN, STGAT,
and Social-STGCNN, we find there are two different ways to
select the closest sample: selecting the closest trajectory of
each pedestrian in a sample used by Social-STGCNN [23]
and selecting the closest sample used by SGAN [14] and
STGAT [22]. A sample includes all pedestrians’ trajectories
in the scenario for a total duration of (Tobs + Tpred) time
steps. Following the tradition of SGAN and STGAT, we
select the closest sample to compute the ADE and FDE of
MDST-DGCN-S.

4.2. Model Configuration and Training Details. For the
motion encoder, the output dimension of the linear layer is
32 and the hidden state dimension of LSTMmo is 64. For the
MDST-DGEN, the output dimension of f and LSTMg is 64.
We implement f with a convolution layer. To process nodes
in different scenarios in parallel, the fixed neighbour number
m needs to be larger than the maximum number of pe-
destrians in a sample. &e most crowded scene in PED-
WALK contains 133 pedestrians, and in ETH and UCY,
there are 57 pedestrians in the most crowded scene. So we set
it 135 for PEDWALK and 60 for ETH and UCY. For the
motion decoder, the output dimension of Linearh is 32, the
hidden state dimension of LSTMde is 64, and the output
dimension of Linearpred is 2. For the MDST-DGCN-S, the
dimension of the noise vector z is half of the hidden state
dimension.

Our implementation is based on the PyTorch library.&e
model is trained on one NVIDIA GeForce GTX 1080Ti
graphics card for 200 epochs. To calculate the variety loss
with less GPU memory usage, we generate only 5 possible
output predictions for each scene. In training, a batch size of
32 was used; we use the Adam optimizer with a learning rate
of 0.0001. 1, 5, +∞{ } is the default-level distance list for ETH
andUNIV, and 150, +∞{ } is the default-level distance list for
PEDWALK.

4.3. Quantitative Evaluation. To validate the proposed
MDST-DGCN, we present the prediction performance for
both short-term trajectory prediction on ETH and UCY and
long-term trajectory prediction on PEDWALK, and we
present the prediction performance for various pedestrian

densities. We elaborate on an ablation study to validate the
effects of our multilevel graph and the aligning operation.

4.3.1. MDST-DGCN-D. As Table 1 shows, MDST-DGCN-D
outperforms all deterministic methods and some stochastic
methods on ETH and UCY. And, as Table 2 shows, MDST-
DGCN-D even outperforms stochastic methods including
STGAT. It shows that our model has good performance in
capturing interaction features, and we think there are three
reasons. First, PEDWALK has many more pedestrians in a
scene than ETH and UCY, and then it has more interaction
types and more frequent interaction activities in a sample.
Second, high-density limits the randomness of pedestrian
movement. &ird, the prediction horizon on PEDWALK is
9.6 s, while it is 4.8 s on ETH and UCY. When the prediction
horizon is short, lots of decisions in movement occur in the
observation period and continue to the prediction stage, so
lots of useful cues exist in pedestrians’ motion features and it
is not necessary to infer from interactive information. High
density and long-term predictions enhance the impact of
interactions on trajectory prediction, and high density re-
duces the effect of multimodality.

4.3.2. MDST-DGCN-S. As Tables 1 and 2 show, when the best
sample of 20 predictions is selected to calculate ADE and FDE,
MDST-DGCN-S outperforms all methods on PEDWALK and
achieves comparable ADE and FDE with STGAT.&e reasons
why MDST-DGCN-S is not better than STGAT on ETH and
UCY are the same as the reasons stated in (1). When the best
trajectory of 20 predictions is selected, MDST-DGCN-S out-
performs Social-STGCNN in ADE, but Social-STGCNN gets
better FDEs in several subdatasets. It is mainly because there
are accumulated errors when LSTM is used in our model.

4.3.3. Various Pedestrian Densities. Table 2 presents the
results on the PEDWALK for various pedestrian densities.
We use samples with the specified densities to make the
comparison. With the increase in density, the performance
of each method decreases. Both MDST-DGCN-D and
MDST-DGCN-S outperform other methods for various
pedestrian densities. When the density is low, such as
10≤ d≤ 30, the performance gap between SGAN and other
methods is much smaller, which means when crowds are
sparse, the effects of interactions are smaller and models get
fewer useful cues to infer pedestrians’ future movements, but
the multimodality will work better. &is phenomenon also
confirms our previous reasoning in (1).

4.3.4. Different Level Distance Lists. Table 3 presents the
ADEs and FDEs of MDST-DGCN-D with different level
distance lists. &e level distance list +∞{ } means that MDST-
DGCN-D models all social interactions at the same level,
which is similar to STGAT and Social-STGCNN. Details
about the level distance list are presented in Section 3. C. As
shown in Table 3, modelling social interactions by a multilevel
graph promotes the performance. On UNIV, the level dis-
tance list 1, +∞{ } helps MDST-DGCN-D to get the highest
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improvement. It is mainly because UNIV has a higher pe-
destrian density than the other four subdatasets, and more
people will walk within onemeter, the social comfort distance.

4.3.5. Effects of Aligning Operation. As shown in Table 3, the
aligning operation advances the performance on ETH,
HOTEL, and UNIV, but it reduces the performance on
ZARA1 and ZARA2. Because ZARA1 and ZARA2 are
collected in the same place and have the same coordinate
system, when they are used separately as a test set, the model
without aligning will overfit on the coordinates.

4.4. Qualitative Evaluation. We compare the predicted
trajectories of MDST-DGCN-D and STGAT in Figure 3.
Figure 3(a) shows that the target pedestrian is walking in the

same direction with a nearby pedestrian A, and he will finally
gather with a faraway pedestrian B, both of STGAT and
MDST-DGCN-D.

We successfully predict the merging phenomenon.
However, MDST-DGCN-D succeeds in predicting that the
target pedestrian maintains his relative position with nearby
pedestrian A, while STGAT does not. &us, MDST-DGCN-
D obtains more accurate predictions. As shown in
Figure 3(b), two pedestrians in a group are changing their
directions in advance to avoid collisions with the pedestrians
standing in the distance. For the target pedestrian, MDST-
DGCN-D assigns a weight of 0.72 to the social interaction
feature of the third level, which helps avoid possible colli-
sions with distant pedestrians. However, STGAT only suc-
cessfully predicts group behaviour but fails to predict early
collision avoidance behaviour. All predictions in Figure 3

Table 1: We compare deterministic baseline models with MDST-DGCN of deterministic type (MDST-DGCN-D) and stochastic baseline
models with MDST-DGCN of stochastic type (MDST-DGCN-S) on ETH and UCY.
Method ETH HOTEL UNIV ZARA1 ZARA2 AVG
LSTM [14, 27] 1.09/2.41 0.86/1.91 0.61/1.31 0.41/0.88 0.52/1.11 0.70/1.52
S-LSTM [11, 14] 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
Social Attention [15, 22] 1.39/2.39 2.51/2.91 1.25/2.54 1.01/2.17 0.88/1.75 1.41/2.35
CIDNN [19, 22] 1.25/2.32 1.31/2.36 0.90/1.86 0.50/1.04 0.51/1.07 0.89/1.73
MDST-DGCN-D 0.86/1.75 0.44/0.90 0.55/1.16 0.40/0.86 0.32/0.68 0.51/1.07
SoPhie∗1 [16] 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15
GAT∗1 [21] 0.68/1.29 0.68/1.40 0.57/1.29 0.29/0.60 0.37/0.75 0.52/1.07
Social-BiGAT∗1 [21] 0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75 0.48/1.00
SGAN∗2 [14] 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.18
SGAN-p∗2 [14] 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21
STGAT∗2 [22] 0.65/1.12 0.35/0.66 0.52/1.10 0.34/0.69 0.29/0.60 0.43/0.83
MDST-DGCN-S∗2 0.69/1.45 0.34/0.58 0.51/1.11 0.33/0.70 0.28/0.59 0.43/0.89
Social-STGCNN∗3 [23] 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75
MDST-DGCN-S3 0.56/1.12 0.27/0.50 0.38/0.81 0.27/0.56 0.22/0.46 0.34/0.69
We predict future at 4.8 seconds (short-term prediction), given the previous 3.2 seconds. &e errors reported are ADE or FDE in meters. Methods marked
with ∗ draw 20 samples. &e ADE and FDE of methods marked with superscript 2 are calculated by selecting the closest sample; the ADE and FDE of
methods marked with superscript 3 are calculated by selecting the closest trajectory; and for the ADE and FDE of methods marked with superscript 1, we are
not sure which type they belong to, because we cannot find their code. &e values with the least error in the comparison model are bolded.

Table 2: ADEs and FDEs of different methods for long-term trajectory prediction on the PEDWALK with various pedestrian densities.
Density (d) 10≤ d≤ 30 30≤ d≤ 50 50≤ d≤ 70 70≤ d≤+∞ Overall
SGAN∗ 35.57/70.39 44.02/87.08 43.30/85.84 47.34/93.24 44.02/86.96
SGAN-P∗ 36.06/71.02 41.92/81.39 40.70/78.70 45.09/87.39 42.03/81.54
STGAT∗ 33.20/60.21 38.06/68.25 38.33/69.18 41.97/75.98 39.02/70.47
MDST-DGCN-D 32.62/63.05 36.38/69.15 35.61/67.17 40.80/77.77 37.31/70.80
MDST-DGCN-S∗ 30.53/57.88 34.62/64.81 34.68/64.81 39.75/75.21 35.99/67.53
&e density (d) means the number of pedestrians in the scenario, and D1≤ d≤D2 means we select the samples in which the number of pedestrians is not less
than D1 and not greater than D2. All methods predict 9.6 seconds, given the previous 6.4 seconds. Errors reported are ADE/FDE in pixels on the original size
of 1920×1080. Methods marked with ∗ draw 20 samples and select the best sample. &e values with the least error in the comparison model are bolded.

Table 3: Ablation study of MDST-DGCN-D with different level distance lists and with or without aligning operation for short-term
prediction on ETH and UCY.
Level distance list ETH HOTEL UNIV ZARA1 ZARA2 AVG
{+∞} 0.870/1.792 0.490/1.011 0.626/1.273 0.407/0.867 0.333/0.703 0.545/1.129
{1, +∞} 0.862/1.772 0.465/0.989 0.532/1.139 0.402/0.862 0.324/0.687 0.517/1.090
{5, +∞} 0.853/1.757 0.453/0.931 0.624/1.269 0.400/0.852 0.322/0.684 0.530/1.100
{1, 5, +∞}∗ 0.859/1.749 0.437/0.900 0.547/1.161 0.402/0.860 0.320/0.684 0.513/1.071
Without aligning 0.90/1.94 1.48/2.49 0.60/1.25 0.37/0.79 0.30/0.65 0.73/1.42
&e level distance list {1, 5, +∞}∗ is the default setting, and it is used forMDST-DGCN-Dwithout aligning operation.&e errors reported are ADE or FDE in
meters. &e values with the least error in the comparison model are bolded.
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Figure 3: Qualitative comparison between MDST-DGCN-D and STGAT. For better visualization, only a few trajectories are drawn and we
draw the area of each level at the last historical time step.
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indicate that a multilevel graph structure can model social
interactions more accurately and comprehensively.

We also visualize the trajectory distributions of MDST-
DGCN-S and STGAT in Figure 4. As shown in Figure 4, in
all three samples of pedestrian avoidance, pedestrian fol-
lowing, and pedestrian walking in group, our model out-
performs STGAT.

We count the distribution of fusion weight (α) on
PEDWALK, which shows that the social interaction features
of the first level and second level are of different importance
in a sample.&e distribution of fusion weight (α) is shown in
Figure 5.

5. Conclusions

In this article, we propose a multilevel dynamic spatio-
temporal directed graph representation to model the
interactions between pedestrians and introduce MDST-
DGCN to process the multilevel graph. Experimental
results indicate that our multilevel graph structure can
model social interactions more accurately and compre-
hensively and show that MDST-DGCN outperforms most
of the state-of-the-art methods.
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Previously reported ETH and UCY data were used to
support this study and are available at https://doi.org/
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j.1467-8659.2007.01089.x. &ese prior studies are cited at
relevant places within the text as references. Previously
reported PEDWALK data were used to support this study
and are available at https://doi.org/10.1109/
CVPR.2015.7298971. &e prior study is cited at relevant
places within the text as references.
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