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Accurately predicting the clinical endpoint in ICU based on the patient’s electronic medical records (EMRs) is essential for the
timely treatment of critically ill patients and allocation of medical resources. However, the patient’s EMRs usually consist of a
large amount of heterogeneous multivariate time series data such as laboratory tests and vital signs, which are produced
irregularly. Most existing methods fail to efectively model the time irregularity inherent in longitudinal patient medical
records and capture the interrelationships among diferent types of data. To tackle these limitations, we propose a novel time-
aware transformer-based hierarchical attention network (TERTIAN) for clinical endpoint prediction. In this model, a time-
aware transformer is introduced to learn the personalized irregular temporal patterns of medical events, and a hierarchical
attention mechanism is deployed to get the accurate patient fusion representation by comprehensively mining the interactions
and correlations among multiple types of medical data. We evaluate our model on the MIMIC-III dataset and MIMIC-IV
dataset for the task of mortality prediction, and the results show that TERTIAN achieves higher performance than state-of-the-
art approaches.

1. Introduction

Intensive care unit (ICU) aims to provide comprehensive
and reliable treatments for critically ill patients. It gathers the
most important resources of the hospital including medical
equipment and staf. Since the frst ICU was established in
the United States in the 1960s, the amount of ICU has
maintained a rapid growth trend and been popularized all
over the world [1]. In 2019, the number of patients admitted
to ICU in China reached 2.11 million, and the in-hospital
mortality rate for critically ill patients was 8.3%. Worldwide,
the mortality rate of ICU patients remains high, ranging
from 10% to 20%, and this number is extremely susceptible
to the scarcity of the hospital resources and the health status
of the patients [2]. Patient’s endpoint prediction in the ICU
is closely related to intervention options, nursing plan
formulation, and resource allocation. Accurate evaluation of
patient mortality risk and early identifcation of patients
with poor prognosis can help doctors assess the patient’s

condition, which is the key to improve the survival rate and
physiological outcome of the patient. In order to adopt more
efcient and cost-efective manners for diagnosis and
treatment, ICU mortality prediction is helpful for doctors to
assess the patient’s condition. However, it is difcult to
estimate the patient’s risk of death based on the subjective
experience of the clinician alone [2].

Te rapid development of hospital informatization has
promoted the digitization of medical records. A large
amount of electronic medical records (EMRs) are available
for medical research and applications. In the past decades, a
large number of scholars have used EMRs data to carry out a
series of studies on personal health evaluation and clinical
prediction [3, 4]. Many scoring models based on statistical
machine learning [2, 5–10] have been proposed and become
the criteria for severity and mortality risk prediction, such as
Acute Physiology and Chronic Health Evaluation
(APACHE) [5] and Simplifed Acute Physiology Score
(SAPS) [7]. However, most of these models adopted
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traditional human-intervention feature engineering which is
highly dependent on the knowledge and experience of re-
searchers. Moreover, they are often limited to the modeling
of linear decision boundaries and lack the ability to capture
complex nonlinear relationships and temporal information.
Hence, the scoring models are unable to yield satisfactory
prediction performance in practical applications.

In recent years, deep learning has been widely used in
electronic medical record mining and shown promising
performance. However, there are also many challenging
issues that need to be resolved urgently. One of the issues is
irregular time series modeling in EMRs. In the medical feld,
diferent clinical events are usually occurred or recorded at
diferent frequencies. In addition, the irregular occurrence of
medical events is usually related to the patient’s health status.
Terefore, how to efectively mine the unique progression
patterns through time for diferent patients from the mul-
tivariate irregular time series data contained in EMRs is
particularly important. However, most existing approaches
often ignore the irregularity of the time interval between
medical events [11–17], or simply assume that the more
recent medical events weight more than the previous ones
and adjust the impact of time interval to medical prediction
by using a time-related decay function [18–21]. It is un-
deniable that the frequency of medical visits can refect the
health status of patients to a certain extent, and medical
events that occur at diferent times may also have diferent
efects on the development of diseases. However, the in-
fuence weights of diferent types of historical medical events
are not always decayed over time but may have completely
diferent changing patterns. Te attention mechanism can
dynamically control the memory decay according to the
calculated attention score, thus generating an adaptive decay
mode that is consistent with the characteristics of disease
development [22]. Terefore, we adopt a time-aware
transformer to learn the pattern of each clinical event over
time. In the transformer structure, the multihead self-at-
tention mechanism is used to enhance the ability of mod-
eling irregular time series. Compared with the exponential
decay rate of the standard LSTM, it brings much slower
memory decays, which is more conductive to the capture of
long-term dependencies in time series data.

Another challenging issue is heterogeneous data fusion
representation. EMRs contain a wealth of heterogeneous
data related to patient conditions, including demographic
statistics, diagnosis, laboratory test results, prescriptions,
and clinical notes. Tese heterogeneous data are interrelated
with each other and are refection of the patient’s health
status from diferent perspectives. Terefore, the key of
heterogeneous data fusion representation is to obtain the
respective characteristics of various data while capturing the
potential correlation between them. In the existing methods,
heterogeneous data fusion is often implemented in two main
ways. One is data-level fusion, which directly fuses various
types of raw data in the input layer of the model [18, 23]. Te
other is representation-level fusion, which fuses the feature
representations of diferent types of data by performing
concatenation or element wise operation (summation, av-
erage, and multiplying) [24–29]. Although these methods

have achieved certain performance improvements, they are
not capable of achieving efective heterogeneous data fusion
representation to capture the diferences and correlations
among various data at the same time.

To address the issues mentioned above, we propose a
time-aware transformer-based hierarchical attention net-
work (TERTIAN) to tackle the mortality prediction problem
inside ICU.Tere are two key features in our method. One is
to model irregular time series data to learn the irregular
temporal pattern of each sample, which helps to more ac-
curately express the patient’s disease progression. Another is
using a hierarchical attention mechanism to fuse diferent
types of clinical data layer by layer according to the inter-
actions between the patient’s clinical examination (e.g.,
laboratory test and vital signs) and treatment (e.g., pre-
scription). Tis layer-by-layer fusion approach can make use
of the potential interaction between diferent types of data to
comprehensively represent the patient’s health status from
multiple perspectives. Our main contributions are sum-
marized as follows:

(i) We design an irregular temporal pattern learning
method, which uses the time-aware transformer to
learn the pattern of each clinical event over time.
Such a temporal pattern preserves the specifcity of
each clinical event and each patient.

(ii) We propose a hierarchical attention mechanism to
fuse diferent types of data. In the frst layer, the
representation of prescription is used as a key vector
and the representation of each clinical examination
is used as query vector to capture the interaction
between them. Ten, the second-layer attention
mechanism is utilized to integrate diferent types of
clinical data and obtain the fnal patient fusion
representation for prediction.

(iii) We conduct the mortality prediction task on two
real-world datasets (MIMIC-III dataset and
MIMIC-IV dataset) to verify the performance of our
method. Ablation studies and model analysis vali-
date the efectiveness of the proposed model.

Te rest of this paper is organized as follows. We in-
troduce deep learning methods applied to clinical medical
prediction in Section 2; we depict the methodology of
TERTIAN in Section 3; we present the details of experi-
mental implementation and discuss the experiments results
in Section 4; fnally, the conclusions are given in Section 5.

2. Related Works

In clinical practice, the assessment of ICU patients is usually
based on APACHE, SAPS, and other scoring systems.
However, these scoring systems are weak in generalization.
Tey usually consider the patient’s current vital signs and
reaction test results, while ignoring the temporality of the
patient’s medical records. In recent years, due to the pop-
ularity of EMRs containing multiple heterogeneous time
series data and the obvious advantages of deep learning
methods in many felds, a large number of scholars have
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used EMR data to carry out a series of clinical prediction
studies based on deep learning models. In order to solve the
problem of time series modeling of EMR data, recurrent
neural network (RNN) and its variants (LSTM [30] and
GRU [31]), temporal convolutional network (TCN) [32],
and other deep neural network models have achieved
promising performance in various applications. For exam-
ple, Choi et al. [16] proposed a multilabel prediction model
based on recurrent neural networks, which uses the longi-
tudinal time stamped EHR data (e.g., diagnosis codes,
medication codes, or procedure codes) to predict the di-
agnosis and medication categories in the subsequent visit.
Nguyen et al. [11] presented an end-to-end learning system
that can automatically extract features from medical records
and predict patient’s risk of illness in the future. In this
model, a medical record is converted into a sequence of
discrete elements, and a convolutional neural network is
utilized to discover the predictive local clinical motifs to
stratify the risk. Although these methods can capture the
temporal information in EMR data to a certain extent, most
of them fail to fully consider the irregularity of the time
interval between diferent medical events.

Recently, many modifcations to the traditional RNN/
CNNmodel have been proposed to realize the irregular time
series modeling for EMR data. Suo et al. [33] built a novel
time fusion CNN framework for personalized disease pre-
diction, which can capture not only the local temporal re-
lationships but also the contributions from each time
interval. Baytas et al. [21] proposed a novel LSTM unit called
time-aware LSTM (T-LSTM) to tackle time irregularities in
longitudinal patient records. In this model, the elapsed time
is transformed into a weight by using a time decay function,
and then the sequential records of patients are mapped to a
representation capturing the dependencies between the el-
ements in the presence of time irregularities. Similarly, Bai
et al. [19] presented an interpretable deep learning model
called TimeLine for diagnosis prediction of future admis-
sions. In TimeLine, a time-aware disease progression
function which depends on the specifc medical code and the
elapsed time between visits is applied to model how much
each recorded disease infuences the subsequent visits. In
addition, Yang et al. [34] also proposed a multiseries time-
aware TICC for disease progression modeling, which in-
corporates multiseries nature and irregular time interval of
EHRs. Tey incorporated time-awareness for the consis-
tency between consecutive series, that is, introducing a
nonlinear monotonic decreasing function to solve the
problem of TICC ignores the intervals and encourages the
consecutive records to be assigned into the same cluster.
Most of the above-mentioned approaches handle time ir-
regularity in patient’s medical record sequences by means of
information decay, which gives recent medical events more
weights and reduces the weight of previous medical events
according to the time elapsed. However, these methods
cannot accurately model the patient’s condition progression
pattern since the infuence of medical events does not
necessarily change monotonically over time.

Additionally, considering that the development of pa-
tients’ condition is a complex process closely related to

multiple factors, the deep learning methods based on EMRs
have gradually evolved from the single-view learning for a
single-type of data to the multiview learning for heteroge-
neous data. In recent years, researchers have made a lot of
attempts on how to obtain a comprehensive patient rep-
resentation by efectively fusing various clinical data (lab-
oratory tests, diagnosis, medication records, physical
examinations, etc.) in EMRs. In the existing studies, the most
common data fusion method is data-level fusion directly
concatenating heterogeneous raw data in model’s input
layer. Che et al. [18] proposed a deep learning model based
on gated recurrent unit (GRU), which combines 99 time
series features (e.g., input events, output events, lab events,
and prescription events) to predict the possibility of the
patient death in the hospital. Liu et al. [23] presented amodel
for learning the joint representation of heterogeneous
temporal events to predict clinical endpoints. In this model,
each heterogeneous medical event is defned as a triple one
consisting of the event category, event attribute value, and
event timestamp.Ten, the heterogeneous event sequence of
patient is fed to a novel RNN model called HE-LSTM to
learn the representation.

Another data fusion method is representation-level fu-
sion, which usually learns the representation of diferent
types of data separately frst and combines the feature
representations through concatenation, element-wise op-
eration, or other neural networks. For example, Ding et al.
[35] proposed a UGI cancer screening approach based on
semantic-level dual-modality data fusion. In this modal, the
features of medical images are extracted by customized
CNNs, and the textual records features are extracted by
word2vec and self-attention. Ten, the medical image fea-
tures and textual features are concatenated and the fused
information is used to obtain the weights of each feature
channel in CNNs. Finally, the multimodal fusion repre-
sentation is obtained by the cascading operation of the
weighted medical image features and the textual features.
Zhang et al. [28] proposed a Multilayer Multiview Classi-
fcation (ML-MVC) approach for Alzheimer’s disease di-
agnosis, which introduces a middle layer model for feature
extraction with the kernel technique to account for non-
linearity and jointly stacks kernel matrices to capture the
complementary information frommultiple views. Qiao et al.
[27] proposed Multimodal Attentional Neural Networks
(MNN) to model the medical codes and clinical notes in a
unifed framework. It applies a CNN and a bidirectional
GRU network to separately learn the textural feature rep-
resentation and medical code feature representation from
diferent types of inputs. Ten, the fnal multimodal feature
representation is generated by a deep feature mixture
module and fed into an attentional bidirectional RNN to
model sequential clinical visits. Similarly, Ma et al. [20]
proposed a health status representation framework called
ConCare, which jointly considers static baseline informa-
tion, sequential dynamic features, and the impact of the time
interval as personal health context for mortality prediction.
It learns the representation of diferent feature sequences via
separate GRUs and adaptively captures the efect of time
intervals between records of each feature by time-aware
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attention. Ten, a feature encoder based on multihead self-
attention is introduced to combine diferent clinical infor-
mation. Although these approaches are proved to have some
improvements in performance, most of them are not able to
fully capture the interactions and interrelationships among
various clinical data. Terefore, the deep fusion of hetero-
geneous features still cannot be achieved efectively.

3. TERTIAN

In this section, we frst introduce the defnition of the
problem and some basic notations used in this paper. Ten,
we describe the proposed model in detail.

3.1. Problem Formulation. Assume that P � p1,p2, · · · , p|P|􏽮 􏽯

represents the set of patients, where |P| is the total number of
patients. Te patient’s clinical records used in this paper
consist of three types of data: prescription information M,
laboratory test results Xl, and vital signs Xr. As a result, the
clinical records of each patient pi can be denoted as
(M, Xl, Xr). For each patient, the prescription information
M consists of a set of prescription codes
M � m1, m2, · · · , mZ􏼈 􏼉, where each element mi represents a
prescription code and Z is the total number of prescription
codes appearing in the patient’s clinical records. Both labo-
ratory test results Xl and vital signs Xr are dynamic moni-
toring information, which contains multiple related clinical
variables, and each variable can be expressed as a time-or-
dered sequence composed of a set of continuous recorded
values. We denote XC as the dynamic monitoring informa-
tion, where C ∈ (l, r) is the category label, namely, C � l

represents laboratory test results Xl and C � r represents vital
signs Xr. Ten, any dynamic monitoring information (lab-
oratory test results or vital signs) can be uniformly expressed
asXC � [xC

1 , xC
2 , · · · , xC

|XC|
], where |XC| is the number of

clinical variables contained in XC. Let xC
i � (xC

i1, xC
i2, · · · , xC

iT)

represent the sequence corresponding to any dynamic
monitoring variable xC

i , where xC
it is the tth observed value

and T is the length of sequence. We denote dC
it as the

timestamp of the tth observation xC
it , and δC

it � dC
it − dC

i(t−1)

represents the interval between any two adjacent records,
where δC

i1 � 0. Since diferent variables may be recorded at
irregular times, for any variable xC

i , we set xC
it � 0 and dC

it �

dC
i(t−1) when its value is missing at the tth observation.
Te purpose of our study is to predict the ICU mortality

by using prescription information M, laboratory tests Xl,
and vital signs Xr for the patient’s frst 48 hours since ad-
mission. In the absence of ambiguity, we omit the category
label C of the dynamic monitoring information to simplify
the representation in the rest of this paper. In addition,
defnitions and descriptions of common symbols in TER-
TIAN are presented in Table 1. Te details of TERTIAN are
presented in the following section.

3.2. Model Overview. Figure 1 shows a general framework
of our proposed model TERTIAN. It consists of three main
components: heterogeneous event representation module,

hierarchical feature fusion module, and mortality predic-
tion module. In the heterogeneous event representation
module, we separately apply multiple deep representation
learning models to capture the unique temporal patterns
from diferent types of data such as laboratory test results,
vital signs, and prescriptions. Ten, the feature represen-
tations of the data are fed into the hierarchical feature
fusion module, which uses a two-layer attention mecha-
nism to mine their interactions and correlations and obtain
the fnal patient fusion representation. Finally, the mor-
tality prediction module is applied to obtain the fnal
prediction results.

3.3. Heterogeneous Event Representation Module. To pre-
serve the specifcity of clinical information hidden in dif-
ferent types of data, in this module, we separately apply two
deep learning models to learn the unique temporal patterns
of various data sequences. For laboratory tests and vital
signs, considering that the irregularity of time interval
usually contains a lot of important information related to the
development of patient’s health status, we use a time-aware
transformer to automatically learn personalized irregular
temporal pattern from time series. Inspired by HiTANet
[36], we embed time information into time series data by
element-wise addition. In order to fully preserve the dif-
ference between the sampling time of the feature data, we
adopt the feature-level time interval representation which
maintains the time interval for each feature since its last
observation. Specifcally, we frst make the time interval δ
and the dynamic monitoring time series X in the same latent
space by normalizing the time information. Te normalized
time interval vector st is obtained via equation (1):

st � Ws 1 − tan h Wδδt + bδ( 􏼁
2

􏼐 􏼑􏼐 􏼑 + bs, (1)

where Wδ ∈ Ra, bδ ∈ Ra, Ws ∈ Ra×a, and bs ∈ Ra are all
parameters. δt is a time interval vector that represents the
time interval between two adjacent nonmissing values of
each feature, a is the dimensionality of st which also rep-
resents the number of features in our work.

Ten, any dynamic monitoring variable vector xt and its
corresponding time interval embedding vector st will be
calculated via equation (2) to obtain the input vector et.
Tus, the dynamicmonitoring informationX is mapped into
the input vector sequence E � [e1, e2, · · · , eT]:

et � xt + st. (2)

Next, we feed the input matrix E � [e1, e2, · · · , eT] to the
transformer. Te transformer is a deep learning architecture
based on attention mechanisms and consists of an encoder
and a decoder. Te core components of the encoder and
decoder are multihead self-attention and feed-forward
network. In the encoder, the input matrix E passes through
the multihead self-attention layer and the feed-forward layer
with addition and normalization operation. Te output of
the encoder will be used as the input of the decoder, and the
execution process of the decoder is similar to that of the
encoder. Trough this encoder-decoder structure of the
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transformer to get the hidden representation,
φ � [φ1,φ2, · · · ,φT] and then derive the time-aware atten-
tion weights α � [α1, α2, · · · , αT] via equations (3) and (4).
Ten, based on the weights, the time-aware contextual
feature representation ft is obtained by equation (5):

φ � Transformer e1, e2, · · · , eT( 􏼁, (3)

α � sigmoid(φ), (4)

ft � αt ∗ xt. (5)

For prescription information M � m1, m2, · · · , mZ􏼈 􏼉, the
time information of each prescription code is not recorded
in detail.Terefore, we simply treat prescription information
as a time-ordered code sequence without considering their
time interval information. Te GRU is an improved version

of RNN which addresses the problem of vanishing gradient
and achieves good performance in sequential form. In this
paper, we utilize a GRU module with two unidirectional
GRU layers.Te GRUmodule takesM as input to extract the
temporal pattern hidden in prescription information and
obtains the corresponding temporal feature representation
[g1, g2, · · · , gZ]. Specifcally, frstly, at the zth time-step, the
GRU units can decide how to combine the previous hidden
state gz−1 and the current input mz by using the reset
mechanism with equation (6). At the same time, the update
gate up dz controls how much of the previous memory
content is to be forgotten and howmuch of the newmemory
content is to be added with equation (7). Ten, the new
candidate memory content 􏽥gz is computed considering the
reset gate resz with equation (8). Finally, the new memory
state gz is obtained through the update mechanism as
equation (9):

Heterogeneous event representation module Hierarchical feature fusion module

Time-aware
Transformer

Time-aware
Transformer

Vital
signs

Prescription

Lab
tests

GRU

Attention

Attention

Attention

GlobalAvgPool Sofmax

Mortality prediction module

γ1
γ2

γT

…
k1
k2

kT

…

qr1
qr2

qTr

…

f r1
f r2

f Tr

…

αr
1

αr
2

αT
r

…xr1
xr2

xTr

…

δr1
δr2

δTr

…

hr
1

hr
2

hT
r

…

ql1
ql2

qTl

…

αl
1

αl
2

αT
l

…

gZ

xl1
xl2

xTl

… f l1
f l2

f Tl

…

δl1
δl2

δTl

…

hl
1

hl
2

hT
l

…

Figure 1: Te architecture of TERTIAN.

Table 1: Notations used in TERTIAN.

Symbol Defnition and description
P Set of patients
Xl Laboratory test results
Xr Vital signs
M Prescription information
Z Te total number of prescription codes
C Te category label about laboratory test results and vital signs
dC

it Te timestamp of the tth observation xC
it

δC
it Te interval between any two adjacent records.

st Te normalized time interval vector
ft Te time-aware contextual feature representation of laboratory test results/vital signs
gt Te hidden representation of prescription information
hl

t Te mixed representation of prescription information and laboratory test results
hr

t Te mixed representation of prescription information and vital signs
Γ Te fnal patient fusion representation
y Te truth value
y′ Te prediction label
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resz � sigmoid Wres gz−1, mz􏼂 􏼃( 􏼁, (6)

updz � sigmoid Wupd gz−1, mz􏼂 􏼃􏼐 􏼑, (7)

􏽥gt � tan h W􏽥g resz ∗gz−1, mz􏼂 􏼃􏼒 􏼓, (8)

gt � 1 − updz( 􏼁∗gz−1 + updz ∗ 􏽥gz, (9)

where matrices Wres, Wupd, and W􏽥g are model parameters.

3.4. Hierarchical Feature Fusion Module. Trough the het-
erogeneous event representation module, we obtain the
corresponding contextual representations
Fl � [fl

1, fl
2, · · · , fl

T], Fr � [fr
1, fr

2, · · · , fr
T], and gZ from

three types of data (laboratory test results, vital signs, and
prescription information). Ten, we design a two-layer at-
tention mechanism to capture the interdependencies among
diferent types of data and obtain the fnal fusion
representation.

Considering that in the clinical process, doctors usually
prescribe or adjust drug prescriptions based on the patient’s
dynamic monitoring results, such as laboratory tests and
vital signs. At the same time, the efects of the prescribed
drugs are refected in the patient’s subsequent dynamic
monitoring results. Terefore, we use a two-layer attention
mechanism to discover the interrelationships between dif-
ferent clinical information. Specifcally, in the frst layer, the
laboratory tests representation fl

t is projected into the query
vector ql

t, and the prescription information representation
gZ is projected into the key vector kt. Ten, we calculate the
attention weights βl

tt to capture the correlation between
prescription information and laboratory test results. Te
calculation process is described as follows:

q
l
t � Wql ft + bql , (10)

kt � WkgZ + bk, (11)

βl
t � softmax

q
l
tk1��
d

√ ,
q

l
tk2��
d

√ , · · · ,
q

l
tkT��

d
√􏼢 􏼣􏼠 􏼡, (12)

where Wql ∈ Rq×l and Wk ∈ Rq×m are the projection ma-
trices and bql ∈ Rq and bk ∈ Rq are the bias vectors.

Tus, the mixed vector hl
t that integrates the relationship

between the prescription information and the laboratory test
results can be obtained via equation (13), and the sequence
representation becomes Hl � [hl

1, hl
2, · · · , hl

T]. Using the
same method, we get the mixed vector representation se-
quence Hr of prescription information and vital signs:

h
l
t � Attention q

l
t, kt, f

l
t􏼐 􏼑 � 􏽘

T

j�1
βl

tf
l
j. (13)

In the second layer, we further merge two mixed vector
representations (Hl and Hr) obtained in the frst layer with
the key vectors K to get the fnal patient representation,
where K is composed of the vector kt by equation (11)

repeated T times. Here, Hr, K, and Hl are used to generate
query vectors, key vectors, and value vectors, respectively,
and fed into the attention function to obtain the fnal patient
fusion representation Γ. Te calculation process is as follows:

Γ � c1, c1, · · · , cT􏼂 􏼃 � Attention H
r
, K, H

l
􏼐 􏼑. (14)

3.5. Mortality Prediction Module. Te fnal fusion repre-
sentation Γ is projected into a vector c′ϵR256 by global
average pooling. Finally, a simple linear layer with the
softmax activation function is used to make a binary pre-
diction as follows:

y′ � softmax Wyc′ + by􏼐 􏼑, (15)

where Wy ∈ Ru×q and by ∈ Ru are trainable parameters,
respectively representing the weight and bias. u is the
number of categories, and u � 2 in this paper.

Here, the cross-entropy is used to calculate the loss
between the true value y and the prediction label y′.

L � −
1

|P|
􏽘

|P|

i�1
yi lnyi
′ + 1 − yi( 􏼁ln 1 − yi

′( 􏼁􏼂 􏼃, (16)

where |P| is the total number of patients.

4. Experiments

4.1. Dataset Description. We conduct all the experiments on
the Medical Information Mart for Intensive Care III
(MIMIC-III) [37] dataset and the Medical Information Mart
for Intensive Care IV (MIMIC-IV) [38] dataset. MIMIC-III
is a large and freely available database comprising deiden-
tifed health-related data associated with more than forty
thousand patients who stayed in critical care units of the
Beth Israel Deaconess Medical Center between 2001 and
2012. MIMIC-IV also records the comprehensive infor-
mation of patients in a medical center in the United States
and has made many improvements and expansions on the
basis of MIMIC-III. It not only records the data of the
intensive care unit but also includes the information of
emergency and general hospitalization. Te MIMIC-IV
dataset recorded a total of 256,878 patients’ visit informa-
tion, including more than 50,000 patients with intensive care
unit experience. Unlike MIMIC-III, which stored all data in
a collection of 26 data sheets, MIMIC-IV refects the source
of data by dividing the data into diferent modules, which are
divided into six modules: Core, Hosp, ICU, ED, CXR, and
Note. Te module Core contains the basic information of all
patients in the dataset, and the ICU module records the
information collected from the clinical information system
used in the ICU.

In this study, we aim to perform the in-hospital mortality
prediction for the patient based on the patient’s medical
events produced during the frst 48 hours of the ICU stays.
Terefore, those patients who were hospitalized for less than
48 hours were excluded from our dataset, and for the
MIMIC-IV dataset, experimental samples were only
screened from patients with documented ICU admissions.
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To ensure the completeness of patient medical informa-
tion, we remove the medical events with low frequency
and maintain 27 vital sign measures, 70 prescription
events, and 616 laboratory indexes. Finally, a fnal dataset
containing 10,000 patients including 4306 positive pa-
tients who died in hospital is obtained. Te screening
procedures of the samples in the MIMIC-IV dataset is
similar to that of the MIMIC-III dataset, and fnally, 26
vital sign measures, 68 prescription events, and 66 lab-
oratory indexes are retained. Te brief description of our
datasets is given in Table 2.

4.2. Baseline Methods. To evaluate the performance of
TERTIAN, the following approaches are selected as base-
lines for comparison:

(i) TimeLine [19]: It is an attention-based interpretable
deep learning model with time decaying for each
visit, which uses an attention mechanism to ag-
gregate context information of medical codes (di-
agnosis codes and procedure codes) and uses time-
aware disease-specifc progression function to
model the infuence of diferent historical visits on
the patient’s future health status for disease
prediction

(ii) GRUD [18]: It is a gated recurrent unit (GRU)
based model for multivariate time series data
modeling with missing values. In this model, two
diferent trainable decays (input decay and hidden
state decay) were set to capture the temporal pat-
terns hidden in irregular time series

(iii) IseeU [17]: It is a multiscale convolutional neural
network for interpretable mortality prediction in-
side the ICU and uses the coalitional game theory to
construct visual explanations to show how im-
portant these inputs are

(iv) AttDMM [39]: It is a novel generative deep
probabilistic model for predicting mortality risk in
ICUs, which combines a deep Markov model with
an attention mechanism to jointly capture long-
term disease dynamics and diferent disease states
in the health trajectory

(v) Transformer [40]: It is a mortality risk prediction
model commonly composed of transformer. In this
model, the encoder is mainly used to get the rep-
resentation of the patient through the multihead
attention mechanism

(vi) GRASP [41]: It is a general framework for
healthcare models, which defnes similarities with
diferent meanings between patients for diferent
clinical tasks and fnds similar patients with useful
information accordingly. Ten, it enhances the
representation learning and prognosis of the given
patient by leveraging knowledge extracted from
similar patients.

(vii) ConCare [20]: It is a health status representation
learning framework for patients’ clinical outcome

prediction. In this model, a multichannel GRUwith
time-aware attention is used to adaptively learn the
efect of time intervals between diferent medical
records, and a multihead self-attention mechanism
is deployed to capture the interdependencies
among various medical information.

It should be noted that our study’s aim is to use three
types of historical clinical data (laboratory test results,
vital signs, and prescription information) to predict the
risk of in-hospital mortality in the future. However, the
data used in the original baseline methods mentioned
above are diferent. In order to facilitate a fair perfor-
mance comparison, we modifed the input part of these
methods accordingly and uniformly adopted the zero-
flling method to process the missing values. For Time-
Line, GRUD, IseeU, and AttDMM, laboratory test results
and vital signs are aggregated into time series data
according to the actual sampling time, and prescription
information is represented as a multihot vector and
connected after the time series data. For GRASP, it can
adopt any existing EHR representation learning model as
the backbone model in its individual feature learning
module. In our experiment, we implemented a version of
GRASP that uses ConCare as the backbone for perfor-
mance comparison. For ConCare, the input data of its
original version is divided into sequential dynamic fea-
tures (lab test values) and static baseline information
(demographics and primary disease). In our experiment,
we used laboratory test results and vital signs as sequential
dynamic features and prescription information as static
baseline information.

4.3. Metrics and Evaluation Strategy. We used precision,
recall, F1-score, and Area under Curve (AUC) scores to
evaluate the prediction performance. In general, AUC is a
popular comprehensive score for binary classifer, and F1-
score is the comprehensive evaluation index of precision and
recall. We randomly selected 20% of the whole dataset as the
test set and divided the rest into the training set and vali-
dation set in a ratio of 0.8 : 0.2. For each method, the ex-
periments are repeated fve times, and the average values
with standard deviation for each evaluation metric are
reported.

4.4. Implementation Details. We implemented all the
methods based on the data extracted from MIMIC-III and
MIMIC-IV with Keras 2.3.1 [42], the learning rate is set to
4e− 4, the RMSProp optimizer is used for training, the
training batch size for MIMIC-III dataset is set to 64, and the
training batch size is set to 128 for MIMIC-IV dataset.
Training and testing are performed on a computer equipped
with CPU: Intel (R) Xeon (R) Silver 4114, 128GB RAM,
GPU: Nvidia GeForce GTX 2080Ti 10GB with CUDA 10.0.
To avoid overftting, early stop and dropout strategies are
applied, and the dropout rate is set to 0.5. For the proposed
TERTIAN, the dimensionality of attention query vectors
and key vectors are set to 256, and the dimensionality of
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hidden state of GRU is set to 128, and the dropout rate for
multihead attention is set to 0.2.

4.5. Results

4.5.1. Performance of Mortality Prediction. Tables 3 and 4
present the performance of the diferent predictive ap-
proaches on the MIMIC-III dataset and MIMIC-IV dataset.
According to the experimental results, we can see that the
four methods (TERTIAN, ConCare, GRUD, and TimeLine)
take into account the irregularity of time intervals in medical
event sequences and achieve relatively good predictive
performance. Among them, our method TERTIAN achieves
F1-score of 0.9457 in the MIMIC-III dataset and 0.8666 in
the MIMIC-IV dataset, which signifcantly outperforms the
other baselines. On the one hand, it benefts from the in-
troduction of time-aware transformer that can more accu-
rately capture the unique temporal patterns of diferent
clinical variable sequences. On the other hand, it is also due
to the hierarchical attention mechanism used in TERTIAN,
which fully explores the interaction and interrelationship
among diferent types of data, thereby efectively improving
the accuracy of the fnal patient fusion representation.

GRUD, TimeLine, and ConCare all assume that the
impact weights of diferent medical events decrease with
time and thus directly adopt the time decay-based ap-
proaches to model the patient’s health progression patterns.
Among them, the comprehensive performance of GRUD is
higher than TimeLine, which may be because GRUD not
only considers the time decay of input data but also the time
decay of hidden state. For mortality prediction, however, the
infuence of diferent medical events on patient’s health
status does not completely follow such a monotonically
decreasing pattern. Some medical indicators have a fuc-
tuating relationship with the patient’s health status. Tis
afects the temporal feature representation capabilities of the
above three methods. Moreover, it is easy to fnd that the
performance of GRUD and TimeLine is relatively low in the
methods which consider time irregularity. It is worth noting
that the transformer learns the temporal characteristics of
patient’s historical medical data, which is more advanta-
geous than other conventional temporal models. Terefore,
the prediction performance of transformer is relatively good
on both datasets. ConCare not only uses the time-aware
attention weight function to capture the impacts of time
intervals but also adopts a multihead self-attention mech-
anism with cross-head decoupling to efectively integrate the
dynamic and static data while maintaining the diversity of
features between heads. To a certain extent, this enhances the
representation learning ability of the model for temporal
sequences. As a result, ConCare obtains a precision of 0.9314
and an F1-score of 0.9275 in the MIMIC-III dataset and a
precision of 0.8723 and an F1-score of 0.8572 in the MIMIC-
IV dataset. GRASP, which takes ConCare as the backbone
and not only uses ConCare to learn the feature represen-
tation of each patient but also leverages knowledge extracted
from similar patients to enhance the representation learning
of the patient, which improves the predictive performance,

and the overall performance is second only to TERTIAN.
Although AttDMMdoes not consider irregular time series, it
jointly learns both long-term disease dynamics and diferent
disease states in health trajectory, which is helpful to im-
prove the performance of ICU prediction models. It is worth
noting that although IseeU utilizes a multiscale convolu-
tional neural network to learn local features under diferent
time scales through multiple convolution kernels of diferent
sizes, it cannot adequately capture the implicit fne-grained
temporal features hidden in irregular time intervals.
Terefore, its performance is the lowest of all comparison
methods in both datasets.

4.5.2. Benefts of Time-Aware Transformer Module. In this
section, we frst analyze the benefts of time-aware transformer
used for temporal pattern learning on the predictive perfor-
mance.We compare TERTIANwith its three variants.Te frst
one is TERTIAN_GRU, which is obtained by replacing the
transformer in our model with GRU. Te second is TER-
TIAN_temp, which utilizes the positional encoding of trans-
former instead of time interval information. Te third is
TERTIAN_att, which is obtained by removing the local-based
attention mechanism immediately behind the transformer.

It can be seen from Figures 2 and 3 that the performance
TERTIAN_temp is signifcantly lower than that of our model.
It demonstrates that considering the irregularity of the time
interval between medical events has an obvious promotion
efect on modeling the patient’s condition progression
pattern. Moreover, when we replace the transformer in
TERTIAN with GRU, the performance of the resulting
variant model TERTIAN_GRU also shows a remarkable drop.
Compared to TERTIAN in the MIMIC-III dataset, its
precision, recall, AUC, and F1-score are decreased to 0.9109,
0.8625, 08951, and 0.8780, respectively, and in MIMIC-IV,
its F1-score also decreased 6.69%. It indicates that the
transformer has better capability for time series modeling
than GRU. Te main reason may be that the multihead
attention mechanism inherent in the transformer can cap-
ture the relationships betweenmedical events at any position
in a sequence regardless of their distance, which makes it
easier to learn long-term dependencies. Additionally, in our
model, a local-based attention mechanism is deployed be-
hind the transformer for future capturing of the infuence
weights of diferent historical medical records on the pa-
tient’s future health status, so as to improve the accuracy of
model’s feature representation. From Figures 2 and 3, a
decline in model’s performance in both datasets can be
clearly found when the local-based attention module behind
the transformer is removed. In MIMIC-III, the performance
of TERTIAN_att in terms of AUC and F1-score is signif-
cantly lower than that of TERTIAN by nearly 0.07, and in
MIMIC-IV, the above two evaluation indicators both drop
by about 0.04. Tis fully proves the efectiveness and ne-
cessity of the local-based attention mechanism.

4.5.3. Efect of Hierarchical Feature Fusion. In our model
TERTIAN, we applied a hierarchical feature fusion ap-
proach based on the two-layer attention mechanism to
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mine the interrelationships among diferent types of
clinical data and produced the fnal fusion representation.
In order to investigate the efect of our proposed feature
fusion method, we compare TERTIAN (as shown in
Figure 4(a)) with other three variants that adopt various
fusion modes. Te frst model is named TERTIAN_#,
which is obtained by modifying the attention mechanism

in the second layer of TERTIAN’s hierarchical fusion
module to a concatenation operation, as shown in
Figure 4(b). Te second one is called TERTIAN_∗, which
is obtained by further changing the attention mechanisms
in the frst layer of TERTIAN_#’s fusion module to ele-
mentwise multiplication, as shown in Figure 4(c). Te
third is TERTIAN_&, as shown in Figure 4(d), and its

Table 2: Statistics of the fnal dataset.

General profle MIMIC-III MIMIC-IV
#of patients (positive/negative) 10000 (4306/5694) 14344 (4631/9713)
#of unique lab events 616 66
#of unique vital sign indexes 27 26
#of unique prescription codes 70 68
Avg. # of unique lab events per patient 60.23 42.77
Avg. # of unique vital sign indexes per patient 11.06 20.92
Avg. # of unique prescription codes per patient 8.22 12.96

Table 3: Performance of mortality prediction task (MIMIC-III).

Model Precision AUC F1 Recall
TimeLine 0.8510 (±0.0243) 0.8589 (±0.0288) 0.8384 (±0.0342) 0.8267 (±0.0449)
GRUD 0.8434 (±0.0071) 0.8835 (±0.0062) 0.8672 (±0.0069) 0.8925 (±0.0122)
IseeU 0.8164 (±0.0317) 0.8524 (±0.0061) 0.8323 (±0.0061) 0.8521 (±0.0331)
AttDMM 0.8554 (±0.0089) 0.8621 (±0.0161) 0.8582 (±0.0093) 0.8609 (±0.0098)
Transformer+ 0.9387 (±0.0064) 0.9139 (±0.0096) 0.9044 (±0.0111) 0.8521 (±0.0173)
GRASP 0.9346 (±0.0089) 0.9495 (±0.0063) 0.9322 (±0.0091) 0.9243 (±0.0069)
ConCare 0.9314 (±0.0118) 0.9361 (±0.0074) 0.9275 (±0.0083) 0.9238 (±0.0131)
TERTIAN 0.9689 (±0.0075) 0.9506 (±0.0039) 0.9457 (±0.0043) 0.9236 (±0.0092)

Table 4: Performance of mortality prediction task (MIMIC-IV).

Model Precision AUC F1 Recall
TimeLine 0.8332 (±0.0195) 0.8038 (±0.0265) 0.8332 (±0.0194) 0.8349 (±0.0180)
GRUD 0.8494 (±0.0183) 0.8288 (±0.0239) 0.8472 (±0.0173) 0.8469 (±0.0171)
IseeU 0.8316 (±0.0096) 0.8062 (±0.0261) 0.8211 (±0.0137) 0.8206 (±0.0130)
AttDMM 0.8252 (±0.0178) 0.8094 (±0.0117) 0.8242 (±0.0168) 0.8233 (±0.0192)
Transformer 0.8078 (±0.0031) 0.7783 (±0.0043) 0.8084 (±0.0029) 0.8091 (±0.0027)
GRASP 0.8747 (±0.0157) 0.8269 (±0.0194) 0.8622 (±0.0106) 0.8635 (±0.0155)
ConCare 0.8724 (±0.0082) 0.8260 (±0.0154) 0.8572 (±0.0119) 0.8677 (±0.0091)
TERTIAN 0.8680 (±0.0025) 0.8361 (±0.0093) 0.8666 (±0.0034) 0.8688 (±0.0028)

The effect of time-aware Transformer on predictive performance
(MIMIC-III)
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Figure 2: Te efect of time-aware transformer on predictive
performance (MIMIC-III).

The effect of time-aware Transformer on predictive performance
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Figure 3: Te efect of time-aware transformer on predictive
performance (MIMIC-IV).
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fusion module is simplifed to a direct concatenation of
the representation vectors corresponding to various types
of data.

From Figures 5 and 6, it can be clearly seen that the
performance of TERTIAN_∗ and TERTIAN_& are relatively
poor (their evaluation results by all performance metrics are
less than 0.8).Tis shows that the traditional fusion methods
based on concatenation and/or element-wise multiplication
cannot well capture the interdependence among diferent
types of data and obtain efective feature fusion represen-
tation. In contrast, the introduction of the attention
mechanism signifcantly improves the overall performance
of the model. As shown in Figures 5 and 6, whether in the
MIMIC-III dataset or MIMIC-IV dataset, the precision,
recall, AUC, and F1-score of TERTIAN_# are all higher than
those of TERTIAN_&. In particular, the recall increased by
0.1258 in MIMIC-III and 0.0722 higher in MIMIC-IV. Our
model TERTIAN adopts a double-layer attention mecha-
nism to fully mine the complex interactions among various
data, thereby efectively improving the accuracy of the fnal
fusion representation. Terefore, its precision, recall, AUC,
and F1-score are further increased to over 0.9 in theMIMIC-
III dataset and around 0.85 in dataset MIMIC-IV, which are
the highest among the four.

4.6. Parameter Sensitivity. In this section, we will further
analyze the impact of several important parameters on the
model performance. Te frst parameter is the dimension of
key and query vectors in the two-layer attention mechanism,
and the other is the dimension of hidden state in the GRU
module used for prescription feature learning.

Figures 7 and 8 illustrate how the predictive performance
of TERTIAN varies with the above-mentioned parameters
on two datasets. It can be found that with the increase of each
parameter value, the AUC of our model shows a similar
trend of rising frst and then falling.Te main reason may be
that when the vector dimension is too small, the feature
information that the vector can express is very limited,
which afects the accuracy of feature representation. With
the increase of vector dimension, the feature representation

ability of vector is enhanced, so the prediction performance
of the model is also signifcantly improved. However, when
the vector dimension continues to grow, the noise contained
in the feature vector may also increase. Terefore, when the
dimension exceeds a certain threshold, too much useless
noise will reduce the efectiveness of the feature represen-
tation, which leads to the decline of model performance. In
this paper, we fnally determine the optimal values of these
parameters according to the experimental results.

attention attention

attention

lab tests prescription vital signs

(a)

concatenate

attention attention

lab tests prescription vital signs

(b)

concatenate

lab tests prescription vital signs

multiply

(c)

concatenate

lab tests prescription vital signs

(d)

Figure 4: Diferent fusion methods. (a) TERTIAN. (b) TERTIAN_#. (c) TERTIAN_∗. (d) TERTIAN_&.
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Figure 5: Te efect of fusion method on predictive performance
(MIMIC-III).
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5. Conclusion

Risk prediction from EMRs is one of the key challenges in
predictive health care. We have focused on the task of
predicting ICU mortality events that take place more than
48 hours after admission. In this work, we proposed a novel
deep learning model for clinical endpoint prediction. First,
we introduce the time-aware transformer that automati-
cally learns the irregular temporal pattern of medical
events. Ten, a hierarchical attention structure was pro-
posed to capture the interaction between heterogeneous
data and obtain a more comprehensive and accurate patient
representation. Via performance comparisons with a suite
of deep learning benchmarks, we demonstrated state-of-
the-art results on real-world dataset (MIMIC-III and
MIMIC-IV) and accounted for incremental sources of
gains from various design choices. In addition, we further
proved the efectiveness and advantages of each module of
TERTIAN through two ablation experiments. In our future
work, we will try to extend our model to other clinical risk
prediction tasks to further verify its scalability and gen-
eralization capabilities and add interpretable modules to
alleviate the limitations of the black-box model of deep
learning.
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Figure 7: Te impact of several important parameters on the model performance (MIMIC-III). (a) Sensitivity analysis for GRU.
(b) Sensitivity analysis for attention.
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