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Tis study aims to fnd discontinuous and continuous approaches to reducing the size of planar truss structures with a specifed
shape and topology. Te member’s section area has assumed to be a decision variable, and the objective function is to minimize
their weight. Te member stresses and node displacements are the constraints that must maintain within the allowed limits for
each condition. Chaos game optimization (CGO) and social network search (SNS) algorithms were used to optimize four well-
known planar truss structures. In discontinuous-size cases, the results of the social network search (SNS) algorithm are the most
cost-efective. However, the results of the chaos game optimization (CGO) algorithm are the most cost-efective in continuous-
size cases.

1. Introduction

Developing a material structure that bears loads optimally is
defned as structural optimization [1]. In engineering design,
for example, the primary goal is to comply with basic
standards while simultaneously achieving the best economic
outcomes, i.e., selecting design parameters that meet all
design criteria at the lowest possible cost. Optimization is a
method for resolving problems like these. Commonly, the
goal of structural optimization issues is to minimize ob-
jective function (typically the structural weight). Tis
minimal design’s value is limited to various problems based
on factors such as displacements and stresses, as well as the
structural member’s minimum dimensions or cross-sec-
tional areas.Te optimization problemmay be classifed into
two types according to whether the variables are continuous
or discontinuous [2, 3]:

(i) Discontinuous optimization is an optimization
problem considering discontinuous variables in
which an object, such as an integer, must be found
from a countable set.

(ii) A continuous optimization problem is one in which
an optimal value must obtain from a continuous
function. It might be limited or multimodal.

In recent decades, the ubiquity of trusses as structural
systems has made their optimization an important engi-
neering endeavor. Design ideas due sustainable, reliable, and
cost-efective for the structure have been the impetus for the
many developments of optimization procedures. Terefore, a
trustworthy optimization strategy is always needed to tackle a
structural optimization issue. Metaheuristic approaches are
generic optimization tools that do not need a continuous
objective function(s) or gradient information to direct the
search process in this respect. Because of this positive quality,
researchers in several sectors of science and engineering
employ these approaches extensively [4–9]. Metaheuristics
are also often applied to handle structural optimization
problems, and studies have shown that these algorithms are
efective in these situations [10–15]. In discontinuous design
variables, most known optimization approaches are inefec-
tive because they interpret design variables as continuous. To
deal with the discontinuous character of design variables, a
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few mathematical programming-based methodologies have
been developed [2, 3]. On the other hand, in real-world
structures, the number of members, the degrees of freedom
for every node, and the stifness matrix can compound the
problem optimization.Terefore, in truss optimization, meta-
heuristic algorithms aremore desirable because they can solve
problems in fewer structural analyses. Te genetic algorithm
(GA) and other novel heuristic algorithm-based optimization
methodologies were proposed to achieve optimized designs
for discontinuous structural systems because few mathe-
matical programming technique-based approaches consid-
ered design variables as discontinuous.Many researchers have
looked at GA-based optimization approaches, including
Hajela and Lee [16], Rajeev and Krishnamoorthy [17], Camp
et al. [18],Wu andChow [19], Erbatur et al. [20], Pezeshk et al.
[21]. In addition, various other studies are conducted in the
feld of structure size optimization. Graph-based parame-
terization concept was employed by Giger and Ermanni [22].
Democratic PSO (DPSO) was used by Kaveh and Zolghadr
[23]. A harmony search (HS) and a frefy algorithm (FA)
were put to the test by Miguel and Fadel Miguel [24]. Also,
Tejani et al. assessed the symbiotic organisms search (SOS)
algorithm for structural optimization [25–29]. Te results
show that the proposed adaptive SOS algorithm [25] is more
efcient and reliable for the optimization of the structures
under dynamic excitation. In the continuation of their re-
search, a multiobjective adaptive symbiotic organisms search
(MOASOS) is applied to truss optimization [27]. In this study,
the weight of the truss and nodal displacement are objective
functions. Te results of the MOASOS algorithm demon-
strated that this algorithm can provide a competitive and
better result than the previous studies. Also, structural op-
timization using the multiobjective plasma generation opti-
mization (MOPGO) algorithm is studied by Kumar et al. [30].

A hybridized CSS and a sizable bang-huge crunch (CSS-
BBBC) were introduced by Kaveh and Zolghadr [31]. Te
adaptive ground fnite elements technique was introduced by
Noilublao and Bureerat [32]. Truss constructions with dis-
crete variables were optimized using the mine blast algorithm
(MBA) by Sadollah et al. [33]. Te particle swarm optimizer
(PSO), the heuristic particle swarm optimizer (HPSO), and
the particle swarm optimizer with a passive congregation
(PSOPC) were used by Li et al. [34, 35] for the optimum
design of pin-connected structures. Ho-Huu et al. [36] de-
veloped an adaptive elitist diferential evolution (AEDE) to
optimize a truss with discrete design variables. Te centers
and force formulation (CAFF) was used by Farshi and Alinia-
Ziazi [37] for the sizing optimization of a truss. An artifcial
bee colony (ABC) method was utilized by Hadidi et al. [38] to
optimize the planar and space trusses. Eskandar et al. [39]
used the water cycle algorithm (WCA) for the structural
optimization of planar trusses. For size optimization of truss
structures, Sangtarash et al. [40] presented a method known
as the hybrid artifcial physics optimization and big bang-big
crunch algorithm (HPBA). Kooshkbaghi and Kaveh [41]
proposed the artifcial coronary circulation system algorithm
(ACCSA) for sizing optimization of truss structures with
continuous variables. An evolutionary algorithm based on the
hybrid GA and PSO (HGAPSO) was developed by Kaveh and

Malakoutirad [42] to solve force method-based simultaneous
analysis and design problems for frame structures. An op-
timality criterion method (OCM) was used by Khan et al. [43]
for large-scale structures. Yang et al. [44] proposed the
computational efciency of accelerated particle swarm opti-
mization combined with diferent chaotic maps for global
optimization (CPSO3) with continuous and discrete variables.
Azad and Hasancebi [45] presented an elitist self-adaptive
step-size search (ESASS) for optimal sizing of truss structures
based. Te enhanced colliding bodies optimization (ECBO)
was introduced by Kaveh and Ilchi Ghazaan [46] for sizing
optimization of truss structures with continuous and discrete
variables. Talatahari and Azizi [47] have introduced a novel
meta-heuristic approach termed the Chaos Game Optimi-
zation (CGO) Algorithm. In addition, Bayzidi et al. [48]
recently introduced a novel meta-heuristic technique called
Social Network Search (SNS). Te CGO algorithm’s funda-
mental premise is based on certain chaos theory concepts.Te
chaos game concept and fractal self-similarity difculties are
considered. Te SNS algorithm replicates social network
users’ eforts to achieve more signifcant popularity by
modeling choice emotions in expressing their thoughts. Te
mixed continuous/discrete engineering optimization prob-
lems have been efectively solved using CGO and SNS, al-
though they are fundamental methods. On the other hand,
Singh et al. [49] present an improved version of the follow-
the-leader (iFTL) algorithm for the optimization of the truss
problems.

Tis paper aims to determine the optimal discontinuous
and continuous sizes for planar trusses of a certain design
and topology so they may be constructed. It is necessary to
conduct some case studies, both discontinuous and con-
tinuous in truss size, to assess the efcacy of each technique.
For this aim, the very recent CGO and SNS algorithms are
used in this paper.Te CGO and SNS algorithms will each be
broken down and examined in further detail in the following
sections. Finally, following the introduction of the trusses
and the creation of the truss design optimization model, the
outcomes of the two approaches are exhibited and compared
with the previous study’s conclusions. Te following is how
the remainder of the paper is organized: in Section 2, the
optimization problem is defned. In Section 3, the concepts
of CGO and SNS are briefy described. Te continuous and
discontinuous design variables used in CGO and SNS to
optimize truss structure size are discussed in Section 4. Te
CGO and SNS algorithms are used to optimize four well-
known truss designs in this section, with the results con-
trasted in discontinuous and continuous design variables.
Finally, Section 5 provides a brief conclusion of the present
study.

2. Description of the Truss
Optimization Problems

Te objective of truss size optimization is to lower the
structure’s weight while adhering to stress and defection
restrictions. As design variables, cross-sectional areas are
chosen from a list of the allowable sections.Te problem can
be formulated as follows:
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Minimize: W( X{ }) � 
z

i�1
ρi · Xi.Li. (1)

Subjected to:

σmin ≤ σp ≤ σmax, p � 1, 2, . . . , z,

δmin ≤ δj ≤ δmax, j � 1, 2, . . . , n,

Xp ∈ allowable section,

(2)

where the members of cross-sectional areas, denoted by the
vector X, are taken into account (design variables), ρi is the
material density, W( X{ }), and Li and Xi are the weight of the
truss, the length of members, and the cross-sectional area,
respectively. z is the number of members, and n is the
number of nodes. Te bottom displacement limit is denoted
by δmin, the upper displacement limit is represented by δmax,
and the displacement of node j is represented by δj. Fur-
thermore, the bottom limit of stress is represented by σmin,
the upper limit stress is represented by σmax, and the stress of
member p is represented by σp.Xp is the cross-sectional area
of the member p that is considered from the allowable
section. Te components in the allowable section list are
ordered in ascending order.

For unconstrained optimization problems, CGO and
SNS are presented. A penalty functionmethod is used to deal
with restrictions. In this method, the value of the objective
function is determined by the sum of the constraint violation
in this technique, and the constrained optimization problem
is transformed into an unconstrained one using the fol-
lowing formula:

P � 1 + ξ1 · 

K

j�1
Φj⎛⎝ ⎞⎠⎛⎝ ⎞⎠

ξ2

× W( X{ }), (3)

where P is the unconstrained objective function, and ξ1
and ξ2 are the penalty function coefcients. In this study,
ξ1 and ξ2 are both set to 1. K is the number of constraints,
and Φj is the number of constraints connected to jth

constraint:
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0, otherwise.
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(4)

Te lower and upper boundaries of the jth constraint are
c

j

min and c
j
max , respectively, and the value of the jth con-

straint is cj.

3. Concepts of Chaos Game Optimization (CGO)
and Social Network Search Algorithm (SNS)

3.1. CGO. Talatahari and Azizi [47] proposed the CGO
algorithm.Te confguration of fractals utilizing chaos game
approaches, as well as fractal self-similarity challenges, is
examined in this program, which is based on chaos theory
notions. Te CGOmethod is mathematically modeled using
the fundamental concepts of fractals and chaos games. Tis
mathematical model is predicated on the assumption that to
complete the overall form of one, it is necessary to build
several Sierpinski triangles by making use of seeds that are
allowed to exist inside the search space. In this particular
scenario, the production of fresh seeds inside a Sierpinski
triangle is also used. Tree seeds are used to create a tem-
porary triangle for each qualifying seed in the search area
(Xi) [47]:

(i) Te current position of the global best (GB)
(ii) Te mean groups (MGi), current position
(iii) Te itch solution candidate’s (Xi) position as the

chosen seed

Te following is the procedure for the frst seed:

Seed1i � Xi + αi × βi × GB − ci × MGi( , i � 1, 2, . . . , n, (5)

where Xi is the ith solution candidate, GB is the global best so
far discovered, and MGi is the average of some picked el-
igible seeds. Each of the βi and ci represents a random
number of 0 or 1 for modeling the option of rolling a dice. At
the same time, αi is the randomly generated factorial for
modeling the mobility constraints of the seeds.

Te second seed can move in a manner that is analogous
to the movement of the frst seed in the direction of a point
that is located on the connecting lines between the Xi and
the MGi. Despite this, the movement of the second seed is
restricted by some factorials that were generated at random.
Te following is the presentation of the second seed:

Seed2i � GB + αi × βi × Xi − ci × MGi( , i � 1, 2, . . . , n, (6)

where αi represents a random number of 0 or 1 for modeling
the option of rolling a dice, and each of the βi and ci

represents a random integer of 0 or 1 for modeling the
mobility constraints of the seeds. Te remaining criteria are
the same as for the frst seed.

MGi came in third place. A random number-generating
function that only produces two integers, 0 and 1, is used to
demonstrate this. It is worth mentioning that the seed may
migrate toward the connecting lines, Xi and GB. Several
random factorials, such as the following, may alternatively
be used to accomplish this goal:

Seed3i � MGi + αi × βi × Xi − ci × GB( , i � 1, 2, . . . , n. (7)

A diferent procedure is used to create the fourth seed to
execute the mutation phase in the position updates of the
eligible seeds in the search space. Te seed’s location is
updated depending on specifc random changes in the
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selected decision factors. Te fourth seed can represent as
follows:

Seed4i � Xi x
k
i � x

k
i + R , k � [1, 2, . . . , d]. (8)

where k is a uniformly distributed random number in the
range [0, 1], and R is a random integer between 1 and d. Four
possible formulations for αi, which regulate the mobility
limits of the seeds, are ofered to control and adapt the
exploration and exploitation pace of the CGO algorithm:

αi �

Rand,

2 × Rand,

(δ × Rand) + 1,

(ε × Rand) +(ε).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

Rand is a uniformly distributed random number be-
tween 0 and 1, while δ and ε are random integers between 0
and 1. Te CGO algorithm’s step-by-step approach is listed
below, and the algorithm’s pseudocode is shown in Figure 1.

3.2. SNS. Te SNS method was proposed by Bayzidi et al.
[48]. Tis algorithm is based on social networks, which are
online platforms that allow people to connect electronically
with one another. Users may learn about their favorite
people’s beliefs and opinions by following them on social
media. Consequently, connecting with other network users
may impact their opinions. Users are always looking for
strategies to increase their network popularity, ensuring that
connecting with and infuencing other users goes smoothly.
Almost every metaheuristic algorithm employs a collection
of procedures to generate new solutions. Te SNS algorithm

generates a novel solution by employing one of four moods
that resemble real-world social behavior. Te followings are
the explanations and mathematical models for these oper-
ators (moods) [50].

3.2.1. Mood 1: Imitation. Users may follow each other on
social media, and when one publishes a new post, their
followers will be notifed about the shared subject. Networks
have become vital instruments for sharing information and
ideas due to this property (propagation of views). Users of
social media networks can keep track of their loved ones and
celebrities. Tey will be aware of other people’s responses if
they follow the news. Tey will attempt to start a debate
about the new event by imitating the viewpoint of another
person if the new occurrence involves complex thoughts.
Tis sentiment may be mathematically stated as follows [50]:

Xinew � Xj + rand(−1, 1) × R,

r � Xj − Xi,

R � rand(0, 1) × r.

(10)

3.2.2. Mood 2: Conversation. Users of social networks may
electronically connect and discuss various topics. Individ-
uals learn from one another and expand their understanding
of events during the Talk, which takes the shape of private
conversation. Users in conversation have a new perspective
on events by hearing other people’s perspectives. Lastly,
because of the variations in ideas, they may construct a
diferent picture of the problem, according to the following
equation [50]:

Figure 1: Te pseudocode of the CGO algorithm [47].
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Xinew � Xk + R,

D � sign fi − fj  × Xj − Xi ,

R � rand(0, 1) × D.

(11)

3.2.3. Mood 3: Disputation. Users discuss and defend their
opinions on current events to others when in a disputation
mood.Tis work is done on social media sites, such as in the
comments and groups. Users may see various points of view
from others in the comment area, which may be impacted by
the stated reasons. Furthermore, users may form friendly
relationships with one another, so they form a virtual group
to share their viewpoints on a specifc topic. A random group
of persons is identifed as a commentator or a member of a
group to model this attitude, and the new afected per-
spective in the argument is as follows (12) [50]:

Xinew � Xi + rand(0, 1) × M − AF × Xi( ,

M �


Nr

t

Xt

Nr

,

AF � 1 + round(rand).

(12)

3.2.4. Mood 4: Innovation. Users’ ideas and experiences are
sometimes refected in what they post. To put it another
way, when a person considers a situation, he or she may be
able to see it in a new light and get a better understanding
of the problem’s nature or gain a whole new perspective on
it. A topic might have a variety of characteristics, each of
which impacts the problem’s comprehension. Conse-
quently, modifying one of their ideas will afect the whole
notion of the issue, resulting in a unique viewpoint. Tis
notion is used to generate a new viewpoint via the in-
novation mood:

x
d
inew � t × x

d
j +(1 − t) × n

d
new,

n
d
new � lbd + rand1 × ubd − lbd( ,

t � rand2,

(13)

where D is the total number of variables in the problem, and
ubd and lbd are the lowest and highest values for the dth
variable, whereas rand1 and rand2 are two random integers

between 0 and 1. d is the dth variable selected between 1 and
D. Te term nd

new refers to a new viewpoint on the problem’s
dth dimension. xd

j is an existing notion about the dth variable
provided by another user (jth user who chose randomly and
i≠ j), which the ith user desires to change due to a new
thought nd

new. Finally, as xd
inew, a new viewpoint of the dt h

dimension will be formed. Te dimension x(xd
inew) will be

formed as an interpolation dimension (xd
inew) is a dialogue

between the new notion (nd
new) and the current (xd

j ).
Changing one dimension, xd

inew creates a broad shift in the
underlying notion and may be considered a new commu-
nication point of view. Te following model may be used to
represent this process:

Xinew � x1, x2, x3, . . . x
d
i new . . . xD . (14)

Te SNS algorithm’s step-by-step method is presented in
Figure 2, along with the algorithm’s pseudocode.

4. Numerical Examples

Te CGO and SNS are used in this part to solve discon-
tinuous and continuous optimization benchmark prob-
lems using two well-known truss designs. Four well-
known planar truss structures were tested to ensure that
the fndings were accurate and that the suggested algo-
rithms were successful. To do the structural analysis, get
the members’ forces and node displacements, and opti-
mize by using the CGO and SNS techniques, a program
was built in the MATLAB software [51] programming
environment. All runs are performed on a 64 bit computer
with an Intel i7 (2.6 GHz) processor and 12GB of RAM.
Te population sizes of CGO and SNS were assumed to be
150 for the truss examples.

4.1. 6-NodePlanarTruss (10Members). In this study, the best
confguration of a 10-bar planar truss is investigated, as
shown in Figure 3. Table 1 contains the information that may
be obtained on the design variables (nd� 10).Te number of
degrees of freedom (DOF) in this case is eight. Tis truss is
classifed into three sizes: loaded, discontinuous, and con-
tinuous in the following manner,

4.1.1. Case 1. Loads of p1 and p2 are 100 (kips) and zero
(kips), respectively, and the sections used to create this truss
are as follows:

X �
4.8, 4.59, 4.49, 4.47, 4.22, 4.18, 3.88, 3.87, 3.84, 3.63, 3.55, 3.38, 3.13, 3.09, 2.93, 2.88, 2.63, 2.62, 2.38, 2.13, 1.99,

1.8, 1.62, 33.5, 30, 26.5, 22.9, 22, 19.9, 18.8, 16.9, 16, 15.5, 14.2, 13.9, 13.5, 11.5, 7.97, 7.22, 5.74, 5.12, 4.97
  in2  .

(15)
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Figure 3: Six-node planar truss.

Table 1: Design data for the 10-bar planar truss.

Material properties
Elastic modulus (E)� 10000ksi density (ρ)� 0.1lb/in3

Constraint data
Displacement constraints:

In the direction of X-axis and Y-axis |Δj|⩽2 in (50.8mm)j � 1, 2, 3, 4Δa � ± 2 in (50.8mm)

Stress constraints:
|σi|⩽25ksi(172.25Mpa)i � 1, 2, . . . , 10 σa � ± 25ksi(172.25Mpa)

Loading data

Case 1
Nodal number Py(kips)

2 −100(−445.374kN)

4 −100(−445.374kN)

Case 2
Nodal number Py(kips)

2 −100(−445.374kN)

4 −100(−445.374kN)

Case 3
Nodal number Py(kips)

1, 3 150(445.374kN)

2, 4 −50(−445.374kN)

Figure 2: Te pseudocode of the SNS algorithm.
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Table 2: Comparison of optimal results obtained for the six-node planar truss—case 1.

Design variables (in2) Sadollah et al. [33] Li et al. [34] Ho-Huu et al. [36] Rajeev et al. [17] Present study
MBA PSO PSOPC HPSO aeDE DE GA CGO SNS

X1 30 30 30 30 33.5 33.5 33.5 33.5 33.5
X2 1.62 1.62 1.8 1.62 1.62 1.62 1.62 1.62 1.62
X3 22.9 30 26.5 22.9 22.9 22.9 22 22.9 22.9
X4 14.2 13.5 15.5 13.5 14.2 14.2 15.5 15.5 14.2
X5 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62
X6 1.62 1.8 1.62 1.62 1.62 1.62 1.62 1.62 1.62
X7 7.97 11.5 11.5 7.97 7.97 7.97 14.2 7.97 7.97
X8 22.9 18.8 18.8 26.5 22.9 22.9 19.9 22 22.9
X9 22.9 22 22 22 22 22 19.9 22 22
X10 1.62 1.8 3.09 1.8 1.62 1.62 2.62 1.62 1.62
Best weight (lb) 5507.75 5581.76 5593.44 5531.98 5490.74 5490.74 5613.84 5491.72 5490.74
Average weight (lb) 5527.296 N/A N/A N/A 5502.623 5501.547 N/A 5521.81 5495.36
Worst weight (lb) 5536.965 N/A N/A N/A 5549.204 5546.685 N/A 5541.94 5536.97
Std dev (lb) 11.38 N/A N/A N/A 20.780 19.521 N/A 26.01 12.99
Number of analysis 3600 N/A N/A N/A 2380 6440 N/A 1500 1500
CPU time (min) N/A N/A N/A N/A N/A N/A N/A 0.58 1.37
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Figure 4: Weight loss process for 10-bar truss—case 1 using (a) SNS and (b) CGO.
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Figure 5: Comparison of 10-bar truss convergence rates—case 1.
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Te best designs presented so far are listed in Table 2,
along with the study’s results. As shown in Table 2, the SNS
method yields signifcantly less weight than the CGO, and
other algorithms are utilized by other researchers. Figures 4
and 5 depict the path of convergence of the CGO and the
SNS algorithms for the six-node planar truss—case1. During
the algorithm’s execution, these diagrams show the struc-
tural weight loss process using the number of function
evaluation (NFE).

In the discontinuous size situation, the outputs of the
SNS algorithm are more cost-efective than the CGO al-
gorithm, as shown in Figure 5. In addition, the statistical
results of the SNS algorithm regarding average and standard
deviation are signifcantly better than the CGO for the
discontinuous size case. However, regarding analysis time
(CPU) and convergence rate, the CGO is better than the SNS
algorithm for the discontinuous size case.

4.1.2. Case 2. Loads of p1 and p2 are 100 (“kips”) and zero
(“kips”), respectively, and the structure’s members are
chosen from the series’ (X) interval as follows:

0.1≤X≤ 35 in2 . (16)

Te study’s conclusions are shown along with a sum-
mary of the best designs that have been made so far in
Table 3. Te quantity of weight acquired from the CGO
method is signifcantly smaller than that obtained from the
SNS algorithm and other algorithms, as shown in Table 3.
Figures 6 and 7 depict the path of convergence of the CGO
and the SNS algorithms for the six-node planar truss—case

2. During the execution of the algorithm, these diagrams
show the structural weight loss process using NFE.

Te outputs of the CGO algorithm are more cost-
efective than the SNS method in the continuous-size
situation, as shown in Figure 7. Furthermore, for the
continuous-size situation, the statistical results of the
CGO algorithm were superior to the SNS method re-
garding average and standard deviation, as well as analysis
time (CPU) and convergence rate.

4.1.3. Case 3. Loads of p1 and p2 are 100 (“kips”) and 50
(“kips”), respectively, and the structure’s members are
chosen from the series’ (X) interval as follows:

0.1≤X≤ 35 in2 . (17)

Table 4 summarizes the fnest ideas provided so far and
the study fndings. Te CGO technique yields considerably
less weight than the SNS algorithm and other algorithms, as
seen in Table 4. Figures 8 and 9 depict the convergence paths
of the CGO and SNS algorithms for the six-node planar
truss—case 3.Te structural weight reduction process in this
form is tracked using the number of function evaluations,
which demonstrates that the SNS and CGO are superior to
other approaches in this regard.

Te outputs of the CGO algorithm are more cost-ef-
fective than the SNS method in the continuous-size situa-
tion, as shown in Figure 9. Furthermore, for the continuous-
size situation, the statistical results of the CGO algorithm
were superior to the SNS method regarding average and
standard deviation, analysis time (CPU), and convergence
rate.

Table 3: Comparison of optimal results obtained for the six-node planar truss—case 2.

Design
variables
(in2)

Farshi and
Alinia-Ziazi

[37]

Li et al.
[35]

Hadidi
et al. [38]

Eskandar
et al. [39]

Sangtarash
et al. [40]

Kooshkbaghi and
Kaveh [41]

Kaveh and
Malakoutirad [42]

Present study

CaF HPSO ABC WCA HPBA ACCS HGAPSO CGO SNS
X1 30.52 30.7 34.31 29.5 30.36 30.64 30.63 30.56 30.52
X2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.10
X3 23.20 23.17 20.67 24 23.80 23.1 23.06 23.14 23.13
X4 15.22 15.18 14.51 15 14.80 15.06 15.01 15.21 15.19
X5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.10
X6 0.55 0.55 0.66 0.5 0.56 0.57 0.59 0.55 0.55
X7 7.47 7.46 7.87 7.5 7.42 7.48 7.49 7.47 7.47
X8 21.03 20.98 20.35 21 21.12 21.09 21.1 21.06 21.09
X9 21.53 21.51 22.02 22 21.47 21.53 21.56 21.52 21.53
X10 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.10
Best weight
(lb) 5061.4 5060.92 5095.33 5067.33 5062.01 5061.03 5061.4 5060.85 5060.89

Average
weight (lb) N/A N/A 5113.92 N/A 5062.19 5061.07 N/A 5060.87 5060.96

Worst
weight (lb) N/A N/A 5187.19 N/A N/A N/A N/A 5060.97 5061.15

Std dev (lb) N/A N/A 24.793 N/A 0.26 0.09 N/A 0.03 0.06
Number of
analysis N/A 125000 N/A N/A 8000 12000 N/A 1500 1500

CPU time
(min) N/A N/A N/A N/A N/A N/A N/A 0.76 1.27
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4.2. 8-Node Planar Truss (15Members). Te second example
of size optimization is a truss system with 15-bar, which is
shown in Figure 10. Te design factors (nd� 15) are listed in

Table 5. Te following structural members are selected from
the collection of section lists (X) for the design of the eight-
node planar truss as follows:

Χ � 113.2, 143.2, 145.9, 174.9, 185.9, 235.9, 265.9, 297.1, 308.6, 334.3, 338.2, 497.8, 507.6, 736.7, 791.2, 1063.7{ } mm2
  (18)

A maximum number of 1000 iterations were set for
comparison with other algorithms in the same circumstance.
Table 6 compares the optimum design of CGO and SNS to
PSO [34], PSOPC [34], HPSO [34], WCA [39], and MBA
[33]. Table 6 shows that SNS achieved an optimum design
value comparable to or better than other methods, whereas,
in terms of the number of analyses, SNS and CGO are better

than other methods. Figure 11 also shows the convergence
route of the CGO and the SNS algorithms for an eight-node
planar truss.

As shown in Figure 12, in the discontinuous-size situ-
ation, the outputs of the SNS algorithm are more cost-ef-
fective than the CGO method. Te statistical results of the
SNS algorithm regarding average and standard deviation are
signifcantly better than the CGO for the discontinuous size

7500

7000

6500

6000

5500

5000

W
ei

gh
t (

lb
)

Number of Iterations
100 101 102 103

(a)

W
ei

gh
t (

lb
)

6800

6600

6400

6200

6000

5800

5600

5400

5200

5000

Number of Iterations
100 101 102 103

(b)

Figure 6: Weight loss process for 10-bar truss—case 2 using (a) SNS and (b) CGO.
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Figure 7: Comparison of 10-bar truss convergence rates—case 2.
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Table 4: Comparison of optimal results obtained for the 6-node planar truss—case 3.

Design variables (in2) Khan et al. [43] Li et al. [35] Venkayya [52] Hadidi et al. [38] Sangtarash et al. [40] Present study
GA HPSO SEC ABC MABC HPBA CGO SNS

X1 24.72 23.35 25.19 24.81 23.64 24.00 23.53 23.54
X2 0.1 0.1 0.363 0.1 0.1 0.1 0.1 0.1
X3 26.54 25.5 25.42 26.05 26.32 25.13 25.28 25.22
X4 13.22 14.25 14.33 14.88 14.41 14.33 14.37 14.35
X5 0.11 0.1 0.417 0.1 0.1 0.1 0.1 0.1
X6 4.84 1.97 3.144 2.01 1.97 1.974 1.97 1.97
X7 12.66 12.36 12.08 12.45 12.38 12.52 12.39 12.41
X8 13.78 12.89 14.61 12.68 12.77 12.98 12.83 12.85
X9 18.44 20.36 20.26 18.87 20.27 19.88 20.33 20.34
X10 0.1 0.1 0.513 0.1 0.1 0.1 0.1 0.1
Best weight (lb) 4792.52 4677.29 4895.60 4691.07 4677.06 4678.11 4676.92 4676.97
Average weight (lb) N/A N/A N/A 4708.57 4677.74 4678.48 4676.93 4677.18
Worst weight (lb) N/A N/A N/A 4753.2 4679.52 N/A 4676.96 4677.63
Std dev (lb) N/A N/A N/A 16.738 0.725 0.301 0.01 0.16
Number of analysis N/A 125000 N/A N/A N/A 8000 1500 1500
CPU time (min) N/A N/A N/A N/A N/A N/A 0.98 1.37

Number of Iterations
100 101 102 103
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Figure 8: Weight loss process for 10-bar truss—case 3 with (a) SNS and (b) CGO.
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Figure 9: Comparison of 10-bar truss convergence rates—case 3.
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case. However, the CGO outperforms the SNS algorithm
regarding analysis time (CPU) and convergence rate.

4.3. 9-Node Planar Truss (17 Members). Te optimal design
of a 17-bar planar truss is explored, as illustrated in Fig-
ure 13. Te information about the design variables (nd� 17)
is presented in Table 7.

Te cross-sectional areas of components are regarded as
17 sizing design factors, with the following minimum per-
missible values:

0.1≤X in2 . (19)

Table 8 contains an overview of the fnest designs that
have been provided so far, as well as the fndings of this
study. Te amount of weight acquired from the CGO
method is signifcantly smaller than the amount obtained
from the SNS algorithm and other algorithms, as shown in
Table 8. Figures 14 and 15 demonstrate the convergence
paths of the CGO and SNS algorithms for a nine-node planar
truss. Te NFE is used to monitor the structural weight

reduction process in this form, which shows that the SNS
and CGO in this term are better than other methods.

As shown in Figure 15, the outputs of the CGOmethod
are more cost-efective than the SNS algorithm in the
continuous-size situation. Also, the CGO algorithm got
better statistical results for the continuous-size situation in
terms of average, standard deviation, analysis time (CPU),
worst weight, and convergence rate than the SNS
technique.

4.4. 20-Node Planar Truss (45Members). Te optimal design
of a 45-bar planar truss, as illustrated in Figure 16, is
evaluated in the last case. Te design factors (nd� 45) are
listed in Table 9.

For design reasons, the structure’s components are di-
vided into 23 groups according to Table 10, taking into
account the symmetry of the structure. Tere is a lower limit
for each size variable:

0.1≤X in2 . (20)
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Figure 10: Eight-node planar truss.

Table 5: Design data for the 15-bar planar truss problem.

Material properties
Elastic modulus (E)� 200GPa density(ρ)� 7800kg/m3

Constraint data
Displacement constraints:

In the direction of X-axis and Y-axis |Δj|⩽10mmj � 3, 4, 5, 6, 7, 8Δa � 10mm

Stress constraints:
|σi|⩽120Mpa i � 1, 2, . . . , 15σa � ± 120Mpa

Loading data
Nodal number Py(kN)

4 −35
6 −35
8 −35
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Table 10 contains a summary of the fnest ideas provided
so far, as well as the fndings of this study. As shown in
Table 10, the amount of weight gained by the CGOmethod is
much less than that obtained by the SNS algorithm and other
methods. Figure 17 and Figure 18 demonstrate the route of
convergence of the CGO method and the SNS algorithm for

the twenty-node planar truss. Te NFE is used to examine
the structural weight reduction process in this form, which
shows that the SNS and CGO in this term are better than
other methods.

As shown in Figure 18, the outputs of the CGO algo-
rithm are more cost-efective than the SNS method in the

Table 6: Comparison of optimal results obtained for the 8-node planar truss problem.

Design variables (in2) Yang et al. [44] Li et al. [34] Eskandar et al. [39] Sadollah et al. [33] Tis study
CPSO3 PSO PSOPC HPSO WCA MBA CGO SNS

X1 113.2 185.9 113.2 113.2 113.2 113.2 113.2 113.2
X2 113.2 113.2 113.2 113.2 113.2 113.2 113.2 113.2
X3 113.2 143.2 113.2 113.2 113.2 113.2 113.2 113.2
X4 113.2 113.2 113.2 113.2 113.2 113.2 113.2 113.2
X5 736.7 736.7 736.7 736.7 736.7 736.7 736.7 736.7
X6 113.2 143.2 113.2 113.2 113.2 113.2 113.2 113.2
X7 113.2 113.2 113.2 113.2 113.2 113.2 113.2 113.2
X8 736.7 736.7 736.7 736.7 736.7 736.7 736.7 736.7
X9 113.2 113.2 113.2 113.2 113.2 113.2 113.2 113.2
X10 113.2 113.2 113.2 113.2 113.2 113.2 113.2 113.2
X11 113.2 113.2 113.2 113.2 113.2 113.2 113.2 113.2
X12 113.2 113.2 113.2 113.2 113.2 113.2 113.2 113.2
X13 113.2 113.2 113.2 113.2 113.2 113.2 113.2 113.2
X14 334.3 334.3 334.3 334.3 334.3 334.3 338.2 334.3
X15 334.3 334.3 334.3 334.3 334.3 334.3 338.2 334.3
Best weight (kg) 105.735 108.84 108.96 105.735 105.735 105.735 105.735 105.735
Average weight (kg) N/A N/A N/A N/A N/A N/A 106.2 105.735
Std Dev (kg) N/A N/A N/A N/A N/A N/A 0.36 0
Worst weight (kg) N/A N/A N/A N/A N/A N/A 106.42 105.735
Number of analysis 12,500 N/A N/A N/A 1700 N/A 1500 1500
CPU time (min) N/A N/A N/A N/A N/A N/A 0.95 1.52
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Figure 11: Weight loss process for 15-bar truss using (a) SNS and (b) CGO.
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Figure 12: Comparison of convergence curves of SNS and CGO algorithms for the 15-bar problem.

Table 7: Design data for the 17-bar planar truss problem.

Material properties
Elastic modulus (E)� 30000 ksi density (ρ)� 0.268 lb/in3

Constraint data
Displacement constraints:

In the direction of X-axis and Y-axis |Δj|⩽2 in (50.8mm) j � 3, 4, 5, 6, 7, 8, 9Δa � ± 2 in (50.8mm)

Stress constraints:
|σi|⩽50 ksi(344.5Mpa) i � 1, 2, . . . , 17σa � ± 50 ksi(344.5Mpa)

Loading data
Nodal number Py(kips)
9 −100(−445.374kN)
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Table 8: Comparison of optimal results obtained for the 9-node planar truss problem.

Design variables
(in2)

Sangtarash et al.
[40]

Kazemzadeh Azad and Hasancebi
[45]

Kaveh and Ghazaan
[46]

Sangtarash et al.
[40]

Tis study

BB-BC HPBA ESASS ECBO APO CGO SNS
X1 14.4156 15.8 15.9324 15.9158 16 15.7022 15.9328
X2 0.515 0.11 0.1 0.1001 0.1 0.1 0.11
X3 13.1706 12.12 12.0193 12.0762 12.28 11.8988 12.0538
X4 0.1034 0.1 0.1 0.1 0.1 0.1 0.1
X5 8.8999 8.05 8.1001 8.0527 7.91 7.9534 8.0605
X6 5.1549 5.6 5.53 5.5611 5.52 5.4810 5.5785
X7 11.4214 11.97 11.9209 11.9470 12.78 11.7617 11.9402
X8 0.1101 0.1 0.1 0.1 0.1 0.1 0.1
X9 7.9223 7.88 8.0128 7.9425 7.45 7.8306 7.9048
X10 0.1782 0.1 0.1 0.1 0.1 0.1 0.1
X11 4.4553 4.07 4.0715 4.0589 3.96 3.9984 4.0668
X12 0.1389 0.1 0.1 0.1 0.1 0.1000 0.1004
X13 5.8455 5.66 5.6726 5.6644 5.82 5.5762 5.6515
X14 4.1933 4.05 4.0154 4.0057 3.61 3.9430 3.9883
X15 5.1536 5.52 5.5286 5.5565 5.63 5.4775 5.5663
X16 0.4065 0.1 0.1 0.1 0.1 0.1 0.1
X17 5.4519 5.61 5.5739 5.5740 5.59 5.4979 5.5898
Best weight (lb) 2598.4 2582.00 2581.93 2581.89 2588.98 2581.37 2581.92
Average weight (lb) 2599.03 2582.74 N/A 2597.11 2589.41 2581.87 2581.98
Std dev (lb) 0.542 0.214 N/A 22.41 0.391 0.07 0.18
Worst weight (lb) N/A N/A N/A N/A N/A 2581.89 2582.13
Number of analysis 13000 10500 5941 16000 11000 1500 1500
CPU time (min) N/A N/A N/A N/A N/A 2.54 3.23
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Figure 14: Weight loss process for 17-bar truss using (a) SNS and (b) CGO.
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Figure 16: Twenty-node planar truss.

Table 9: Design data for the 45-bar planar truss problem.

Material properties
Elastic modulus (E)� 30000ksi density (ρ)� 0.283lb/in3

Constraint data
Displacement constraints:

In the direction of X-axis and Y-axis |Δj|⩽2 in (50.8mm) j � 2 , 3, . . . , 19 Δa � ± 2 in (50.8mm)

Stress constraints:
|σi|⩽30 ksi(206.7Mpa) i � 1, 2, . . . , 45 σa � ± 30ksi(206.7Mpa)

Loading data
Nodal number Py(kips)
2,3, . . ., 19 −100
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Table 10: Comparison of optimal results obtained for the 20-node planar truss problem.

Design variables (in2) Members Kazemzadeh Azad and Hasancebi [45] Hadidi et al. [38] Tis study
ESASS ABC MABC CGO SNS

X1 1, 44 4.6052 4.5996 4.6052 4.5703 4.5765
X2 2, 45 3.7083 3.7966 3.7083 3.7352 3.7455
X3 3, 43 3.1919 3.0497 3.1919 3.1634 2.9437
X4 4, 39 3.2756 3.2841 3.2756 3.3025 3.5052
X5 5, 41 0.1 0.1069 0.1 0.1 0.4
X6 6, 40 3.9896 3.9279 3.9896 3.9302 3.6704
X7 7, 42 0.8916 0.9649 0.8916 0.9315 1.1441
X8 8, 38 1.217 1.2133 1.217 1.2061 1.0314
X9 9, 34 7.7323 7.6553 7.7323 7.6830 7.6490
X10 10, 36 2.2227 2.1993 2.2227 2.1819 2.1760
X11 11, 35 1.1803 1.1929 1.1803 1.2128 1.2214
X12 12, 37 0.1 0.1001 0.1 0.1 0.1
X13 13, 33 0.1 0.1008 0.1 0.1 0.1
X14 14, 29 9.3901 9.536 9.3901 9.4270 9.4293
X15 15, 31 1.2149 1.2173 1.2149 1.2164 1.2267
X16 16, 30 1.3322 1.419 1.3322 1.3612 1.3667
X17 17, 32 2.6056 2.5513 2.6056 2.5865 2.5936
X18 18, 28 0.1 0.1 0.1 0.1 0.1
X19 19, 24 11.6266 11.5439 11.6266 11.6804 11.6775
X20 20, 26 1.2406 1.2807 1.2406 1.2726 1.2733
X21 21, 25 0.1 0.101 0.1 0.1 0.1
X22 22, 27 3.7923 3.7598 3.7923 3.7639 3.7523
X23 23 0.1 0.1017 0.1 0.1 0.1
Best weight (lb) 7967.98 7968.95 7967.98 7966.96 7968.78
Average weight (lb) N/A 8472.46 8030.78 7968.09 7969.43
Worst weight (lb) N/A 8690.35 8230.11 7968.69 7970.05
Std Dev (lb) N/A 101.929 98.507 0.48 0.87
Number of analysis 9349 N/A N/A 1500 1500
CPU time (min) N/A N/A N/A 5.21 8.02
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Figure 17: Weight loss process for the 45-bar truss using (a) SNS and (b) CGO.
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continuous-size situation. Additionally, for continuous-size
cases, the CGO algorithm’s statistical fndings outperform
the SNS approach regarding average and standard deviation,
analysis time (CPU), and convergence rate.

4.5. Summary Results. To present a better comparison of the
CGO and SNS algorithms, Table 11 shows the standard
deviation, worst, best, mean, and CPU time of the outcomes.
As previously stated, both algorithms are run 1500 times
using a seed number and a population size of 150.

5. Conclusion

Te chaos game optimization approach and the social
network search algorithm were used to analyze the con-
tinuous and discontinuous size optimization of planar
trusses in this research. Te fndings of a computer analysis
of four distinct kinds of planar trusses (6-node, 8-node, 9-

node, and 20-node) that were evaluated under various de-
grees of discontinuous and continuous size and loading are
presented in this study.

(1) Te solved cases demonstrate that the chaos game
optimization algorithm and the social network
search algorithm can solve the continuous and
discontinuous size optimization problems and that
these algorithms can fnd the best structural con-
fguration faster than other methods. Other advan-
tages of using the chaos game optimization
algorithm with the social network search technique
to solve structural optimization problems include a
faster convergence rate, a better solution, and low
computational efort.

(2) In discontinuous sizes, the designs generated by the
social network search algorithm aremuchmore cost-
efective than other designs, whereas, in continuous-
size instances, the designs generated by the chaos
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Figure 18: Comparison of convergence curves of SNS and CGO algorithms for the 45-bar problem.

Table 11: Summary results for the CGO and SNS algorithms.

Example
Number of
analysis Best weight (lb) Worst weight (lb) Mean weight (lb)

Standard
deviation

(lb)

CPU time
(min)

CGO SNS CGO SNS CGO SNS CGO SNS CGO SNS CGO SNS

6-node (10 members)
Case 1 1500 1500 5491.72 5490.74 5541.94 5536.97 5521.81 5495.36 26.01 12.99 0.58 1.37
Case 2 1500 1500 5060.85 5060.89 5060.97 5061.15 5060.87 5060.96 0.03 0.06 0.76 1.27
Case 3 1500 1500 4676.92 4676.97 4676.96 4677.63 4676.93 4677.18 0.01 0.16 0.98 1.37

8-node (15 members) 1500 1500 105.735 105.735 106.42 105.735 106.2 105.735 0.36 0 0.95 1.52
9-node (17 members) 1500 1500 2581.37 2581.92 2581.89 2582.13 2581.87 2581.98 0.07 0.18 2.54 3.23
20-node (45 members) 1500 1500 7966.96 7968.78 7968.69 7970.05 7968.09 7969.43 0.48 0.87 5.21 8.02

Computational Intelligence and Neuroscience 17



game optimization technique are far more cost-
efective.

(3) According to a study of convergence rate diagrams in
terms of CPU time and function evaluations, the
chaos game optimization technique approaches the
optimal solution faster than the social network
search method.

Nomenclature

CGO: Chaos game optimization
SNS: Social network search.
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