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COVID-19 detection and classi�cation using chest X-ray images is a current hot research topic based on the important application
known as medical image analysis. To halt the spread of COVID-19, it is critical to identify the infection as soon as possible. Due to
time constraints and the expertise of radiologists, manually diagnosing this infection from chest X-ray images is a di�cult and
time-consuming process. Arti�cial intelligence techniques have had a signi�cant impact on medical image analysis and have also
introduced several techniques for COVID-19 diagnosis. Deep learning and explainable AI have shown signi�cant popularity
among AL techniques for COVID-19 detection and classi�cation. In this work, we propose a deep learning and explainable AI
technique for the diagnosis and classi�cation of COVID-19 using chest X-ray images. Initially, a hybrid contrast enhancement
technique is proposed and applied to the original images that are later utilized for the training of two modi�ed deep learning
models. �e deep transfer learning concept is selected for the training of pretrained modi�ed models that are later employed for
feature extraction. Features of both deep models are fused using improved canonical correlation analysis that is further optimized
using a hybrid algorithm named Whale-Elephant Herding. �rough this algorithm, the best features are selected and classi�ed
using an extreme learning machine (ELM). Moreover, the modi�ed deep models are utilized for Grad-CAM visualization. �e
experimental process was conducted on three publicly available datasets and achieved accuracies of 99.1, 98.2, and 96.7%,
respectively. Moreover, the ablation study was performed and showed that the proposed accuracy is better than the other methods.

1. Introduction

Due to the emergent spread of coronavirus infection, the
COVID-19 pandemic has become a worldwide challenge
since December 2019 [1]. It was recognized as a “Public
Health Emergency of International Concern (PHEIC)” by
the “World Health Organization (WHO)” that had a po-
tential impact on billions of lives. �is virus potentially
originated in Wuhan, which is the capital city of Central
China, and appeared in the form of severe atypical pneu-
monia a¢ecting the lower respiratory tract that often leads to

the death of a person [2]. Up till now, the total number of
worldwide active cases reported till September 2021 on a
daily basis is 353,936, the death toll till September on a daily
basis is 5784, and an estimated amount of active cases and
the death rate from the beginning of pandemic till Sep-
tember 2021 is 229,354,842 and 4,706,699, respectively, till
19 September 2021 [3, 4]. With this virus, 221 countries and
their zones have been a¢ected since 2019, continuing to
spread globally across the world, including a wide range of
countries in which the top �ve countries with the highest
reported coronavirus cases are the USA, India, Brazil, UK,
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and Russia. (e USA lies above the mentioned top five
countries with the highest number of active cases, that is,
402,908,749, since its beginning.

Coronavirus infection is thought to be highly contagious.
To combat the spread of infection, it should be detected
early, and patients should be quarantined [5]. (e gold
standard for detecting coronavirus infection is reverse
transcription polymerase chain reaction (RT-PCR) [6, 7].
RT-PCR comprises detecting viral RNA from a nasopha-
ryngeal swab.(emajor limitation of the RT-PCR test is that
it has less sensitivity, due to which it is not efficient to detect
the rate of positive cases rapidly.(is test requires more time
to get the results; moreover, the availability of material
required is limited in the health sector [6]. To overcome this
limitation, biomedical imaging-based methods such as chest
X-ray images, radio images, or computed tomography (CT)
scanners could be used for rapid screening [8, 9]. Detection
of coronavirus infection at the initial stage through bio-
medical imaging can avoid the spread of this contagious
disease [10]. Automated COVID-19 classification tech-
niques have been preferred over manual techniques, which
usually are followed by a preprocessing, segmentation, se-
lection, and classification phase. As a consequence, there is a
need to introduce an artificial intelligence- (AI-) based
decision support system. (is system segments the infection
along with detection at the lung level through images. Deep
learning plays a vital role in the classification of COVID-19
[11]. Biomedical imaging-based CNN architecture turned
out to be a reliable technique [12] for image segmentation as
well as image classification [13, 14]. Apart from prior stated
models, InceptionResNetV2, ResNet50, DenseNet20,
VGG19, MobileNetV2, NasNetMobile, and ResNet15V2
have been widely used in medical imaging [15, 16].

Artificial intelligence has become an emergent field by
using its various techniques [17], such as deep neural net-
works, to solve a variety of problems, which are image
classification, object detection, drug interaction, medical
imaging [18, 19], and speech recognition [20–22]. More
precisely, convolutional neural networks (CNN) showed
promising results in the field of image processing [23].
Enormous research studies presented the robustness of these
techniques for image segmentation [24]. Explainable arti-
ficial intelligence (XAI) is basically the integration of mul-
tiple AI models into an ergonomic GUI to assist radiologists
in decision-making in order to improve understanding of
COVID-19 [25]. (e recent studies faced several challenges
for the accurate classification of COVID-19 with normal
chest X-ray images. (e first challenge is multiclass classi-
fication such as COVID-19, viral pneumonia, lung opacity,
and normal images. Visually, these images are shown in
Figure 1. From this figure, it is observed that the similarity
among each image is very high, and it is a chance of mis-
leading the correct classification accuracy. (e second
challenge is redundant and irrelevant feature extraction that
not only degrades the classification accuracy but also in-
creases the computational time. In this work, we proposed a
new framework based on deep learning and explainable AI
for COVID-19 classification. Our major contributions are
listed as follows:

(i) We proposed a hybrid contrast enhancement
technique based on the fusion of Weiner filtering,
global information, and box filtering.

(ii) Two deep learning pretrained models are modified
and trained through transfer learning on an en-
hanced dataset. Later, Grad-CAM-based visualiza-
tion is performed, and at the same time, features are
extracted from the global average pooling layer.

(iii) An improved version of the discriminant canonical
correlation analysis-based method is implemented
for feature fusion.

(iv) A hybrid feature optimization algorithm is pro-
posed named Whale-Elephant Herding for the best
features selection. (e final features are classified
using an extreme learning machine (ELM).

(e rest of the paper is organized in the following order:
Section 2 describes the related work in which recent tech-
niques are discussed. (e proposed methodology is pre-
sented in Section 3. Results of the proposed methodology are
discussed in Section 4. Finally, Section 5 concludes the
paper.

2. Related Work

(e outbreak of coronavirus all over the world was inciting
pain and caused an alarming situation everywhere in a short
time. For early detection, various traditional methods are
used, such as reverse transcription polymerase chain reac-
tion (RT-PCR), CT scan, and X-ray imaging. But the de-
tection of coronavirus using these traditional methods is
time taking and not so accurate. Recently, various machine
learning, artificial intelligence, and deep learning-based
methods have been presented for early detection of this
disease to overcome the rapidly increasing death rate. Wu
et al. [26] introduced a joint classification and segmentation
technique for real-time and explainable COVID-19
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Figure 1: Sample image of COVID-19 Radiography dataset.
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detection using chest CTon the COVID-CS dataset. Reis and
Oliveira-Esquerre [27] presented an explainable AI-based
method for COVID-19 detection using blood cell count. Five
AI-based algorithms were used for evaluation, and a
Bayesian optimization was applied for hyperparameters
tuning. Karim et al. [28] presented an automated method for
COVID-19 detection in CXR images based on an explain-
able DNN method. In this method, class distinguishing
regions are highlighted by gradient-guided class activation
maps and by using layer-wise relevance propagation. Fur-
ther human-illustratable description for prediction is used.
In [29, 30], an automated method for the detection of
coronavirus in chest CT images using DCNN models was
introduced. A transfer learning technique with custom-sized
input is used in the models for best accuracy results. For
better illustration, visualization methods are used for the
visual explanation of predicted models. Soares et al. [31]
presented an explainable-by-design method for COVID-19
classification using a CT scan. In this approach, integrated
segmentation with SLIC superpixel is used for better per-
formance and illustration. Shi et al. [32] presented an ex-
plainable attention transfer classification method using a
knowledge distillation network for COVID-19 detection. A
teacher network is used to extract global features and uses
the deformable attention model for clear depiction. (en,
image fusion is applied to combine extracted features from
global and irregular-shaped scratch regions. Ahsan et al. [33]
presented an automated model for COVID-19 detection
using six deep CNNmodels and using different CTscans and
chest X-ray images for identification. (e modified Mobi-
leNetV2 gives promising results as compared to other
models. Singh et al. [34] suggested a deep learning-based
method for COVID-19 detection. In this approach, image
enhancement, image segmentation, and modified stack
ensemble model with Näıve Bayes as metalearner for classi-
fication are used. Moreover, explainability is applied using
Grand-Cam visualization, and various existing GAN archi-
tectures areused to create realistic copied samples to copewith
limited sample numbers. Mahmoudi et al. [35] applied ex-
plainableDLmodels for the classification and segmentationof
COVID-19 images by using different X-ray and CT scan
images.LoandYin [36] introducedan interaction-basedCNN
model for COVID-19 detection using chest X-ray images.

Moreover, Pennisi et al. [25] adopted the AI-based
technique for COVID-19 classification along with the lungs’
lesion category. (ey first presented a model to identify the
lung parenchyma and lobes and then combined two net-
works, including segmentation and classification, for
COVID-19 classification and lesion categorization. (eir
dataset included 166 individuals’ CT scans, 72 of them were
COVID positive, and 35 were interstitial but COVID neg-
ative. Similarly, Palatnik et al. [37] identified the issue of
usage of false or doubtful artifacts in dataset images by
classifiers; they suggested a new AI-based technique for
COVID-19 classification on the COVID-CT dataset [38].
(ey combined multiple AI algorithms, including Grad-
CAM, lime, RISE, square grid, and direct gradient ap-
proaches, to compare their results and evaluated the exposed
biases for the studied classifier. Researchers in [39]

highlighted the issue of robustness in the AI systems due to
undesired learned shortcuts. (eir scheme provided sig-
nificant proof that explainable AI should be seen as a
prerequisite to deploying machine learning-based healthcare
models. Another study made by [40] presented promising
quantification and qualitative visualizations by proposing an
XAI-equipped classifier for COVID-19 detection. (ey
tested their strategic module on a privately collected dataset
from the local hospitals, then ensured its efficiency by
training the publicly available CC-CCII dataset with 2,034
CT volumes, and achieved favorable results. (e previous
research concentrated on traditional machine learning and
deep learning techniques for COVID-19 classification. (ey
improved their accuracies on some datasets, but they ran
into problems with low contrast images, redundant feature
extraction, and selecting a relevant classifier. (e pre-
processing step for improved contrast of input images was
not considered in the preceding studies. (ey also skipped
the step of boosting the best features. We concentrated on
contrast stretching, feature optimization, and explainable AI
in this work to achieve better results on selected datasets.

3. Materials and Methods

(e proposed deep learning and explainable AI-based
framework for COVID-19 classification is presented in this
section. Figure 2 illustrates the overall architecture of the
proposed methodology for COVID-19 classification. Ini-
tially, a hybrid contrast enhancement technique is proposed
and applied to the original images that are later utilized for
the training of two modified deep learning models. (e deep
transfer learning concept is used for the training of pre-
trained modified models that are later employed for feature
extraction. Features of both deep models are fused using
improved canonical correlation analysis that is further op-
timized using a hybrid algorithm named Whale-Elephant
Herding. (rough this algorithm, the best features are se-
lected and classified using an extreme learning machine
(ELM). (e description of each substep is given as follows.

3.1. Hybrid Contrast Stretching. (e purpose of the contrast
stretching technique is to improve the visibility of an image
in terms of pixel refinement. In this work, we proposed a
hybrid contrast stretching technique based on the fusion of
three filtering methods such as Weiner filter, global infor-
mation improvement, and box filtering.(e purpose of these
methods is to get a clearer image for better feature extraction
in the next step. Consider that we have a database denoted by
Δ having n numbers of images, fi(u, v) represents the image
in the database, and 􏽥fi(u, v) denotes the final resultant
image, respectively. (e Weiner filter is initially applied to
each image. (is filtering technique is ideal in terms of the
mean square method as it helps to minimalize mean square
error in inverse filtering and noise smoothing process. After
taking the input image, blurring operation and deconvo-
lution are performed by using a low pass filter and inverse
filtering, respectively, which finally results in the removal of
noise using compression operation.
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,

J(a, b) �
H(a, b)fx(a, b)

|H(a, b)|
2
fx(a, b) + fy(a, b)

,

(1)

where H(a, b) represents the Fourier transform of the point
spread function, fx(a, b) represents the power spectrum of
the pixel process obtained by taking the Fourier transform of
the pixels autocorrelation, and fy(a, b) denotes the power
spectrum of the noise process obtained by taking the Fourier
transform of the noise autocorrelation. (e global infor-
mation of resultant J(a, b) is increased by employing the
following equation:

g(u, v) � J(a, b) − (J(a, b)°b), (2)

where g(u, v) denotes the global pixels enhanced image, b is
an increasing variable, and value is computed using

b � MAX(J(a, b)). (3)

After that, a box filter is applied to the resultant image
g(u, v). In box filtering, the average of neighboring pixels is
used to filter noise from images. Mathematically, it is for-
mulated as follows:

Bx,y �
􏽐

x+J
i�x− J􏽐

Y+K
j�y− K 􏽥gij

(2J + 1)(2K + 1)
, (4)

where gij denotes the 8–16-bit sample of g(u, v) image and 􏽥g

is the box filter that provides sample Bx,y of g(u, v) image.
(e box constant HJK

jk within (2J + 1)(2K + 1) is given as
follows:

H
JK
jk �

1
(2J + 1)(2K + 1)

, (5)

where Bx,y is the final enhanced image, and visually, it is
illustrated in Figure 3. (ese resultant images are further
utilized for the training of selected deep learning models.

3.2. Deep Learning Models

3.2.1. EfficientNet. EfficientNet is a convolutional network
(ConvNet) scaling technique that utilizes the simple yet
potent compound scaling method. EfficientNet enables us to
scale up a baseline ConvNet to any desired level of com-
putational resources while sustaining the original model
efficiency [47, 48]. It is based on the key principle of uni-
formly scaling the network depth, width, and resolution with
a set of constant scaling factors. To understand this, let us
assume that we want to increase the resource constraint of
our network with a factor of 2x. To achieve this increase, we
require to scale our network depth by μx, width by ωx, and
resolution by σx, where μ, ω, and σ are constant scaling
factors determined by searching the original model with a
small grid. It uses a compound coefficient ε to uniformly
scale the network resources in all three dimensions char-
acterized by these formulations as depth: D� με, width:W�

ωε, and resolution: R� σε. EfficientNet consists of a series of
efficient family models called EfficientNet-B0 to Effi-
cientNet-B7, and each contains a different set of parameters
and FLOPS ranging from 5.3M to 66M and 0.39 B to 37B,
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respectively. (e accuracy and effectiveness of EfficientNet
are better than all existing CNN models such as AlexNet,
ImageNet, GoogleNet, and MobileNetV2 [41].

3.2.2. VGG16. VGG16 deep model was originally trained on
the ImageNet dataset and gave an excellent performance for
both large and smaller datasets. (is network includes 16
convolutional layers and has a small receptive field of 3 × 3.
It contains 5 max-pooling layers of size 2 × 2 and three fully
connected layers and one Softmax classifier. (e activation
layer named ReLU is applied to all hidden layers.

3.2.3. Modification. In this work, we modified both deep
learning models in terms of layer removal and the addition
of new layers. In the EfficientNet deep model, the last FC,
classification, and Softmax layer are removed, and three new
layers, New-FC, New-Classification, and New-Softmax, are
added. After the addition of new layers, hyperparameters are
initialized: learning rate is 0.002, minibatch size is 32,
momentum is 0.7, dropout factor is 0.5, and training
function is Adam. After that, train this modifiedmodel using
a transfer learning concept and obtain a new model, whereas
the freezing layers considered only 20% (starting at 20%).
(e process of transfer learning is illustrated in Figure 4.(e
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Figure 3: Sample images of the proposed contrast enhancement technique.
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modified trained model was considered for EfficientNet
feature extraction. Similarly, in VGG16, the last FC layer
(FC8), classification layer, and Softmax layer were removed,
and three new layers, New-FC8, New-ClassificationOut, and
New-SoftVgg, were added. (en, this modified model was
trained using the transfer learning process, whereas the same
hyperparameters were considered (as mentioned above) for
a training purpose. In the last, a newmodified VGG16model
is obtained, and deep features are extracted.

3.2.4. Features Extraction. Features are extracted from the
modified trained EfficientNet and VGG16 deep models. For
modified EfficientNet, activation is applied to the global
average pooling layer, and features of dimensional
N × 1280are extracted. Similarly, features of VGG16 deep
models are extracted from FC layer 7, and a feature vector of
dimension N × 4096 is obtained. (e extracted feature
vectors are fused in one matrix for better information and
improved accuracy.

3.3. Improved DCCA-Based Features Fusion. Features are
fused using an improved discriminant canonical correlation
analysis-based technique, and a new improved feature vector
of dimension N × 2864 is obtained. In this approach, ini-
tially, mean padding is performed, and after that, DCCA
formulation is applied to get a feature vector. (e major
improvement in DCCA is the mean padding, and a
threshold function for important feature addition in the
fusion process is defined. (e DCCA [34] belongs to the
category of dimensionality reduction methods that work on
the basis of supervised learning that examines the linear
relationships among a pair of sets of random vectors.
ui, vi􏼈 􏼉

n
i�1ϵRp × Rq represents n pairs of samples that are

normalized based on mean computation, where c represents
the class number. DCCA often encounters optimization
problems that can be solved as follows:

max ρ(α, β) � αTUAVβ,

s.t.
αT

Suuα � 1,

βT
Svvβ � 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

where Z� diag (1n1×n1
, 1n2×n2

, . . . , 1n×nc
) and nk represents the

total amount of training set of a specified class k, where
􏽐

c
k�1 nk � n. To resolve the optimization problem, the

generalized eigenvalue problem is used on the basis
Lagrange multiplier theorem:

0 UAV

(UAV)
T 0

􏼢 􏼣
α

β
􏼢 􏼣 � λ

Suu 0

0 Svv

􏼢 􏼣
α

β
􏼢 􏼣, (7)

where λ stands for Lagrange multiplier. (e resultant fused
vector obtained based on equation (7) is passed to a
threshold function to get the improved vector.

Vector �
Fused(λ) for feat≥ 0.5,

Drop,Elsewhere.
􏼨 (8)

3.4. Whale-Elephant Herding Optimization. Features opti-
mization is the process of obtaining the best features and
passed to the machine learning techniques for better clas-
sification accuracy. Moreover, the optimization step’s main
aim is to reduce the computational time of the entire de-
veloped framework. In this work, we proposed a Hybrid
Whale-Elephant Herding (HWEH) algorithm for best fea-
ture selection. (e proposed algorithm returned a feature
vector of dimension N × 824.

(e original whale optimization algorithm is introduced
byMirjalili and Lewis [42].(emain concept was derived by
observing the hunting trait of the humpback whales. Nat-
urally, the whales create bubbles while swimming spirally in
the direction of the prey. Based on its metaheuristic char-
acteristic, WOA has two distinct stages: (i) exploitation and
(ii) exploration. (e simulation of the exploitation stage is
carried out by surrounding the prey spirally and moving in
its direction.

E � |B. Y
→
∗ (i) − Y

→
(t)|,

Y
→

(i + 1) � Y
→
∗ (i) − X

→
· E,

(9)

where i represents current iteration and Y and Y∗ indicate
the current and best whales, that is, solution, respectively.
(e coefficient vectors X

→
and B

→
are defined as follows:

X
→

� 2 x
→

· r
→

− x
→

,

B
→

� 2 · r
→

.
(10)

(e value of x
→ decreases from 2 to 0 in a linear manner

along with iterations and r
→ indicates a random vector in the

range of [0,1].

x � 2 1 −
i

I
􏼒 􏼓. (11)

(e spiral-shaped path is modeled by the spiral rule as
follows:

Y
→

(i + 1) � E′ · e
bl

· cos(2πl) + Y
→
∗ (i),

E′ � |Β · Y
→
∗ (i) − Y

→
(i)|,

(12)

where E′ indicates the distance between the ith search agent
and Y

→
∗ (i) and b is a content where l is a random number in

the range of [− 1,1]. (e selection between the shrinking
encircling and the spiral shape path is assessed by the
probability of 40% instead of 50%.

Y
→

(i + 1) �
Shrinking Encircling using Eq.(12)p < 0.4,

Sprial Shaped Path using Eq.(16)p ≥ .5,
􏼨

(13)

where p is any random number in a range of [0, 1]. For the
exploration phase of WOA, the positions of the current
whales are modified by randomly selecting a search agent
from the population in spite of modifying their positions
according to the best solution to reduce the chances of the
solution getting trapped in local optima. (is approach is
represented mathematically as follows:
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Ε � ΒY
→

rand(i) − Y
→

(i)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

Y
→

(i + 1) � Y
→

rand(i) − X
→

· Ε,
(14)

where Y
→

rand is a randomly selected search agent and X
→

represents a vector that is assigned any random value from
range [>− 1,<1]. (e output of equation (14) is considered as
the input of the Elephant Herding algorithm. (e Elephant
Herding Optimization (EHO) is an intelligent swarm-based
metaheuristic optimization algorithm that was proposed by
getting moved by the herding manner of the elephants [43].
(is algorithm works in three steps: (i) the flock of elephants
formed of a smaller group, also known as clans, where each
clan holds a definite amount of elephants; (ii) the female
elephant in each clan, also called matriarch, acts as a leader
who is responsible for commanding the whole clan and all
other elephants move together under her governance, and
(iii) in each generation, a defined number of elephants with
poor performance are required to leave the clan. Mathe-
matically, this process is defined as follows.

3.4.1. Clan Updating Operator. As stated prior, each flock of
elephants comprises a smaller group, also known as clans,
where each clan holds a definite amount of elephants. All
elephants in a clan move together under the leadership of a
female elephant, also called matriarch Ykbest,c, which influ-
ences their next position formulated as follows:

Y
a+1
m,c � Y

a
m,c + α × Y

a
kbest,c − Y

a
m,c􏼐 􏼑 × r, (15)

where Ya+1
m,c and Ya

m,c represent the newly updated position
and old position of mth number of elephants (m� 1, 2, 3, 4,
. . ., e) and cth (c� 1, 2, 3, 4, . . ., n) number of clans, re-
spectively. (e impact of the matriarch who is the fittest
female elephant individual of the clan (Ykbest, c) on existing
elephant Ym,c is determined by the scaling factor α ∈ [0,1]; a
uniform distribution has been used, which is represented by
r, also known as a random number, r ∈ [0,1].(e value of the
matriarch in the respective clan cannot be updated by means
of an equation such as Ya

m,c � Ya
kbest,c. (e updation of the

fittest one is formulated as follows:

Y
a+1
kbest,c � β × Y

a
center,c, (16)

where scaling factor is represented by β and β∈ [0,1] defines
the impact of Ya

center,c on Ya+1
kbest,c. Ya

center,c represents clan
center, and Ya+1

kbest,c represents clan leader’s new position.
Mathematically, the clan center value is computed by

Ycenter,c �
1
e

× 􏽘
e

z�1
Ym,c. (17)

3.4.2. Separating Operator. In this operation, the replace-
ment of the worst individuals is performed by using

Ykworst,c � YMIN YMAX − YMIN + 1( 􏼁 × r, (18)

where YMIN and YMAX denote the lower bound and upper
bound, respectively, of the individual position of the elephant.

Ykworst,c represents the worst individual elephant of the cth
clan, which is to be swapped by the arbitrarily initialized
individual, and r embodies uniform distribution in the range
of [0, 1] where r ∈ [0, 1]. In Elephant Herding Optimization,
the clan updating operation does not allow the clan head to
explore outside the clan as their position is restructured
according to the clan center.(e neural network is utilized in
thiswork forfitness function, andfitness is computedbasedon
the mean square error rate.(e best resultant vector is passed
to the extreme learning machine (ELM) classifier for final
results. (e proposed labeled results are shown in Figure 5.

3.5. Grad-CAM Visualization. Gradient weighted Class
Activation Mapping (Grand-CAM) [44] is a class-classifi-
cation localizationmethod that is used in with various CNN-
based models without architectural changes for the gener-
ation of visual description. In CNN modeling, the con-
volutional features hold spatial information that is lost in a
fully connected layer. So, the last convolutional layers are
expected to have the best conciliation between high-level
semantics and exhaustive spatial information. It uses gra-
dient information of the last convolutional layer of the CNN
model to recognize the position of each neuron for making a
decision. In this work, we utilized the modified pretrained
models and performed Grad-CAM visualization.

To get class-classification localization map Grad-CAM
GC
Grad− CAM ∈ Nm×n of width m and height n for any class C,

firstly, gradient of the score for classC is computed, and xC is
used before Softmax layer, according to feature maps Fl of a
convolutional layer, that is, zxC/zFl. (ese gradients are
global average-pooled to get the neuron weights βC

l .

βC
l �

1
Y

􏽘

n

a

􏽐
n

b

zx
C

zF
l
. (19)

(ese weights represented by βC
l signify a partial line-

arization of downstream deep network from F and get the
significance of feature map l for a target class C. Generally,
there is no need for xC for class score but can be any dif-
ferentiable activation. Grad-CAM heatmap is a weighted
combination of advancing activation features patterns,
which is followed by using ReLU to compute

G
C
Grad− CAM � ReLu 􏽘

n

l

βC
l F

l⎛⎝ ⎞⎠. (20)

(is obtained outcomes in an abrasive heatmap, which is
normalized for visualization [46]. Visually, it is shown in
Figure 6.

4. Results and Analysis

(e experimental process of the proposed framework is
presented in this section. (e proposed framework is
evaluated on three publicly Kaggle COVID datasets such as
COVID-19 Radiography dataset (https://www.kaggle.com/
tawsifurrahman/covid19-radiography-database), Covid-GAN
and Covid-Net mini Chest X-ray dataset (https://www.kaggle.
com/yash612/covidnet-mini-and-gan-enerated-chest-xray),
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Figure 6: Grad-CAM-based visualization.
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and Chest X-ray dataset (https://www.kaggle.com/jtiptj/chest-
xray-pneumoniacovid19tuberculosis), respectively. COVID-19
Radiography database consists of positive COVID-19 chest
X-ray images along with viral pneumonia, lung opacity, and
normal classes.(isdataset contains 3616 imagesofCOVID-19,
6012 lung opacity images, 10192 normal images, and 1345 viral
pneumonia images. Covid-GAN and Covid-Net mini Chest
X-ray dataset consists of 461 COVID-19 images, 1575 normal
images, and 4481 pneumonia images. Chest X-ray dataset
consists of four types of categories such as 566 COVID-19
images, 1575 normal images, 4265 pneumonia images, and 491
tuberculosis images, respectively. (e summary of each dataset
is given in Table 1. Each dataset is divided into a ratio of 50 : 50
for training data and testing data.(e10-fold cross-validation is
used for each set. Several classifiers are selected for the classi-
fication process to compare the results with the main classifier
such as ELM. (e performance of each classifier is a measure
based on the average accuracy and computational time. (e
entire framework is simulated on MATLAB2021b using Per-
sonal Workstation with 16GB RAM and 8GB graphics card.

4.1. Detailed Results. (e proposed framework is tested in
several middle steps such as (i) EfficientNet deep features
extraction (EffNet); (ii) VGG19 deep features (VGG16); (iii)
selected EfficientNet deep features (SL EffNet); (iv) selected
VGG19 deep features (SL VGG16); and (v) fusion of selected
features using DCCA-based approach (Proposed). Table 2
presents the classification results of the COVID-19 Radiog-
raphy database on all middle steps. ELM classifier gives better
results than Softmax, Näıve Bayes, and MCSVM. For ELM
classifier, achieved accuracy on EffNet is 92.8%, VGG16 is
91.6%, SL EffNet is 95.5%, SL VGG16 is 95.2%, and proposed
framework is 99.1%.(is achieved an accuracy of the proposed
framework that can be further verified by a confusion matrix,
illustrated in Figure 7. (e second highest accuracy is obtained
by the Softmax classifier of 97.6% for the proposed framework.
Furthermore, the computational time of each classifier for all
middle steps is also noted, and it is observed that the ELM
execution time is minimum than the rest of the classifiers.
Moreover, it is also perceived that the selected feature execution
time is almost half of the originally extracted deep features.

Table 1: Summary of selected datasets for the evaluation process.

Dataset Classes Images Total images

COVID-19 Radiography database

COVID-19 3,616

1,345Lung opacity 6,012
Normal 10,192

Viral pneumonia 21,165

Covid-GAN and Covid-Net mini Chest X-ray
Corona 461

4,481Normal 1,575
Pneumonia 6,517

Chest X-ray (pneumonia, COVID-19, and tuberculosis)

COVID-19 566

6,897Normal 1,575
Pneumonia 4,265
Tuberculosis 491

Table 2: Proposed framework COVID-19 classification results on COVID-19 Radiography database.

Classifiers
Features Measures

EffNet VGG16 SL EffNet SL VGG16 Proposed Accuracy (%) Time (%)

Softmax

✓ 90.1 122.8954
✓ 90.6 151.4584

✓ 95.2 78.5363
✓ 95.0 91.6678

✓ 97.6 70.7674

Naı̈ve Bayes

✓ 88.4 131.4453
✓ 88.9 162.5654

✓ 93.5 87.3422
✓ 93.8 97.0864

✓ 95.1 86.2355

MCSVM

✓ 91.0 126.4433
✓ 91.5 149.5465

✓ 93.9 81.6743
✓ 94.5 97.7682

✓ 95.9 76.3476

ELM

✓ 92.8 114.6752
✓ 88.5 136.8684

✓ 95.5 72.9005
✓ 95.2 86.0454

✓ 99.1 65.6294
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Table 3 presents the proposed framework classification
results for Covid-GAN and Covid-Net mini Chest X-ray
dataset. In this table, results are computed for all middle
steps and compared with the entire proposed framework in
terms of accuracy and time. ELM classifier gives better

results of 93.3, 89.2, 95.8, 95.9, and 98.2% for EffNet,
VGG16, SL EffNet, SL VGG16, and the proposed frame-
work. (e accuracy of the proposed framework that is
98.2% is further verified by a confusion matrix, given in
Figure 8. In this figure, it is described that the COVID-19

Covid19

Covid19

Normal

Normal

Lung Opacity

Lung Opacity

Viral
Pneumonia

Viral Pneumonia

TPR FNR

0.8%

1.6%

0.8%

0.5%99.5%99.5% 0.5%

0.6%

0.6%0.6%

0.2%

0.8%

0.4%

99.2%99.2%

98.4%98.4%

99.2%99.2%

Figure 7: Confusion matrix of ELM classifier on COVID-19 Radiography database using the proposed framework.

Table 3: Proposed framework COVID-19 classification results on Covid-GAN and Covid-Net mini Chest X-ray dataset.

Classifiers
Features Measures

EffNet VGG16 SL EffNet SL VGG16 Proposed Accuracy (%) Time (%)

Softmax

✓ 91.6 91.4534
✓ 89.4 94.3423

✓ 94.8 62.2322
✓ 93.5 64.5454

✓ 97.2 47.6654

Naı̈ve Bayes

✓ 90.1 85.3843
✓ 87.5 78.6434

✓ 92.2 51.5444
✓ 90.9 49.9845

✓ 94.6 41.9905

MCSVM

✓ 90.6 82.5645
✓ 90.1 78.9964

✓ 94.2 59.4354
✓ 92.9 64.8634

✓ 96.9 48.6654

ELM

✓ 93.3 71.5535
✓ 89.2 69.6543

✓ 95.8 52.5454
✓ 95.9 47.6543

✓ 98.2 39.6652

Covid19

Covid19

Normal

Normal

Pneumonia

TPR FNR

1.7%

1.5% 2.5%

1.4%0.4% 1%

1%

1%0.7%

97.5%

98.6%

97.5%

98.3%98.3%

98.6%

Figure 8: Confusion matrix of ELM classifier on Covid-GAN and Covid-Net mini Chest X-ray dataset using the proposed framework.
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class has the highest prediction rate of 98.6%. (e classi-
fication accuracy of ELM is further compared with some
other state-of-the-art classifiers such as Softmax, Naı̈ve
Bayes, and MCSVM. For these three classifiers, the best
obtained accuracy is 97.2, 94.6, and 96.9%, respectively.(e
second highest accuracy is obtained by the Softmax clas-
sifier of 97.2% for the proposed framework. Furthermore,
the computational time of each classifier for all middle steps
and the entire proposed framework is also noted, and it is
perceived that the execution time of ELM is less than the
other listed classifiers.

Table 4 describes the proposed framework classification
results for the Chest X-ray dataset. In this table, results are
computed for all middle steps and compared with the entire
proposed framework in terms of accuracy and time. ELM
classifier gives better results of 87.8, 84.1, 93.4, 92.8, and

96.7%, respectively, for EffNet, VGG16, SL EffNet, SL
VGG16, and the proposed framework. (e obtained accu-
racy of the proposed framework is 96.7% that is further
verified by a confusion matrix, as presented in Figure 9. In
this figure, it is described that the correct prediction rate of
COVID-19 is 95.8%, whereas in other classes, such as
normal, pneumonia, and tuberculosis, prediction rates are
97.5, 98.0, and 96.0%, respectively. (e classification accu-
racy of ELM is further compared with some other state-of-
the-art classifiers such as Softmax, Näıve Bayes, and
MCSVM. For these three classifiers, the best obtained ac-
curacy is 95.8, 93.4, and 94.8%, respectively. Based on these
values, it is observed that the Softmax classifier has the
second best accuracy after ELM. Furthermore, the com-
putational time of each classifier for all middle steps and the
entire proposed framework is also noted, and it is observed

Table 4: Proposed framework COVID-19 classification results on Chest X-ray dataset.

Classifiers
Features Measures

EffNet VGG19 SL EffNet SL VGG19 Proposed Accuracy (%) Time (%)

Softmax

✓ 86.3 94.8453
✓ 85.4 96.0985

✓ 91.6 69.3345
✓ 90.2 69.5884

✓ 95.8 53.9484

Naı̈ve Bayes

✓ 84.2 89.2322
✓ 85.7 85.9505

✓ 88.3 57.2754
✓ 89.6 62.9576

✓ 93.4 59.2328

MCSVM

✓ 85.6 88.5445
✓ 85.0 86.6544

✓ 89.9 62.8432
✓ 90.0 67.4454

✓ 94.8 53.4935

ELM

✓ 87.8 74.5563
✓ 84.1 71.0054

✓ 93.4 54.5374
✓ 92.8 51.0588

✓ 96.7 43.2084
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Figure 9: Confusion matrix of ELM classifier on Chest X-ray dataset using the proposed framework.
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that ELM classifier execution time is minimum compared to
the other listed classification methods.

4.2. Analysis. A brief analysis of the proposed framework of
COVID-19 classification using light weight deep learning
models and explainable AI is presented here. (e proposed
framework was tested on three publicly available datasets
and achieved better accuracy, as presented in Tables 2–4.(e
obtained accuracy of the ELM classifier for each dataset is
further verified by a confusion matrix, as illustrated in
Figures 7–9. (e computational time of each classifier for all
middle steps is also given in Tables 2–4. Based on the time
and accuracy, it is shown that the ELM classifier performed
better for the proposed framework. To further analyze the
performance of lightweight deep models, a comprehensive
comparison is conducted among several neural nets; ac-
curacy is plotted in Figures 10–12. In Figure 10, the selected
neural nets are tested on the COVID-19 Radiography da-
tabase and achieve the highest accuracy of 92.8% on the
EfficientNet model, whereas on the other models such as

VGG16, VGG19, ShuffleNet, AlexNet, ResNet50,
ResNet101, and InceptionV3, they obtained accuracies of
88.5, 91.6, 86.2, 87.8, 88, 90.1, and 91.2%, respectively. In
Figure 11, the best achieved accuracy of 93.3% was for the
EfficientNet deep model, whereas the rest of the models
attained accuracies of 89.2, 93, 87.6, 88.5, 89.1, 92.4, and
92.8%, respectively. Similarly, In Figure 10, the selected
neural nets are tested on Chest X-ray datasets, and Effi-
cientNet attained the highest accuracy of 87.8%. Based on
these accuracies, EfficientNet and VGG16 deep models are
selected in this work for deep feature extraction.

5. Conclusions

COVID-19 has been a hot research topic in recent years due
to a large number of deaths worldwide. Many computer-
based techniques have been introduced by researchers, but
there is still much room for improvement in terms of ac-
curacy and computational time. We proposed a deep
learning and explainable AI-based framework for COVID-
19 diagnosis and classification using chest X-ray images in
this paper. (e proposed framework includes several steps,
from contrast enhancement to ELM-based classification.
(e Grad-CAM-based visualization is used to highlight the
image’s hot spots. (ree datasets were used in the experi-
ment, and the results were significantly better than the
middle steps and a few other neural nets. Based on the
findings, it is concluded that the contrast enhancement and
feature optimization techniques improve the proposed
framework’s accuracy. Furthermore, the optimization
method reduced classification execution time. (e static
threshold value of the optimization algorithm is the work’s
limitation. More datasets will be considered for the exper-
imental process in the future, and the selection process will
be automated (threshold value).

Data Availability

(e proposed framework is evaluated on three publically
Kaggle COVID datasets such as COVID-19 Radiography
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dataset (https://www.kaggle.com/tawsifurrahman/covid19-
radiography-database), Covid-GAN and Covid-Net mini
Chest X-ray dataset (https://www.kaggle.com/yash612/
covidnet-mini-and-gan-enerated-chest-xray), and Chest
X-ray dataset (https://www.kaggle.com/jtiptj/chest-xray-
pneumoniacovid19tuberculosis), respectively.
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