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�e traditional tra�c sign detection algorithm can not deal with the application scenarios such as intelligent transportation system
or advanced assisted driving environment, and it is di�cult to meet the application requirements in detection accuracy and
e�ciency. Focusing on the above problems, this paper proposes a tra�c sign detection algorithm based on Single Shot Multibox
Detector (SSD) combined with Receptive Field Module (RFM) and Path Aggregation Network (PAN). �e proposed algorithm is
abbreviated to SSD-RP.�e SSD-RP uses the RFM to improve the receptive �eld and semantics of the predicted feature maps, thus
improving the detection performance of small tra�c signs. At the same time, the path aggregation network is introduced to
integrate multiscale features, which makes the abstract semantic information and rich detailed information shared among
multiscale feature maps, enhances the discrimination ability of feature system, and improves the location and classi�cation
accuracy of tra�c signs. Following that, the spatial pyramid poolingmodule is used to pool the shallow features and integrate them
into the bottom-up information transmission path of the path aggregation network, thus continuing to supplement the �ne-
grained features for the feature system and further improve the detection performance. �e experimental results on GTSDB and
CCTSDB data sets show that SSD-RP has higher mean average precision (mAP) than traditional SSD algorithm and can better
detect small tra�c signs, which means that SSD-RP has higher detection precision. In addition, the experimental results also show
that, compared with the common object detection algorithms such as Faster R-CNN, RetinaNet, and YOLOv3, the SSD-RP
achieves a better balance between detection time and detection precision.

1. Introduction

With the rapid development of economy and people’s de-
mand for fast and convenient travel, the number of vehicles
keeps increasing, and the incidence of road tra�c jams and
tra�c accidents is increasing. Following that, the intelligent
tra�c system (ITS) has appeared [1]. As an important part of
ITS, tra�c sign detection provides road tra�c information,
so that drivers can make more reasonable driving decisions
based on it, and it is also conducive to ensuring driving safety
and reducing the incidence of tra�c accidents. However, the
actual road environment is changeable and complex, which
caused some great di�culties to the tra�c sign detection.
How to ensure the detection speed and accuracy of tra�c
sign detection algorithm has always been one of the hotspots
in the ITS.

In the early period of tra�c sign detection, the shape and
color are generally used to tra�c sign detection. However,
shape and color are easy to be interfered by the external
information, so it is di�cult to obtain the ideal detection
performance in the actual scenarios. Some more abstract
features are used to solve the detection problems of tra�c
sign along with emergence and continuous development of
machine learning. Compared with previous detection al-
gorithms, the detection accuracy has been improved. In
recent years, driven by deep learning, some new algorithms
gradually surpassed traditional algorithms in terms of tra�c
sign detection, as a special case of object detection has also
been deeply in¡uenced.

Traditional detection algorithm based on color: a tra�c
sign usually contains speci�c and own unique color and
shape information. For example, in China’s tra�c signs, blue
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represents indication, yellow represents danger, and red
represents prohibition. /e most common shapes of traffic
signs are usually square, triangle, and circle./erefore, in the
early stage, traffic sign detection is generally based on color
and shape information. Wang et al. [2] developed a system
that makes good use of color information, which can operate
accurately at high speed and under various weather con-
ditions and can identify all traffic signs from the online road
sign database. Wang et al. [3] put forward a method for red
bitmap based on edge information. /e recall rate of pro-
hibition signs and danger signs on GTSDB traffic sign data
set reaches 99% and 97%, respectively, and the accuracy
remains above 99%.

Traditional detection algorithm based on shape: because
the surface color of traffic signs may change, but the shape
remains unchanged, this can improve the detection per-
formance. Chen and Lu [4] proposed a traffic sign detection
technology by studying the application of support vector
regression (SVR) in discriminant detector learning. /is
method establishes a significance model, and good results
have been achieved. Aiming at the problems of various
weather conditions often encountered in the actual traffic
video acquisition, Chen et al. [5] put forward a distinctive
method for shape matching, which has strong robustness. In
Tang et al. [6], aiming at the serious problem of missing
detection of traffic signs due to color distortion, shape
distortion, and scale change, a multifeature cooperation
method is proposed. /is method calculates the color en-
hancement image from the traffic scene image, uses the
multithreshold segmentation method and the chain code
expression of the closed contour curvature histogram, in-
tegrates the color features and the normalized shape features
to form the feature vector of the region, and obtains the
detection results.

Traditional detection algorithm based on machine
learning: by designing more representative features and
using effective classifiers, machine learning algorithm has
achieved better results in traffic sign detection than image
processing. Ardianto et al. [7] used HOG and SVM to realize
the traffic sign detection system, and the accuracy reaches
90%. Liu et al. [8] mainly focused on the recognition of small
and medium-sized object in large scenes and proposed a
detection framework based on attention context area (AC-
RDF), which eliminated the gap between detection and
classification. For Liang et al. [9] to solve this problem of
surrounding environment interference in the road image in
front of the vehicle collected by the vehicle camera, an
adaptive recognition method of road traffic signs based on
double edge Hough detection of lane line and primary and
secondary weighting method is proposed. /e algorithm
performs well in the case of multilane coexistence and
environmental interference, without human intervention,
and has good adaptability.

Traffic sign detection algorithm based on deep learning:
with the development of related theories of deep learning,
scholars have applied the deep learning algorithm with
excellent performance to the traffic sign detection task and
achieved good detection results. In 2015, Yang et al. [10]
published the CTSD, the first data set of traffic signs in

China, and proposed a fast traffic sign detection method,
which used CNN to carry out detailed classification of traffic
signs. /e performance of GTSDB and CTSD data sets was
similar to that of the most advanced detection methods at
the same time with a faster detection rate. In order to solve
the limitation of predefined traffic signs, Changzhen et al.
[11] used the regional proposal network and CNN model to
detect Chinese traffic signs in 2016. /e model can still
achieve more than 99% accuracy under the condition of real-
time detection. In the same year, Tsinghua University and
Tencent Lab jointly launched TT100K dataset [12] and
proposed an 8-layer CNN for this dataset, which achieved
91% recall rate and 88% accuracy rate. In 2018, Natarajan
et al. [13] proposed a low-complexity detection method
using the weighted combination of multiple groups of
parallel CNN networks, which achieved 99.59% accuracy on
the GTSRB data set and could identify traffic sign images
within 10ms.

Yawar et al. [14] proposed the CTF method to gather
semantic information in the network to improve the an-
tagonism of D-patch, strengthen the feature extraction
ability, and make the network more robust to the occlusion
problem. /e accuracy rate of GTSDB data set can reach
100%. /e performance on the Korean traffic sign data set
was 2.2% higher than before the improvement. Borui et al.
[15] proposed IoU-Net network to obtain more accurate
location detection boundary frames. /e network was used
to train intersection-over-Union (IoU) branches and extract
positioning confidence of each boundary frame, thus im-
proving positioning accuracy. It is also proposed that PrRol-
Pooling solves the problem of location information loss to a
certain extent during the whole operation of Rol Pooling in
Faster RCNN. In 2019, Li and Zengfu [16] used CNN, an
efficient and powerful classifier with an asymmetric kernel,
as a classifier to improve the classification effect under the
condition of reducing model parameters and computation.
/e accuracy of this algorithm on GTSRB data set was
99.66%. Since IoU value is always zero when the prediction
frame and the real frame do not overlap and cannot rep-
resent the distance between them, Rezatofighi et al. [17]
proposed Generalized Intersection-over-Union (GIoU) loss
function, which can improve the accuracy of 2%–14%.
Zhang et al. [18] proposed an traffic sign detection related
methods “DetReco” based on yolov3 and CRNN, which can
detect objects and texts in various scenes and detect and
recognize affine transformed or occluded texts. Tabernik and
Skocaj [19] proposed a detection model based on Mask
R-CNN and data enhancement technology based on set and
appearance distortion in 2020, which solved the problem of
large-scale and multitype traffic sign detection. Ayachi et al.
[20] established a traffic sign detection data set with 10500
images including 73 traffic sign categories by using Chinese
roads photographed under real environmental conditions.
/e improved deep learning algorithm achieves an average
accuracy of 84.22% on established data set. Liang et al. [21]
proposed a sparse R-CNN that integrates coordinate at-
tention block with ResNeSt, and better performance is
obtained. Ahmed [22] proposed a new network to enhance
traffic sign areas in images of complex environments and
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used CURE-TSD sets to evaluate the effectiveness of the
method, achieving 91.1% accuracy and 70.71% recall rate.

At present, most object detection algorithms adopt
multiscale prediction strategy. Shallow features predict small
objects, and deep features predict medium scale and large
objects. Although the shallow feature retains rich details, its
receptive field is small and is semantically weak, so it cannot
provide strong discrimination ability when detecting small
objects, and it is easy to cause the false detection of small
objects. Although deep features have enough receptive fields,
details are gradually lost in the downsampling process,
which is easy to cause small objects to miss detection. /is is
also one of the reasons for the poor performance of current
mainstream detection algorithms in small object detection
task. For example, in vehicle-mounted video, traffic signs
mostly appear in the form of small objects, so the direct
application of the current detection algorithm cannot
achieve better detection results. In addition, abstract se-
mantic information and rich detail information cannot be
shared among multiscale feature maps, and the detection
features cannot be displayed as much as possible, which is
not conducive to improving the detection performance.

Based on the above reasons, this paper studies traffic sign
detection based on traditional object detection algorithm
SSD. Traffic sign detection algorithm based on SSD com-
bined with Receptive Field Module (RFM) and PAN is
abbreviated. /e proposed algorithm is abbreviated to SSD-
RP. SSD-RP Receptive Field Module (RFM) is used to
improve the Receptive Field and semantics of prediction
feature maps, so as to improve the effect of small traffic sign
detection. By introducing Path Aggregation Network (PAN)
to integrate multiscale features, abstract semantic infor-
mation and rich detailed information can be shared among
multiscale feature maps, and the expressiveness of feature
system can be enhanced. After that, shallow features are
pooled by Spatial Pyramid Pooling (SPP) module and in-
tegrated into the bottom-up information transmission path
of PAN, further supplementing the feature system with fine-
grained features. Experiments on GTSDB and CCTSDB
datasets verify the validity of SSD-RP.

2. Traditional Single Shot Multibox Detector
(SSD) Algorithm

SSD is an end-to-end first-order object detection algorithm.
On the basis of retaining the good classification performance
of VGG16, using the natural pyramid structure of the CNN,
an additional feature layer is constructed to make it have
higher detection accuracy, which can be suitable for task
scenarios with high detection accuracy./e following briefly
describes the network structure, anchor box scheme, and
loss function of the SSD object detection algorithm.

2.1. Experimental Environment Setting and Evaluation Index.
As shown in Figure 1, the network structure of the SSD
algorithm consists of backbone network, regression, and
classification subnetworks.

/e dotted arrow in the Figure 1 indicates the omitted
convolution layer. /e backbone network uses an improved
VGG16 network. Compared with VGG16, SSD converts the
fully connected layers FC6 and FC7 of VGG16 into 3× 3
convolutional layers Conv6 and 1× 1 convolutional layers
Conv7, respectively, where the Conv6 layer is an Atrous
Convolution with an dilated rate of 6 and a convolution
kernel of 3× 3, and the Conv7 layer is a point-by-point
convolution with a convolution kernel of 1× 1. All dropout
layers and FC8 layers are removed, and eight additional
convolution layers such as Conv8_1 and Conv8_2 are added
to obtain feature maps of more scales. Among them,
Conv8_1 is a 1× 1 point-by-point convolution, and
Conv8_2 is a downsampling convolution with a stride of 2
and a convolution kernel of 3× 3. /e pooling settings of the
Pool5 layer are changed, the pooling window is changed
from 2 to 3, and the step size is changed from 2 to 1. /e
feature map passes through this pooling layer, and the input
resolution is preserved. /e Atrous algorithm was added to
obtain a denser score map with different receptive fields and
resolutions.

/e regression and classification subnetworks are used to
generate the position offset of the predicted frame and the
confidence level of the object in the frame. Both the re-
gression network and the classification network are com-
posed of standard convolutions with a convolution kernel of
3× 3, but the dimension of the output of the regression
subnetwork is n× 4, and the dimension of the classification
subnetwork output is n×m, where n represents anchor
boxes number generated by an anchor point, and m rep-
resents the number of categories prediction network.

2.2. Anchor Box Scheme. /e SSD algorithm uses multiscale
feature maps for prediction, making it possible to predict on
different feature maps to improve detection accuracy, so
they are also assigned anchor boxes of different scales, so that
each feature map focuses on a specific scale object that is
detected. /e calculation of the anchor box reference size
assigned to the predicted feature map is shown in the fol-
lowing equation:

sk � smin +
smax − smin

m − 1
(k − 1), k ∈ [1, m]. (1)

Among them, smin and smax are the benchmark sizes of
the anchor boxes on the Conv4_3 and Conv11_2 feature
maps, and the SSD algorithm uses six predicted feature
maps, so m is 6. After the calculation of the above formula,
the reference sizes of the anchor boxes allocated to the six
predicted feature maps can be calculated in sequence. And
for each anchor box, we set five different aspect ratios
ar � 0.3, 0.5, 1.0, 2.0, 3.0{ }, to fit objects of different shapes.
For ar � 1.0, a new benchmark size sk

′ �
�����
sksk+1

√ has been
added. /e width and height of the anchor frame can be
calculated as follows:

w
a
k � sk

���
ar,

√

h
a
k � sk

��
ar

√
.

⎧⎨

⎩ (2)
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It is pointed out that the SSD algorithm only assigns
anchor boxes with 4 aspect ratios on the Conv4_3,
Conv10_2, and Conv11_2 feature maps.

2.3. Loss Function. /e detection task is composed of two
subtasks of localization and recognition./erefore, when the
SSD algorithm is used for object detection, the loss function
is usually composed of the weighted sum of the localization
loss and the confidence loss, as shown in the following
equation:

L(x, c, l, g) �
1
N

Lconf(x, c) + αLloc(x, l, g)(  , (3)

where N is positive samples number, and if N is 0, set the
loss to 0. α is the weight factor, which is used to adjust the
ratio between classification and localization losses, and the
default is 1. Among them, the confidence loss uses the cross-
entropy function as its classification loss function, and the
function definition is shown in the following equation:

Lconf(x, c) � − 
N

i ∈ Pos

x
p
ijlog c

p
i  − 

i∈Neg

log c
0
i , (4)

where i refers to the search box number, j refers to the real
box number, p refers to the category number, and p � 0
means background./e first half of the equation is the loss of
the sample matching the anchor box with the real box, that
is, the loss of classification as a certain category (excluding
the background), and the second half is the loss of the anchor
box where the sample does not match the real box; that is,
the category is loss of the background. x

p

ij indicates whether
the predicted box i matches the real box j with respect to the
category p, and it is 1 when it matches, and 0 when it does
not match. Both positive samples and negative samples
participate in the calculation of the classification loss
function.

/e confidence score c
p
i is generated by Softmax, and its

definition is shown in the following equation:

c
p
i �

exp c
p
i 

p exp c
p

i 
. (5)

/e positioning loss function of the SSD algorithm is
shown in the following equation:

Lloc(x, l, g) � 
N

i ∈ Pos



m∈ cx,cy,w,h{ }

x
k
ijsmoothL1 l

m
i − g

m
j . (6)

Among them, the function smoothL1 is defined as shown
in the following equation:

smoothL1 �
0.5x

2
, |x|< 1,

|x| − 0.5, |x|≥ 1.

⎧⎨

⎩ (7)

Among them, lmi represents the position change of the
anchor box predicted by the network, and gm

j represents the
position change of the real box relative to the matched
anchor box. It is seen that only positive samples participate
in the calculation of the positioning loss function.

3. Traffic Sign Detection Based on SSD
Combined with RFM and PAN

3.1. Receptive Field Module (RFM). /e receptive field is the
area where the feature points in the feature map are mapped
back to the input image, and it reflects the amount of original
image information required to calculate the current feature.
/e improvement of the receptive field can introduce
context information, and through the comparison of the
previous and background information, the model’s ability to
distinguish the object can be enhanced. Based on this, this
paper designs a new Receptive Field Module (RFM). /e
topology of RFM is shown in Figure 2. /e structural design
of this module is inspired by the Inception module in
GoogLeNet [23], which adopts a parallel branch structure
and combines Atrous Convolution to make each branch
have a different receptive field. At the end of the module, the

Conv6

19

19

1024

Conv7

19

19

1024

Conv8-2

10

10

512

Conv9-2

5

5

256

Conv4-3

38

38

512
3

256

Conv10-2
3

1

1

256

Conv11-2

Dectectiom

No Maximum Suppression

input image

VGG16
through Conv5-3 layer Extra Feature layer

Figure 1: Network topology diagram of SSD algorithm.
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outputs of different branches are spliced in the channel
dimension, and the spliced feature map can express at
multiple scales. Finally, the residual connection operation is
used to enhance the information flow of the module.

As can be seen from Figure 2, the RFM topology has four
branches: the top branch is named branch I, and the rest are
analogous. In the four branches, the input feature maps are
first subjected to a 1 x 1 point-by-point convolution, re-
ducing channels number of the feature map to 1/4 of the
input. Branch I is equipped with 3 x 3 standard convolutions.
Branch II is equipped with a 1 x 3 standard convolution and
an Atrous Convolution with a dilated rate of 3, the con-
volution kernel size is 3 x 3, and the padding is 3. Branch III
is equipped with a 3 x 1 standard convolution and an Atrous
Convolution with a dilated rate of 3, the convolution kernel
size is 3 x 3, and the padding is 3. Branch IV is equipped with
a 3 x 3 standard convolution and an Atrous Convolution
with a dilated rate of 5, the convolution kernel size is 3 x 3,
and the padding is 5. At the end of the RFM module, the
outputs of the four branches are concatenated in the channel
dimension, and then 1 x 1 point-wise convolution is used for
interchannel information fusion. Finally, the input of the
RFMmodule is shortcut connected with the fused features to
enhance the information flow of the module. Each branch in
RFM has a different receptive field because it uses different
sizes convolution kernels and Atrous Convolutions with
different dilated rates.

3.2. Path Aggregation Network (PAN). Generally speaking,
shallow features are closer to the input image and retain
more detailed information./e deep features are mapped by
multiple convolutional layers and have more semantic in-
formation. As a result, the features of different layers can be
fused to improve their expressive ability. Feature Pyramid
Network (FPN) is one of the most commonly used feature
fusion methods at present. /e network uses horizontal
connections and top-down connections to pass down deep
features with strong semantics and fuse them with shallow
features. /is fusion method enables strong semantic in-
formation to be shared among feature maps of different
scales, which can effectively improve the semantics and
receptive fields of shallow features. However, the deep
features lack detailed information, and simple upsampling
operations cannot recover the details well. In view of the
above shortcomings, in order to better perform feature

fusion, this paper introduces path aggregation network
(PAN), which supplements detailed information for deep
features by propagating the response of shallow features.

PAN adds a bottom-up information transmission path
on the FPN, and its topology is shown in Figure 3. In the top-
down information transfer path, the predictive feature map
generated by the backbone network is first selected as the
input of the FPN. /en, point-by-point convolution is used
to change the channel dimension of the input feature map,
so that the feature maps of different scales are consistent in
the channel dimension for feature fusion. /en, the deep
feature map doubles its resolution through an upsampling
operation to make it consistent with the shallow feature map
resolution, which can also be implemented using transposed
convolutions. Finally, the feature fusion is realized by adding
the deep feature map with the same number of channels and
the same resolution to the shallow feature map element by
element. In the bottom-up information transfer path, the
output of the FPN serves as the input of the PAN. /e
resolution of the input feature map is first halved by
downsampling convolution with stride 2 to make it con-
sistent with the resolution of the deep feature map; after that,
the shallow and deep features are fused by element-wise
addition./e fused features have both the detail information
of the shallow features and the semantic information of the
deep features, which can improve the positioning accuracy
and classification accuracy.

3.3. Spatial Pyramid Pooling (SPP). Inspired by the upward
propagation of shallow feature responses from the PAN
structure, it is hoped to obtain more fine-grained features to
participate in the bottom-up information transfer to further
enhance the details of the entire feature system. /erefore,
this paper uses spatial pyramid pooling (SPP) for the shallow
feature map. Different from the SPP proposed by He et al.
[24], the topology of the SPP is shown in Figure 4. /e main
purpose is to downsample the resolution of the feature map
to facilitate feature fusion with the deep feature map.

As shown in Figure 4, the SPP designed in this paper also
adopts the structure design of parallel branches. Except
branch I that uses standard convolution with stride 2, the
remaining three branches use the maximum pooling oper-
ation with stride 2. /e convolution kernel size is set to 3 x 3,
and the pooling window is set to 5, 9, and 13, respectively.
After the structure is designed in this way, the four branches
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have receptive field sizes of 3, 5, 9, and 13, respectively. While
downsampling feature maps, multiscale spatial information
can also be obtained. At the end of the structure, the outputs
of the four branches are spliced together in the channel
dimension, followed by point-by-point convolution to re-
duce the dimension and perform information fusion between
channels, and the fused features are more robust.

3.4.2eGeneral Network Structure of SSD-RP. For the above
improvement strategy, this paper proposes a traffic sign
detection algorithm based on SSD combined with RFM and
PAN (abbreviated as SSD-RP). /e general structure of the
algorithm is shown in Figure 5.

/e SSD-RP algorithm uses four predictive feature maps
to detect traffic signs, so it only needs to keep the four
convolutional layers in the original backbone network. /e
dotted arrow in the Figure 5 indicates the omitted convo-
lution layer. SSD-RP first inputs the first-layer prediction
feature map Conv3_3 into RFM. /e module adopts the
structure design of parallel branches, and each branch is
equipped with convolution operations of different scales and
different dilated rates, which can perform multiscale feature
learning and effectively increase receptive field and se-
mantics of input features. After that, the outputs of the RFM
and the other three selected predictive feature maps are
input into the PAN, which contains two information
transfer paths, top-down and bottom-up. In the former path,
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deep features are passed down to provide semantic guidance
for shallow features. In the latter path, shallow features are
passed up to supplement detailed information for deep
features. /e fused features have both abstract semantic
information and rich detailed information, which is bene-
ficial to improve the positioning accuracy and classification
accuracy. At the same time, the SPP module is used to pool
the Conv2_2 feature map. /e pooled output has the same
resolution as the first-layer feature map in the PAN, which is
easy to integrate into the bottom-up information trans-
mission path of the PAN and further supplement the feature
system with fine-grained feature. Finally, the output of pan is
input into the prediction layer to generate the prediction
box, and then the NMS operation is followed to filter out the
prediction box with local regional redundancy to obtain the
final detection result.

4. Traffic Sign Detection Experiments and
Analysis of Results

4.1. Experimental Data. /e Institute for Neural Compu-
tation in Germany has published a real-life Germany Traffic
Sign Detection Benchmark GTSDB. /is dataset collects
road scenes from more than 60 cities in Germany, and the
environment involves different moments, weather condi-
tions, and seasons. /e GTSDB dataset contains 900 images
of street scenes in their natural environment. Among them,
600 images will be used as training set data, and the rest are
divided into the test set. /e resolution of each image is
1360 x 800 pixels, and 0 to 6 traffic signs are contained in
each image. GTSDB dataset divides traffic signs into three
main categories based on color and shape, namely, circular
indication signs on a blue background, triangular danger
signs with a red border on a white background, and circular
prohibition signs with a red border on a white background.

CSUST Chinese Traffic Sign Detection Benchmark
(CCTSDB) [25] was completed by Zhang Jianming’s team
from Hunan Key Laboratory of Intelligent Processing of
Integrated Transportation Big Data of Changsha University

of Science and Technology./e dataset has more than 15,000
images of street scenes in their natural environment, with
resolutions between 600× 900 and 1024 x 768 pixels./e size
distribution of the traffic signs in the image ranges from
20 x 20 to 573 x 557 pixels. /e signs in this dataset are
currently divided into three categories, prohibitory sign,
warning sign, and mandatory sign, and a subcategory of the
standard dataset is still being developed.

4.2. Evaluation Indicators for Traffic Sign Detection.
Traffic signs often contain several categories. For a single
category A, the combination of the algorithm’s prediction
result and the sample true result can be classified into four
categories; that is, if the algorithm’s prediction result is
category A, and the true result is also category A, the
prediction is said to be a True Positive (TP) case. If the
algorithm predicts a class A result, but the true result is not
class A, the prediction is said to be a False Positive (FP). If
the algorithm predicts that the result is not class A, and the
true result is not class A, then the prediction is called True
Negative (TN). If the algorithm predicts that the result is not
class A, but the true result is class A, the prediction is called
False Negative (FN). Recall, also referred to as Recall Ratio,
represents the probability of a positive case being detected.
Precision, also known as accuracy, represents the probability
of the positive cases being detected by the algorithm, and the
true category is also a positive case./e equations for the two
are equations (8) and (9), respectively.

Recall �
TP

TP + FN
, (8)

Precision �
TP

TP + FP
. (9)

In traffic sign detection tasks, confidence thresholds can
directly affect detection results, as well as recall and accuracy.
In general, setting a high confidence threshold will result in a
low recall and a high accuracy. Conversely, setting a lower
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Figure 5: /e general network structure of the SSD-RP algorithm.
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confidence threshold will result in a higher recall and lower
accuracy. Different detection scenarios have different pref-
erences for recall and accuracy, and to comprehensively
evaluate the performance of detection algorithms, mean
Average Precision (mAP) is often used as a measure of
detection precision. /e mAP is calculated by setting dif-
ferent confidence thresholds and first calculating the recall
and accuracy at different confidence thresholds. /e PR
curve is then plotted with accuracy as the vertical coordinate
and recall as the horizontal coordinate. /e area under the
curve is the AP value for a single category, and the AP value
is not affected by the confidence threshold. For multiple
categories, the AP values for all categories are averaged to get
mAP. /e higher the mAP in object detection is, the more
the objects can be detected correctly.

Traffic sign detection time is the time, in ms, taken by the
algorithm to run the detection process. Detection time is an
important metric for evaluating the speed of an algorithm’s
detection, with shorter detection times meaning faster de-
tection. Detection speed can also be measured in terms of the
number of frames per second (FPS) that can be processed. It is
worth pointing out that the detection time needs to be com-
pared on the same hardware device in order to bemeaningful.

4.3. Experimental Environment for Object Detection. In this
paper, traffic sign detection was performed on Ubuntu 18.02
and PyTorch 1.6.0. Several sets of comparison experiments
were conducted, and the same training configuration was
used for the models in the experiments in order to fairly
compare the effectiveness of the methods proposed in this
paper. /e input image resolution is uniformly 300× 300,
and the training batch size is 8. /e network is trained using
a random gradient descent optimizer with an initial learning
rate of 2e-4, a momentum factor of 0.93, and a weight decay
factor of 1e-5. /e backbone network is loaded with pa-
rameters using pretraining.

4.4. RFM Ablation Experiments. /e RFM designed in this
paper is mainly used to reinforce predictive features, so there
are two available ways of using it. /e first way is to embed it
in the backbone network. /e second is to put it in the
branch structure. As four predictive features are used in this
paper, there are various options for the number of RFMs to
be used. Table 1 demonstrates the impact of the RFM on
object detection performance using different numbers of
modules for the two modes of use.

In Table 1, “RFM-Embed” indicates the use of RFM
embedded in the backbone network, with a mAP value of
91.2% and a detection time of 16 milliseconds. “RFM-

Bypass” indicates the use of the RFM in a bypass structure
with a mAP value of 91.8% and a detection time of 15
milliseconds. It indicates that the detection precision of the
“RFM-Embed” is slightly lower than that of the “RFM-
Bypass” method, probably because the “RFM-Embed”
changes the backbone network structure, which makes the
loss value of the algorithm larger in the early stage of
training, and the convergence of the algorithm lower in the
same number of iterations. /ere is also a small difference in
detection time between the two methods, with the “RFM-
Bypass” taking less time to detect, probably due to the
parallel computing capabilities of the learning framework
PyTorch, which facilitates the computation of the “RFM-
Bypass.”

In considering the performance advantages in terms of
detection precision and speed, the “RFM-Bypass” method is
chosen for this paper. Once the usage has been determined,
the number of RFMs is increased in turn, the layers
Conv4_3, Conv7, Conv8_2, etc. are added gradually. In
Table 1, the detection time for the “RFM-Bypass” method
gradually increases by small amounts, but the corresponding
mAP values do not change much. It shows that after the
RFM has reinforced the first predictive feature map, there is
no additional benefit gained by adding another RFMmodule
cumulatively. /is is because the subsequent predictive
feature maps are compared to the small traffic signs. /e
receptive field and semantics are already sufficient, and
overraising the receptive field would instead ignore detailed
information. /erefore, based on the above analysis, it is
possible to determine how, where, and how many RFMs
should be used to enhance the receptive field and semantics
of the predictive feature maps.

4.5. Ablation Experiments with the Feature Fusion Module.
/is paper compares the impact of three feature fusion
methods, FPN, PAN, and PAN+SPP, on detection preci-
sion. /e experimental results are shown in Table 2, where
“Base” refers to the base network without feature fusion,
which was used for the corresponding mAP value of 92.4%.
/e mAP value decreased by 0.9% instead after using the

Table 1: Results of RFM ablation experiments.

Con3_3 Conv4_3 Conv7 Conv8_2 Detection time (ms) mAP (%)
RFM-embed √ 16 91.2

RFM-bypass

√ 15 91.8
√ √ 17 91.7
√ √ √ 18 92.0
√ √ √ √ 20 92.5

Table 2: Ablation experiments for the feature fusion module.

Base FPN PAN SPP RFM mAP (%)
√ 92.4

√ 91.5
√ 92.8
√ √ 93.9
√ √ √ 95.4
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FPN feature fusion structure, because the deep features of
the input image lacked details, a simple upsampling oper-
ation could not recover the detail well, and direct fusion with
shallow features would make the feature representation
more confusing. /e PAN feature fusion structure corre-
sponds to a mAP value of 92.8%. Since PAN is based on FPN
with an additional bottom-up information transfer path that
adds detail information to deep features, its mAP value is
improved by 1.3% relative to FPN.

From Table 2 it can also be found that the combined
PAN+ SPP feature structure gets higher mAP values com-
pared to PAN, indicating that fine-grained features have a
greater role in small object detection tasks, which also
implies that the combined PAN+ SPP structure is more
beneficial in feature fusion./e last row in Table 2 integrates
the combined PAN+ SPP feature structure and RFM to form
exactly the SSD-RP algorithm proposed in this paper, and
the mAP values obtained are the highest of all the cases.

4.6. Comparison of Detection Results between SSD-RP Algo-
rithm and Traditional SSD Algorithm. /e detection results
of the traditional SSD algorithm are compared with those of
the SSD-RP. A comparison of the visualization results on the
data set GTSDB is shown in Figure 6. In the figure, the letters
“D,” “P,” and “I” are abbreviations for the traffic sign cat-
egories, which stand for danger, prohibition, and indication
traffic signs, respectively.

As seen in Figure 6, the SSD algorithm tends to miss the
detection of small traffic signs because of the weak dis-
crimination ability of the feature system. For example, SSD
could not detect the small prohibited class traffic sign in
Figure 6(c), while SSD-RP could detect this small sign in
Figure 6(d). Also, by comparing the confidence in the fig-
ures, it is seen that, for the same traffic sign, the confidence of
SSD-RP is generally higher than that of SSD, which means
that the detection results of SSD-RP are more accurate than
those of SSD.

(a) (b)

(c) (d)

(e) (f )

Figure 6: Visual comparison of SSD and SSD-RP detection results on the GTSDB dataset. (a) SSD detection result of No. 1 image. (b) SSD-
RP detection result of No. 1 image. (c) SSD detection result of No. 2 image. (d) SSD-RP detection result of No. 2 image. (e) SSD detection
result of No. 3 image. (f ) SSD-RP detection result of No. 3 image.
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/e following is a quantitative comparison of the de-
tection precision of the two algorithms. /e indicators used
are Average Precision (AP) and mean Average Precision
(mAP), respectively, and the results are shown in Table 3. As
seen in Table 3, SSD-RP obtained 95.4%mAP on the GTSDB
dataset, which is a 2.2% improvement in mAP compared to
SSD, indicating that SSD-RP has higher detection precision
than SSD on the GTSDB dataset. In addition, Table 3 shows
that both algorithms have higher detection precision for

directional traffic signs, which may be due to the facts that
directional traffic signs are more easily detected.

In order to verify the performance of the algorithm on a
larger dataset, the detection results of the traditional SSD and
the SSD-RP algorithm are compared on the dataset CCTSDB,
and the visual detection results of the two algorithms are
shown in Figure 7. In the figures, “M,” “P,” and “W” are
abbreviations for the categories, which stand for prohibition
sign, mandatory sign, and warning sign, respectively.

Table 3: Comparison of detection precision between SSD and SSD-RP on the GTSDB dataset.

Detection algorithms
AP (%)

mAP (%)
Indication sign-I Danger signs-D Prohibition signs-P

SSD 97.7 92.3 89.5 93.2
SSD-RP 97.9 94.8 93.6 95.4

(a) (b)

(c) (d)

(e) (f )

Figure 7: Comparison of SSD and SSD-RP detection results on the CCTSDB dataset. (a) SSD detection result of No. 1 image. (b) SSD-RP
detection result of No. 1 image. (c) SSD detection result of No. 2 image. (d) SSD-RP detection result of No. 2 image. (e) SSD detection result
of No. 3 image. (f ) SSD-RP detection result of No. 3 image.
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As can also be seen in Figure 7, the SSD tends to miss the
detection of small traffic signs. For example, in Figure 7(e),
SSD missed the detection of the small no-passing sign in the
bottom right corner of the billboard, while, in Figure 7(f),
SSD-RP could detect the small sign. Also by comparing the
confidence values in the graphs, it can be seen that, for the
same traffic sign, the SSD-RP generally has a higher con-
fidence value than the SSD. For example, the right turn
warning signs in Figures 7(e) and 7(b) have a confidence
value of 0.94 for the SSD and 0.97 for the SSD-RP. /e
following is a quantitative comparison of the detection
precision of the two algorithms on the CCTSDB dataset, the
metrics used are still Average Precision (AP) and mean
Average Precision (mAP), and the results of the comparison
are shown in Table 4.

As seen in Table 4, SSD-RP obtained 95.9% mAP on the
CCTSDB dataset, which is a 2.1% improvement in mAP
compared to SSD, indicating that SSD-RP has a higher
detection precision than SSD on the GTSDB dataset. Ad-
ditionally, it can be seen from Table 4 that both algorithms
have a higher detection precision for the prohibited class of
traffic signs. Also comparing Table 4 with Table 3, the SSD-
RP and SSD obtain a slightly higher mAP on the CCTSDB
dataset than on the GTSDB dataset.

4.7. Comparison of SSD-RP with Other High Performance
Detection Algorithms. In order to compare the performance
of SSD-RP with other object detection algorithms more
comprehensively, SSD-RP is now used simultaneously with
traditional algorithms such as Faster R-CNN [26], RetinaNet
[27], and YOLOv3 [28] for traffic sign detection in the
GTSDB dataset, and the detection experimental environ-
ment remains the same as the above experiments. Table 5
shows the performance comparison results of the above
SSD-RP algorithms on the GTSDB dataset, and the table
measures the performance of each algorithm in terms of
detection time and mAP values respectively.

We see in Table 5 that Faster R-CNN used two stages to
adjust and subclassify the anchor box to obtain the highest
detection accuracy. RetinaNet uses focal loss to optimize the
model parameters, which facilitates the network to focus on
learning from difficult samples and performs well on small

object detection tasks. In addition to the detection process
and loss function, another reason for the superior perfor-
mance of these two detection algorithms is the use of
ResNet50 [29] as the deep backbone network. However, this
approach generates a relatively large amount of computation
during the detection process. /e table shows that the single
image detection times for these two algorithms are 98ms
and 90ms, respectively, which indicates that the detection
takes more time and is slower.

YOLOv3 in Table 5 is a typical one-stage detection al-
gorithm, and because it uses a specially designed backbone
network, DarkNet53, it has a fast feed forward speed, as seen
in the table with a detection time of 35ms, which is much
less than the detection time taken by Faster R-CNN and
RetinaNet. Also, YOLOv3 uses multiscale training, which
allows the algorithm to perform well on small object de-
tection tasks, with a mAP value of 93.8%. SSD-RP achieved a
mAP value of 95.4% and a detection time of 26ms for a
single image, respectively, which is a good balance between
detection time and detection precision compared to the
previous algorithms. In addition, the SSD-RP algorithm
improves detection accuracy by 2.2% compared to con-
ventional SSDs but adds 7ms to the detection time due to the
additional computation introduced by the branched
structure.

5. Conclusions

A novel traffic sign detection algorithm based on SSD com-
binedwithRFMandPAN is proposed./e SSD-RPuses RFM
to improve the receptive field and semantics of predicted
feature map and introduces PAN to fuse multi-scale features.
/en, the SPPmodule is used to pool the shallow features and
integrate them into the bottom-up information transmission
path of the PAN. /e ablation experimental results of RFM
show that the use mode of “RFM bypass” has advantages in
detection precision and detection speed. In practical appli-
cation, the usemode and quantity of RFMs can be determined
according to actual needs. /e ablation experiment results of
feature fusion module show that PAN+SPP combined
structure has more advantages in feature fusion. If it is inte-
grated with RFM, the highest mAP value can be obtained.

Table 4: Comparison of the detection precision of SSD and SSD-RP on the CCTSDB dataset.

Detection algorithms
AP (%)

mAP (%)
Mandatory sign-M Prohibitory sign-P Warning sign-W

SSD 96.9 90.8 93.8 93.8
SSD-RP 98.1 94.2 95.3 95.9

Table 5: Performance comparison of SSD-RP with other object detection algorithms on the GTSDB dataset.

Detection algorithms Backbone networks in algorithms Detection time (ms) mAP (%)
Faster R-CNN ResNet50 98 97.9
RetinaNet ResNet50 90 96.7
YOLOv3 DarkNet53 35 93.8
SSD VGG16 19 93.2
SSD-RP VGG16 26 95.4
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/e comparison between SSD-RP and traditional SSD
algorithm shows that SSD is easy to miss detecting small
traffic signs because of its weak discrimination ability of
feature system, while SSD-RP has stronger ability to detect
small signs, and the detection confidence is generally higher
than that of SSD. SSD-RP obtained 95.4% mAP on GTSDB
dataset, increased by 2.2% compared with SSD mAP. SSD-
RP obtained 95.9% mAP on CCTSDB dataset and increased
by 2.1% compared with SSD mAP, indicating that SSD-RP
has higher detection precision than SSD on both datasets. In
addition, the experimental results also show that, compared
with the common object detection algorithms such as Faster
R-CNN, RetinaNet, and YOLOv3, SSD-RP can achieve a
better balance between detection time and detection pre-
cision. At present, the calculation of SSD-RP algorithm is
still relatively time-consuming, which has high requirements
for the storage capacity and computing power of the device.
/e future work includes the performance improvement and
lightweight design of SSD-RP algorithm.

Data Availability

/e GTSDB and CCTSDB datasets used in this paper are
open, which can be downloaded from the Internet.
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