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Te COVID-19 virus continues to generate waves of infections around the world. With major areas in developing countries still
lagging behind in vaccination campaigns, the risk of new variants that can cause re-infections worldwide makes the monitoring
and forecasting of the evolution of the virus a high priority. Having accurate models able to forecast the incidence of the spread of
the virus provides help to policymakers and health professionals in managing the scarce resources in an optimal way. In this paper,
a newmachine learningmodel is proposed to forecast the spread of the virus one-week ahead in a geographic area which combines
mobility and COVID-19 incidence data. Te area is divided into zones or districts according to the location of the COVID-19
measuring points. A trafc-drivenmobility estimate among adjacent districts is proposed to capture the spatial spread of the virus.
Trafc-driven mobility in adjacent districts will be used together with COVID-19 incidence data to feed a new deep learning
LSTM-based model which will extract patterns from mobility-modulated COVID-19 incidence spatiotemporal data in order to
optimize one-week ahead estimations. Te model is trained and validated with open data available for the city of Madrid (Spain)
for 3 diferent validation scenarios. A baseline model based on previous literature able to extract temporal patterns in COVID-19
incidence time series is also trained with the same dataset.Te results show that the proposed model, based on the combination of
trafc and COVID-19 incidence data, is able to outperform the baseline model in all the validation scenarios.

1. Introduction

Te coronavirus disease 2019 (COVID-19) is a respiratory
illness. Since the frst cases reported in the Chinese province
of Wuhan in December 2019, COVID-19 has caused mil-
lions of infections and deaths worldwide. Te virus has
caused an outbreak of viral pneumonia, which has been
named coronavirus disease (COVID-19) [1]. Te rapid
development of vaccines for COVID-19 has helped in the
mitigation of the efects of the virus in parts of the world.
However, there are still regions where the number of fully
vaccinated people is still very limited [2] which may help the
development of new mutations of the virus and their spread
to other parts of the world. Policymakers and health systems
need methods and models able to anticipate the spatial and
temporal spread of the virus in order to optimally handle the
scarce resources available and reduce the impact of the

pandemic. Several methods have been developed in order to
forecast the evolution of infected and recovered cases from
the COVID-19 virus [3]. In fact, several predictive methods
to forecast the dynamics of the virus are being used by
policymakers in diferent regions of the world to mitigate the
efects of the spread of the virus, to implement optimal
policies, and to optimize the use of healthcare resources [4].

Several methods have been proposed in order to provide
accurate estimations for the spread of the COVID-19 virus.
Each method has its own requirements, provides a sim-
plifcation of the underlying process, and tries to provide
optimal estimations using the observed information. Te
diferent types of methods and models can be grouped in
families such as epidemic, simulation-based, statistical,
machine learning-based, and hybrid models. Epidemic
models characterize the spread of the virus in terms of
variables such as the number of infected people, recoveries,
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deaths, and infection rates. Compartmental-based epidemic
models have been largely used, dividing the population into
compartments or groups, and the dynamics of the spread of
the virus is captured by mathematical expressions which
defne the movement of individuals among compartments.
Examples of compartmental models are the susceptible,
infected, and recovered (SIR) model and the susceptible,
exposed, infected, and recovered (SEIR) model [5]. Simu-
lation models are based on computational tools which
capture the epidemiological characteristics of the virus and
the behaviour of the population using rules which try to
mimic the real world. A common simulation-based example
is the agent-based model [3] which considers populations as
autonomous software agents that behave following some
rules and have a set of social characteristics and patterns of
interactions among themselves. Statistical models describe
the spread of the disease in terms of stochastic variables
which can be modelled using probability functions, some of
which can be observed while others can be estimated. Sta-
tistical models for COVID-19 use data to ft probability
distributions to stochastic variables defning the spread of
the COVID-19 virus such as the time to develop symptoms
and the time to require hospitalization [6]. Machine
learning-based models use observed data in order to learn
the underlying patterns and are able to generalize to new
data. Observed COVID-19 data are therefore used to train
machine learning models trying to capture the behaviour of
the pandemic. Once the models are trained, they can be used
to forecast new results by feeding them with new data.
Several machine learning models have been used for
COVID-19 forecasting including deep learning models [7].
Compared with epidemic models, machine learning models
do not have to generate a simplifed system in order to
characterize the spread of the virus but have to observe data
samples coming from diferent sensors and learn from them.
Finally, hybrid models have tried to combine machine
learning models with epidemic models, using machine
learning models to estimate some parameters needed by the
epidemic models [8]. Hybrid models maintain the major
simplifcations inside the epidemic models but are ftted to
the particular scenario of application. Te authors in [9]
developed a hybrid model by combining the susceptible-
infectious-recovered-deceased compartmental model with
machine learning strategies to better ft the mathematical
model’s coefcients for predicting infections, recoveries,
deaths, and viral reproduction numbers. Te authors in [10]
also proposed a hybrid model that enhanced the predictions
provided by the SIR epidemic model by tracking the changes
in the policies implemented at the government level, which
were used to estimate the time-varying parameters of an SIR
model for forecasting the number of new infections one to
four weeks in advance. Te research in [11] uses a data-
driven approach to incorporate the efects of the rate of
vaccination on the COVID-19 epidemic curves on the basis
of a modifed susceptible-infected-recovered model en-
hanced by machine learning designs. Te data-driven
methodology is applied to assess the infuence of the vac-
cines administered in Brazil on the fght against the virus.
Hybrid models have also been proposed based on deep

learning models. Te study in [12] incorporates the epide-
miological model dynamics of the SIRD model into an
LSTM deep learning network, improving forecasting
accuracy.

Te spread of the COVID-19 virus is infuenced by both
space and time features [13].Te virus is propagated through
people to people proximity interactions and is spread over a
certain region helped by human mobility. Tis paper uses
trafc sensed data in order to measure the mobility of the
people among spatial zones and proposes, implements, and
validates a new machine learning model able to forecast
COVID-19 infections based on the use of recurrent neural
network (RNN) implementing long short-term memory
(LSTM) cells to extract patterns over both COVID-19 in-
cidence and trafc data. Te model is able to extract both the
spatial and temporal patterns infuencing the spread of the
virus. Te model is validated with real data for 20 months
from the city of Madrid (Spain). Te major contributions of
this paper are as follows:

(i) Using a new deep learning model that combines
both trafc and COVID-19 incidence data to op-
timize one-week ahead COVID-19 forecasting.

(ii) Using trafc data to estimate mobility among ad-
jacent zones (districts).

(iii) Enhancing the accuracy of single zone models by
combining the temporal patterns in adjacent zones
modulated by inter-zone estimated mobility.

(iv) Validating how the proposed machine learning
model is able to learn spatiotemporal patterns from
sequences of incidence and trafc-based mobility
estimation to forecast the evolution of the COVID-
19 pandemic for each zone (district) in a region.

Te paper is organized as follows. Section 1 introduces
the objective and motivation of the research carried out in
this paper. Section 2 describes the related work, focusing on
machine learning models for COVID-19 forecasting and
showing the need for more studies considering spatial and
temporal combined information and models to analyse both
COVID-19 incidence and trafc data together. Section 3
captures the description of the datasets used to validate the
results of the paper and the methods used to process the
data. A new machine learning model that processes both
COVID-19 incidence and trafc data together to forecast
one-week ahead incidence values is presented. Section 4
describes the results for the newmodel applied to the dataset
in Section 3. Finally, the major conclusions are captured in
Section 5.

2. Related Research

Shallow machine learning models have been studied and
validated as efective tools to model the COVID-19 outbreak
since the frst months of 2020. Te authors in [14] provided
initial benchmarking to demonstrate the potential of ma-
chine learning for future research showing promising results
for models such as multilayer perceptron (MLP) and
adaptive network-based fuzzy inference system (ANFIS).
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Te research study in [15] used regression-based, decision
tree-based, and random forest-based models which were
trained with data coming from the frst months of the
COVID-19 pandemic in China, and the trained model was
then validated using the data from India.Temodel was able
to estimate the positive number of cases.

Deep learning models have also been applied to the
COVID-19 incidence time series data in order to try to
optimize predictions. Te research in [16] proposed a deep
learning approach that included a recurrent neural network
(RNN) based on a long short-term memory (LSTM) model
for predicting the probable numbers of COVID-19 cases one-
week ahead and applied the model trained with public
datasets provided by the European Centre for Disease Pre-
vention and Control to the data fromMalaysia, Morocco, and
Saudi Arabia. Te authors in [17] proposed forecast models
comprising long short-term memory (LSTM) and bidirec-
tional long short-term memory (Bi-LSTM) for time series
prediction of confrmed cases, deaths, and recoveries in ten
major countries afected due to COVID-19. Te authors
validated that deep learning methods were able to outperform
shallow models such as support vector regression (SVR).

Several research studies have compared the performance
of diferent machine learning models when applied to
forecast the evolution of the COVID-19 incidence, recovered
cases, and deaths. Te study in [18] investigated the per-
formances of deep learning methods, including the hybrid
convolutional neural network-long short-term memory
(LSTM-CNN), the hybrid gated recurrent unit-convolu-
tional neural network (GRU-CNN), CNN, LSTM, and re-
stricted Boltzmann machine (RBM), as well as baseline
machine learning methods, such as logistic regression (LR)
and support vector regression (SVR). Te authors showed
that the use of hybrid models (i.e., LSTM-CNN and GRU-
CNN) improved the forecasting accuracy of COVID-19
future trends. Te performance of the models was validated
with data of confrmed and recovered COVID-19 cases from
seven impacted countries: Brazil, France, India, Mexico,
Russia, Saudi Arabia, and the US. A similar comparative
study is presented in [19] which compared four deep
learning models: long short-term memory (LSTM), gated
recurrent unit (GRU), convolutional neural network (CNN),
and multivariate convolutional neural network (MCNN).
Te authors found that the CNN model was able to provide
robust long-term forecasting results in time series analysis
due to its capability of essential features learning, distortion
invariance, and temporal dependence learning.

Te spread of the COVID-19 virus has both temporal
infuence and spatial infuence. Several studies have tried to
defne models that incorporated spatial information to time
series pattern extraction. Te authors in [13] developed a
model that integrated the characteristics of time, space, and
infuencing factors of the COVID-19 accumulative cases
applied to three European countries with severe outbreaks
(Germany, Italy, and Spain) in order to extract spatiotem-
poral features and predict the number of confrmed cases.
Although the spatial data were limited to 3 non-adjacent
countries with mobility restrictions, the model was able to
outperform some of the previous machine learning models

focused on single time series analysis. Te study in [20]
proposed a new deep learning model that combined a time
pattern extraction based on the use of a long short-term
memory (LSTM) recurrent neural network (RNN) over a
preceding spatial analysis based on a convolutional neural
network (CNN) applied to a sequence of COVID-19 inci-
dence images. Te model was validated with data from the
286 primary care health centres in the Community of
Madrid (Madrid region, Spain) showing improved results
when compared with previous models based on time pattern
extraction and analysis. Graph neural networks have also
been previously used for adding the spatial component to the
propagation of a virus. Te authors in [21] proposed a graph
message passing framework to combine graph structures
(e.g., geolocations) and time series features (e.g., temporal
sequences) in a dynamic propagation process. Te authors
validated their approach using epidemic related datasets
from the United States and Japan.

Te spatial component in the COVID-19 virus propa-
gation should incorporate the information related to the
mobility of the people. Te initial lockdowns in diferent
parts of the world were intended to reduce the mobility of
the people in order to control the spread of the virus. Te
authors in [22] analysed the changes inmicro-mobility usage
before and during the lockdown period exploiting high-
resolution micro-mobility trip data collected in Zurich,
Switzerland, showing that the number of trips decreased
remarkably during the lockdown period. Te study in [23]
described the drastic changes in human behaviour using the
analysis of highway volume data as a representation of
personal activity and interaction. Te authors in [24] pro-
posed a method to measure the impact of COVID-19 on
transportation to further guide agencies and residents to
properly respond to changes in trafc patterns based on a
trafc performance score (TPS) that incorporates multiple
parameters for measuring network-wide trafc perfor-
mance. From previous research, we can therefore conclude
that COVID-19 has had major impact on trafc.We can also
fnd previous studies showing that trafc has had a major
infuence on the spread of the virus. Te study in [25] in-
vestigated the association between changes in trafc volume
and the spread of COVID-19 in South Korea. Te rela-
tionship between trafc and confrmed COVID-19 cases was
analysed using single linear regression. Te authors in [26]
studied the associations between the spread of COVID-19
and human mobility/demographics in the two largest
counties in Wisconsin. Te study was able to track the
movement of people and perform a study considering and
diferentiating business foot trafc, race and ethnicity, and
age structure. Diferent movement patterns by diferent
groups resulted in diferent propagation speeds for the virus.
Other related studies have also used data from the mobility
of mobile devices in order to add spatial information to
estimate the spread of the COVID-19 pandemic.Te authors
in [27] used the cellular network trafc data to model and
forecast the number of COVID-19 infections. Te paper
analysed cellular network connections from 973 antennas for
all users in the city of Rio de Janeiro and its suburbs and
developed a Markovian model that captured the mobility of
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individuals across the municipalities of the city. Te authors
showed that the proposed mobility-aware model signifcantly
outperformed a baseline mobility-agnostic linear regression
model in terms of metrics such as root mean square error
(RMSE) and mean absolute error (MAE). Te authors in [28]
used Facebook’s Social Connectedness Index and Movement
Range datasets to estimate both inter-county and intra-county
population movements and proposed an LSTM-based model
to forecast the upcoming COVID-19 incidence that also
outperformed non-mobility-aware models.

In this paper, we propose a trafc-drivenmobility impact
measure among adjacent zones (districts) in a city in order to
provide spatial information to a new deep learning model
which will use trafc mobility data to complement COVID-
19 incidence time series in order to optimize one-week
ahead estimations. Te proposed model will combine ad-
jacent zonemobility with COVID-19 incidence data in order
to feed an LSTM-based RNN network that will extract
combined mobility and COVID-19 incidence data from
adjacent zones.

3. Materials and Methods

Tis section describes the datasets used in this paper to
validate the results, the method proposed to estimate the
mobility between adjacent zones (districts) based on trafc
data, and the proposed machine learning model that
combines trafc estimated mobility and COVID-19 inci-
dence data for each zone (district) in order to optimize one-
week ahead COVID-19 predictions.

3.1. Datasets. Two major datasets are going to be used in
order to validate the results in this paper: the trafc data
provided as open data for the city of Madrid by the Madrid
City Hall and the COVID-19 incidence data for each zone
(district) of the city of Madrid provided as open data by the
Community of Madrid regional government.

Trafc data for the city of Madrid were obtained from
[29]. Te dataset consists of the historic data since 2013 for
4372 measuring points providing measurements every 15
minutes. Te information is divided into monthly fles in
order to facilitate the downloading of parts of the dataset.
Each measurement at each trafc sensor for a 15-minute
period consists of the trafc intensity, the occupation of the
road, and the average speed over an integration period for
that particular trafc sensor. Te trafc sensors are divided
into urban sensors and highway sensors.

Te location of each trafc sensor was obtained from
[30]. For each sensor, the latitude and longitude of the
location of the sensor are provided together with a sensor
“id” which links the data with the dataset in [29]. Each sensor
has also a describing name associated to the name of the
street where the sensor is located and information about the
district of the city where it is located. Te information about
whether the sensor is a highway or urban sensor is also
recorded.

Te locations of the trafc sensors are shown in Figure 1.
Both urban and highway sensors are shown in diferent
colours. Each sensor is located in one particular zone of the
city (district). In order to show the information of a par-
ticular district, Figure 1 shows the trafc sensors for the
Latina district in yellow.

Te COVID-19 epidemiologic information was obtained
from [31]. Te dataset provides information about the
confrmed cases and the cumulative incidence numbers for
each health zone in the Community of Madrid region.
Health zones are defned by the location of primary care
health centres where PCR tests were conducted.Te location
for each heath zone is also provided in the dataset. Each
district in the city comprises one or several health zones.
Figure 2 shows the location of the centre of each of the 143
heath zones in the city of Madrid. Figure 2 shows each
primary care centre inside the district of the city where it is
located.Te COVID-19 incidence information is aggregated
into city districts in [32] in order to have the same spatial
data distribution as the trafc information in [29].

Te datasets in [31, 32] are divided into 3 major periods.
Te frst period goes from the beginning of the pandemic in
Madrid (February 25th 2020) to July 1st 2020. During this
period, data were collected every day. Te period captures
the frst weeks of the pandemic when the measuring pro-
tocols were being defned and constantly changing. During
this frst period, more specifcally at the beginning of the
period, the availability for PCR tests was not always enough
to fulfl the existing need.Te second period contains weekly
data from July 2nd 2020 to March 29th 2022. Measuring
protocols were mature and PCR tests were available to cover
the need of them for all primary care health centres. In April
2022, the majority of restrictions due to the COVID-19
pandemic in Spain were lifted and so was the way in which
PCR tests were performed. Te datasets in [31, 32] only
contain data for confrmed cases for population over 60
years of age since April 2022.

In this paper, we are going to use the period from July
2nd 2020 to March 29th 2022 because of the maturity of the
data gathering process and since it is the longest homoge-
neous period in the dataset.

3.2. Trafc Model as an Estimator for Inter-District
Movements. Tis section presents a method to estimate an
inter-district mobility related indicator based on the average
of the trafc intensity for the sensors at each district closest
to a particular adjacent district, weighted by the proximity of
the sensor to the adjacent district. Te idea behind the
proposed method is that the trafc that is measured closer to
the border of 2 districts is more likely to cross that border
(propagating the virus between the 2 districts).. Te mobility
impact from the trafc in district b to district a is estimated
according to

iab �
1
N


s

is
dsb

dab

, (1)

where
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(i) a and b represent 2 adjacent districts (district a and
district b)

(ii) s represents each sensor in district b whose closest
district is a

(iii) is is the trafc intensity measured at sensor s
(iv) N is the number of sensors s
(v) dsb is the distance between sensor s and the centre of

district b
(vi) dab is the distance between the centres of the dis-

tricts a and b
(vii) iab represents the average weighted trafc intensity

for the trafcmeasured by the sensors in b closest to
a weighted by a proximity measure of each sensor
to zone a

Equation (1) compensates the diferent number of trafc
measuring sensors in diferent districts by dividing the
summation of the contribution of each sensor by the total
number of sensors in the summation. Te trafc sensors in
each district are grouped according to the proximity to
adjacent districts. Only sensors from b whose closest district
is a will be used in equation (1). Only urban sensors are
considered in equation (1) since highway sensors are more
likely to capture pass by trafc (longer distance trafc) which
will have very limited impact in the virus propagation be-
tween districts a and b. Equation (1) uses the trafc intensity
in urban sensors in order to measure the fow of people
moving and uses the relative distance from each sensor in
district b to the centre of district divided by the distance
between the centres of the districts a and b in order to
estimate the relative proximity to the border between dis-
tricts.Tose sensors in district bwhich are closer to district a
will pay a more signifcant contribution to equation (1) since
they measure trafc which is more likely to cross the border
betwen the 2 districts.

Figure 3 captures the average weighted trafc intensity
between districts calculated using equation (1) for a par-
ticular day in the considered period. Non-adjacent districts
will not be used in the model and are represented using a
weighted valued of 0. As a future work, the model will be
extended to estimate the interactions among non-adjacent
districts based on mobility data.

3.3. Proposed Model for Trafc-Enhanced COVID-19
Forecasting. Te proposed model is captured in Figure 4.
Te model uses both COVID-19 incidence and trafc data
for the last 4 weeks as inputs in order to estimate the
COVID-19 incidence for each district one-week ahead. Te
time series for the COVID-19 incidence at each district are
processed together with the weighted trafc time series from
adjacent districts using an LSTM-based RNN. For each
district a, a diferent LSTM-based RNN is applied to the
combined weighted trafc and COVID-19 incidence time
series for each adjacent district in order to extract the in-
fuence over the last 4 weeks of data in adjacent districts
contributing to the propagation of the virus to district a. Te
COVID-19 incidence time series data for district a are also
fed into an LSTM-based RNN in order to extract the impact
of the past values in forecasting the evolution one-week
ahead. Te output of each LSTM for each adjacent district
will be summarized using a dense layer which will be
combined as the input of a second dense layer. A fnal output
layer will be used to generate the one-week ahead prediction
for the COVID-19 incidence in district a.

Te model in Figure 4 has been implemented using the
Keras [33] library in Python. Te diferent layers used and
their interconnection for a particular set of values for its
internal parameters are captured in Figure 5 (an optimi-
zation preprocessing step will be described in the next
section).Te input shape captures the 4-week dependency of
the input data, and the output of each LSTM layer captures
the number of cells used to store the memory of each LSTM
layer. Te model extracts the time patterns for the COVID-
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19 incidence data for each district using the weighted trafc
for inter-district mobility estimation together with the
COVID-19 incidence data and uses a fnal dense layer to
provide a summary for each district to learn the spatial
dependencies when combining adjacent districts.

3.4. Baseline Model for COVID-19 Incidence Forecasting.
In order to compare the forecasting accuracy of the model in
Figure 5, this section captures the details of a baseline model
based on the pattern extraction from COVID-19 incidence
time series data similar to previous models used in related
studies that will be used in the result validation section. Te
model is presented in Figure 6 and will be applied to the
same dataset described in this section (using 4 weeks of input
data to estimate the COVID-19 incidence for a district one-
week ahead). Te model in Figure 6 uses an LSTM-based
RNN to analyse the COVID-19 incidence time patterns of a
single district and uses a fnal processing based on a dense
and an output layers. Previous studies have used similar
models to process COVID-19 time series. Te study in [18]
optimized an LSTM-based model also using 3 layers (the
third layer is the output layer). Te authors in [18] required
200 epochs for training the model. Te authors in [19] also
used a 3-layer approach for the LSTM-based model re-
quiring 1000 epochs for training. In order to have a fair
comparison, instead of using the accuracy results from
[18, 19] that were obtained using diferent datasets, the
model in Figure 6 has been implemented in Keras [33] and
applied to the same dataset as the model in Figure 5.

4. Results and Discussion

4.1. Optimization for the Model Internal Parameters. Te
model in Figure 5 can be tuned based on its internal pa-
rameters to optimally learn from the dataset described in the
previous section. Two major parameters have been used in
the optimization process:

(i) Te number of memory units in each LSTM cell.
(ii) Te number of neurons used in the dense (fully

connected) layers.

In order to simplify the optimization process, all the
LSTM layers for processing the input signals have been
confgured with the same internal confguration.Te 2 dense
layers have also been confgured with the same number of
neurons. As a future work, other confgurations will be
tested in order to further optimize results.

A grid search approach has been used to train the model
in Figure 5 with all the diferent combinations for the op-
timization of the 2 parameters. Both the number of memory
units and the neurons in the dense layers have used a range
from 2 to 14 in steps of 2. Te model in Figure 5 is initialized
with each combination of values, and the internal weights of
the model are reset before the training of the model for each
combination. A 10-fold cross validation approach is used,
and the mean square error (MSE) for the validation set is
used in order to assess the capacity of the model to learn the
patterns in the dataset. In order to speed up the training and

provide a fair comparison for MSE values among diferent
districts, a data normalization process is used so that the
COVID-19 incidence time series for all the districts are
normalized using a min-max scaler between 0 and 1. Fig-
ure 7 captures the MSE values for the diferent optimization
parameter values.

Te same optimization process has been carried out for
the baseline model in order to provide a fair comparison
between models. Table 1 captures the optimal values for the
models when using a 10-fold cross validation schema. Te
number of memory units and neurons in fully connected
layers is a bit higher in the baseline model (compensating the
simplicity of the model with the added complexity of a
higher internal dimensionality).

4.2. Model Validation Results. Te model in Figure 5 has
been trained and validated with the datasets in [29–32], and
both the mean square errors (MSEs) and the mean absolute
percentage errors (MAPEs) have been compared for those
achieved by the baseline model in Figure 6. Te COVID-19
incidence data contain weekly data from July 2nd 2020 to
March 29th 2022, and a similar time interval has been se-
lected for the trafc data. Tis period contains the second to
the sixth COVID-19 waves in the Community of Madrid
region.

Tree diferent validation approaches have been used in
order to better assess the results and their generalization:

(i) A 10-fold cross validation approach which ran-
domly splits the data in the dataset into 10 diferent
segments of data. Each data segment is used once as
the validation set. Finally, the results are averaged.
Tis validation approach makes it easier for the
model to learn the internal patterns in the validation
data since there are adjacent similar data samples in
the training set.

(ii) A leave one district out validation approach which
uses the entire time series for all the districts except
one for training and the left-out district is then used
for validation. Te process is then repeated for all
the districts, and the average of the MSE and MAPE
values is computed. Tis validation approach allows
us to assess if time patterns learnt from diferent
zones generalize to new zones.

(iii) A leave one wave out validation approach which
removes the data from an entire wave in the time
series for training and uses the information for that
wave for validation is used. Tis approach is used to
assess if the patterns learnt from previous waves of
data generalize to new waves. Te information in
the dataset contains data from the second to the
sixth wave. Te last wave was dominated by the
omicron COVID-19 variant and exhibited a par-
ticular behaviour. Terefore, the information in the
ffth wave has been used to implement this vali-
dation approach.

Table 2 captures the results for the 3 validation ap-
proaches. Te best results in terms of MSE values for both

Computational Intelligence and Neuroscience 7



the proposed and the baseline models are obtained for the
10-fold cross validation schema which could be expected
since the data in the training and validation subsets are

similar. Te MAPE values give more importance to pre-
diction errors where the incidence values are smaller. Te
optimal MAPE values for the proposed model are also

Figure 5: Implemented model in Keras.
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Figure 6: LSTM-based baseline model.
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Figure 7: MSE for the diferent confguration parameters.

Table 1: Optimal confguration values.

Optimal values for 10-fold cross validation Proposed model Baseline model
Number of memory units in the LSTM cells 4 6
Number of units in the fully connected layer 8 10
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achieved for the 10-fold cross validation schema where the
results in terms of the MAPE values for the base line model
are similar for the 3 validation schemas.Te proposed model
in Figure 5 outperforms the baseline model for all the
validation approaches. Adding the trafc data to infer inter-
district mobility patterns and enhancing predictions by
injecting data from adjacent districts modulated by mobility
data can provide more information to the model in order to
optimize the predictions. For the proposed model in Fig-
ure 5, the leave one district out approach provides better
results compared to the leave the ffth wave out schema (both
in terms of MSE and MAPE values). Tis result shows that
there is a better correlation between districts for the same
wave of COVID-19 infections than for diferent waves in the
same district. Te baseline model provides similar results for
both leave one district and one wave out validation ap-
proaches (both in terms of MSE andMAPE values), showing
that trafc modulated information from adjacent districts
plays an important role both when leaving one district out
and when predicting the incidence for a new wave of
infections.

Te average improvement rates for the 3 validation
schemes in terms of MSE values when using trafc in-
formation (model in Figure 5) compared with baseline
model in Figure 6 for some districts are captured in Table 3.
Te average improvement rate for a particular district is
calculated by using only the data for that district for val-
idation for each of the 3 validation approaches and for both
models in Figures 5 and 6 and computing the average
according to

AIrdistrict �
1
3


v

MSEFig6(district)
MSEFig5(district)

, (2)

where

(i) AIr is the average improvement rate
(ii) v represents each validation approach

Te geographic locations for the districts with higher
improvement rates in Table 3 are captured in Figure 8 (in
blue). Both Madrid-Centro and Madrid-Salamanca
districts are in the centre of the city with important fows
of people visiting them both for work and leisure
activities.

Te results for the 10-fold cross validation approach for
the particular district of Madrid-Salamanca are shown in
Figures 9 and 10. Both models achieve good one-week ahead
forecasting results, but the model in Figure 9 (implementing
the proposed model in Figure 5) has better performance
estimating the peak values for the second, third, and ffth
waves and is able to better follow the real upcoming in-
fections in the initial part of each wave.

Table 2: Validation results for the diferent validation approaches.

Validation scheme MSE (proposed model) MSE (base model) MAPE (proposed model) MAPE (base model)
10-fold cross validation 0.00037 0.00162 0.2515 0.6219
Leave one district out 0.00089 0.00535 0.3122 0.7041
Leave 5th wave out 0.00193 0.00464 0.3621 0.6798

Table 3: Average improvement rates for diferent districts when
using trafc information.

District Average improvement rate
Madrid-Salamanca 5.41
Madrid-Chamart́ın 2.45
Madrid-Centro 4.02
Madrid-Moncloa-Aravaca 2.75
Madrid-Chambeŕı 2.74

Madrid-Centro and Salamanca districts
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Figure 8: Districts showing better results in predictions when
using trafc information.
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Figure 9: 10-fold cross validation results for the proposed model.
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Te results for the leave one district out validation ap-
proach for the same district of Madrid-Salamanca are
presented in Figures 11 and 12. Te proposed model in
Figure 5 is able to follow the curve of real cases although
there is a higher error when estimating the peak values for
the COVID-19 waves.Te degradation of the baseline model
is higher and can be observed in both the peak values and the
delays in following the increase in expected cases.

Te results for the leave the 5th wave out validation
approach are captured in Figures 13 and 14 (for the same
district in Madrid as in the previous approaches). Te
proposed model is able to follow the shape of the 5th wave

although the peak value is estimated with a higher error.
Tere is also a higher delay in anticipating the increase or
decrease of the number of new COVID-19 cases. Te results
for the baselinemodel are visually worse, in particular for the
5th wave which is the one used in the validation set, in which
the baseline model anticipates 2 peak values of infections
(while there is only one in the real data).

Te results in Tables 2 and 3 and in Figures 9–14 show
that using the trafc data to estimate inter-district in-
teractions and adding trafc modulated COVID-19 in-
cidence data from adjacent districts in a city can generate
better predictions compared to a similar baseline model
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Figure 10: 10-fold cross validation results for the baseline model.
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Figure 11: Leave one district out cross validation results for the
proposed model.
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Figure 12: Leave one district out cross validation results for the
baseline model.

One week ahead forecasting. Leave 5th wave out validation
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Figure 13: Leave one wave out cross validation results for the
proposed model.
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that only uses COVID-19 incidence data for one zone at a
time (as previously used in related literature such as
[18, 19]). As a future work, the model in Figure 5 could be
further optimized using diferent LSTM layers and dif-
ferent pattern extraction for adjacent and predicted
zones.

5. Conclusions

Tis paper has proposed and validated a new deep learning
LSTM-based model able to learn from both human mobility
and COVID-19 incidence time series. Te model processes
COVID-19 geolocated information by dividing a geo-
graphical area into zones or districts and performing their
independent COVID-19 detection of new cases. Trafc dada
are used to estimate the degree of interaction between ad-
jacent districts in order to modulate the infuence of the
current COVID-19 incidence values from adjacent districts
when forecasting the number of new cases in the district of
interest. Te spatiotemporal COVID-19 incidence infor-
mation for each adjacent district is processed together with
the estimated mobility data using an LSTM layer.Te output
for each district is summarized by a dense (fully connected)
layer, and combined patterns are extracted by processing
together the information from all the adjacent districts using
fully connected layers.

Te proposed model has been trained with open data
for the city of Madrid and has been validated using 3
diferent validation approaches: 10-fold cross validation,
leave one district out, and leave one COVID-19 wave out.
Te mean square error (MSE) and the mean absolute
percentage error (MAPE) values have been compared
with a baseline model used in previous literature and
optimized and trained for the same dataset. Te proposed
model has outperformed the baseline model by reducing

the MSE in 4.37, 6.01, and 2.40 times correspondently.
Results show that adjacent geographical zones have an
infuence in the spread of the virus and that the esti-
mation of mobility between zones helps in improving the
achieved accuracy.

Te current model only uses mobility estimates for
adjacent zones. As a future work, a new model to estimate
mobility for non-adjacent zones will be studied. Te current
model is based on trafc mobility data. Tere also exist open
datasets capturing pedestrian mobility and shared bike
mobility. As a future work, these datasets will be used to
enhance the mobility estimation model. Finally, there are
other factors that infuence the propagation of the virus such
as the use of masks and the percentage of people vaccinated.
As a future work, the model will be expanded to use vac-
cination and use of mask data as inputs to complement the
mobility information to better estimate the propagation of
the COVID-19 virus.
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