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Yoga is a 5000-year-old practice developed in ancient India by the Indus-Sarasvati civilization. +e word yoga means deep
association and union of mind with the body. It is used to keep both mind and body in equilibration in all flip-flops of life by
means of asana, meditation, and several other techniques. Nowadays, yoga has gained worldwide attention due to increased stress
levels in the modern lifestyle, and there are numerous methods or resources for learning yoga. Yoga can be practiced in yoga
centers, through personal tutors, and can also be learned on one’s own with the help of the Internet, books, recorded clips, etc. In
fast-paced lifestyles, many people prefer self-learning because the abovementioned resources might not be available all the time.
But in self-learning, one may not find an incorrect pose. Incorrect posture can be harmful to one’s health, resulting in acute pain
and long-term chronic concerns. In this paper, deep learning-based techniques are developed to detect incorrect yoga posture.
With this method, the users can select the desired pose for practice and can upload recorded videos of their yoga practice pose.+e
user pose is sent to train models that output the abnormal angles detected between the actual pose and the user pose. With these
outputs, the system advises the user to improve the pose by specifying where the yoga pose is going wrong. +e proposed method
was compared to several state-of-the-art methods, and it achieved outstanding accuracy of 0.9958 while requiring less
computational complexity.

1. Introduction

Like every exercise, it is most important to practice yoga
poses accurately as any abnormal posture is not productive
and tends to cause harm. +is suggests having an instructor
around while performing yoga. It is not always possible to
have an instructor or to join yoga classes with nowadays
lifestyle. An AI-based system helps to identify yoga poses
and gives feedback or suggestions to users. +ese instruc-
tions help users improve their poses so that it is productive
and not detrimental. +e challenges in this project are key
points should be detected without any missing points and
models should work properly even when body parts are

overlapped. Suggestions should be given accurately since
slight changes may cause harmful results. +e poses in
datasets used for this project should be done by experts.
Models should accurately classify poses, even though they
are nearly the same poses with a slight difference in them.

Automated self-training methods for sporting activities
can help players enhance their performance and reduce the
risk of injuries. Many researchers have developed com-
puterized systems for evaluating exercise-related activities
such as football player rankings, handball strikes, volleyball,
sprints, jumping, and other athletic activities. Patil et al. [1]
proposed a ‘Yoga Tutor’ project that uses accelerated robust
characteristics to make the distinction in postures between a
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learner and a professional (SURF). Wu et al. [2] presented a
picture and text-based intelligent systems for yoga, but they
did not look at the posture of the practitioner. Chen et al. [3]
used a features-based method to create a self-training system
that recognized yoga exercises. It makes use of a Kinect to
capture the person’s body contour and create a bodymap. To
obtain a descriptor for the human position, a star skeleton
was employed for quick skeletonization. In reference [4], a
yoga identification system that is based on a Kinect and the
AdaBoost classification with a 94.78 accuracy score is
proposed for six asanas. +ey are, however, utilizing a depth
sensor-based camera that is normally not obtainable. Using
convolutional neural network (CNN) and stacked autoen-
coder (SAE) methods, Mohanty et al. [5] implemented an
image recognition approach for detecting Indian traditional
dance and yoga postures from photographs. +ey did,
though, only analyze their competence on still photos, never
on videos. Since the introduction of DeepPose by Toshev
et al. [6], the traditional skeletonization methodology has
been supplanted by deep learning-based technologies.
DeepPose is leading the charge away from traditional
techniques and toward deep network-based approaches. It
directly regresses on joint coordinates using deep neural
network-based regressors. It anticipates a person’s activities
and also forecasts the location of hidden body parts.
However, their approach has difficulty with localization.

In recent years, there are related works on yoga pose
detection and classification. [7] Keypoint detection methods
used are OpenPose [8], PoseNet [9], and PifPaf [10]. To
detect human pose, many factors will be considered such as
surroundings, human interactions, and variations in
clothing [11]. Deep learning methods they used for pose
classification are multilayer perceptron, recurrent neural
network, long short-term memory (LSTM) [12, 13], and
convolutional neural network. Limitations in the above
works are that features (key points) are not scaled and are
unable to find a pattern for human poses of different dis-
tances from the camera. Previous methods that used joint
angles as features are rotational invariant (even if joints are
rotated, the angles between them are not changed) [14, 15].

In the proposed work for abnormal pose detection, the
research used networks that classify yoga poses and calculate
deviation from the already calculated expert pose. +is
project mainly focuses on preprocessing datasets to extract
new features like angles between body parts and how they
improve accuracy compared to traditional pose features and
by filling missing values. +is system uses classification
networks like multilayer perceptron and hyperparameters
tuning to achieve good accuracy. +e first phase of the
project talks about related works in this field, continued with
the description of the dataset the study used and pre-
processing techniques. How angles are extracted is discussed
in preprocessing. +en, the project focused on a pose es-
timation code and MLP (multilayer perceptron) training for
the yoga classification. At last, model evaluation metrics and
how suggestions are constructed for users are discussed. +e
overview of the proposed method is shown in Figure 1.

+e remaining paper is organized as follows. +e related
work for yoga pose estimation is discussed. +e datasets are

outlined, and the section expounds on the proposed
methodology to extract key points and features, classifica-
tion, and feedback generation. +e implementation details,
evaluation measures of the proposed approach, and the
runtime analysis are discussed. Finally, the conclusion and
future scope are outlined.

2. Related Work

Human activity recognition has been employed in a variety
of applications, including robotics and computer engi-
neering. References [16, 17] use randomized trees (random
forests) for detecting human activities with the help of
sensors. Reference [18] uses hidden Markov models and
recognized body parts for human activity recognition. +is
method is used for the recognition of 6 home activities,
which achieved an accuracy of 97.16 percent. +is method is
used at smart homes for monitoring services. [19] It uses
environmental background sounds for human activity
recognition where wearable sensors that detect sounds are
used, which achieved an accuracy of 96.9 percent.

Significant work has been done in developing automated
systems, which analyze yoga and sports activities like bas-
ketball [20] and cycling [21]. [1] An automated system for
naive users to perform yoga and compare with expert yoga
videos uses a Speeded Up Robust Features (SURF) algorithm
using only contour information, whichmay not be sufficient.

Video Input

Extracted Key Point Features

Predicted Pose

Feedback Generation

Calculating Direction and Deviation

Classification Technique

Vector Angle Formula

Vector Joint and Angles

Input Frames

Pose Estimation Technique

Figure 1: +e figure illustrates the overview of the proposed
method.
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[4] An automated project for yoga pose detection using
kinetic sensors and an AdaBoost classifier achieved 94.8%
accuracy. Another system presented in reference [3] for 3
yoga poses achieved 82.84% accuracy. [5] +e system used
deep learning techniques for the classification of yoga poses.
In traditional machine learning, [22] models require
extracted features and engineering, but deep learning un-
derstands data and extracts features. [2] A self-instructed
system is built for the yoga pose using star skeleton com-
putation. To extract the body contour from the user body
map, Kinect is used and achieved an accuracy of 99.33
percent. [23] It used hash-based learning to extract human
pose from the pressure sensor. +ese sensors may not be
feasible always to carry, so in the proposed system, no
sensors are used.

+e pose estimation used is in OpenPose and used the
hybrid model CNN with LSTM to classify yoga poses, and
this model incorporates feature extraction. Also, it compared
basic CNN models with a hybrid model, and machine
learning models were compared with deep learning models.
Evaluation metrics used are classification score and con-
fusion matrix. SM achieved a test accuracy of 0.9319, CNN
achieved 0.9858, and the hybrid model CNN with LSTM
achieved 0.9938. +ere are many keypoint detection
methods like OpenPose, PoseNet, and PifPaf. OpenPose [8]
invented in CMU and CNN-based architecture is used to
obtain key points. OpenPose uses VGG-19 for the extraction
of features from images. 18 confidence maps were detected
by the first branch (initial layers). +e second branch is used
for predicting the association between body parts.

PoseNet [9] is similar to OpenPose, which can extract
human pose. All these key points are indexed with confi-
dence levels, 1 being greatest and 0 being lowest. PoseNet
does not depend on the size of images; even though images
are downscaled, the pose is extracted. [24] +e encoder
generates an encoding vector, localizer converts encoding to
a localization feature vector, and regressor is utilized to
regress the final pose. PifPaf [10] is based on a bottom-up
approach for extracting human pose. A Part Intensity Field
is used for body parts localization, and a Part Association
Field is used for body parts association; these two combine
for the entire body pose. +e architecture used is ResNet.

+e features used by these models are 18 key points; the
input size is 36 x and y coordinates of each key point. Models
will train with more accuracy if features are extracted from
these key points. In the project, 12 features say angles are
extracted of 12 different joints, which are used as an input to
models. Previous methods [25–27], which used joint angles
as features, show that human activities and angle motion
sequences are related. +ese angle features, as they are
scalable, have more information than key points. In refer-
ence [25], it is shown that angles between elbows, shoulders,
knees, and crotch contribute more information for 3D
human activity detection. In reference [28], angle pairs for
hip bones are added, and in reference [27], for standing and
walking actions, features like right knee, left knee, and elbow
provide more information.

In references [28, 29], features used are angles between
joints so that features are scaled. In reference [29], features

mainly used are hip and knee angles. Angles at the hip joints
are angles made by the shoulders and knees, and angles at
the knees are angles made by the hips and ankles. +ese
features give more insight than key points because at any
distance from the camera, the angles extracted will be the
same, but not key points as they are not scaled. In reference
[28], angles are calculated concerning a reference key point
in a 3D space. But in both these cases, these features are
rotation invariant. In the proposed system, angles with
respect to the x-axis, that is, ground, are considered. +ere
are 12 joints where every joint connects 2 key points, so 12
features (angles) are present entirely. Suppose, a and b are
two key points, then the angle made by joint ab with the x-
axis acts as a feature.

3. Methodology

In this paper, a deep learning-based yoga pose estimation
methodology presented in algorithm 1 is proposed to detect
correct yoga poses and provide feedback to improve the yoga
posture. +e proposed approach has been done on NVIDIA

DGX V-100 and consists of three main steps:

(1) Feature extraction: videos or images are given as
input to the model, and frames are extracted at
regular intervals from videos and sent to Keras
multiperson pose estimation to extract key points.
From these key points, 12 joint vectors are calcu-
lated. For all these 12 joints, angles between the x-
axis and joints are found, respectively.

(2) Classification: these angles are sent to the classifi-
cationmodel to classify the pose among 6 yoga poses.
+ese angles are compared with an array of 12 angles
of the classified pose. +is array contains average
angles of 12 joints from the dataset.

(3) Feedback generation: the differences are calculated,
respectively, for every angle, and suggestions are
revealed for every angle. Based on the sign of dif-
ference, whether to rotate joints in clockwise or
anticlockwise direction is given as feedback output.

+e proposed approach is represented schematically in
Figure 2, and further explanations of each step are provided
in the following sections.

3.1. Datasets. +e proposed methodology is examined on a
publicly available, online, open-source collection [30]
dataset. +is dataset includes 6 yoga poses, namely, Cobra
(Bhuj), Tree (Vriksh), Mountain (Tada), Lotus (Padam),
Triangle (Trik), and Corpse (Shav). Total videos of the 6
poses are 70, and total instances combining the 6 poses are
350. +ese videos are recorded in a room using the camera
from a distance of 4meters; the frame per second rate is 30.
To have robust trained models, individuals performed these
poses with few variations. Table 1 summarizes the statistics
of the dataset in terms of video count, duration of each
activity class in seconds, and the number of persons for each
yoga poses separately, and some sample frame of every pose
is depicted in Figure 3.
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+is dataset is used for training (320 instances) and
validation (30 instances). A separate dataset is created from
these videos at different time intervals for testing. +is
separate dataset contains a total of 30 instances, 5 for each
pose.

3.2. Real-time Multiperson Pose Estimation. Human pose
estimation is one of the important challenges of computer
vision and has made many advancements in the last few
years. 3D pose estimation evolved from a 2D pose and
single-person pose estimation to multiple-people pose es-
timation. Pose estimation algorithms generally detect body
points, link body points, and output their key points. +ese

key points have x and y coordinates of every body point,
which helps in many computer vision problems like sur-
veillance-assisted living, gym-pose analysis or any sports
analysis, and activity recognition.

+is pose estimation extracts 18 body key points where
every point consists of x and y coordinates of body points.
+is code outputs one dictionary and one 2D array. +e
dictionary contains keys as body parts and values as their
coordinates; in an array, if many values are detected for a key
in the dictionary, then all this information is present with
their corresponding confidence levels. In the dictionary, only
the first detected body point is present even if the confidence
level is low compared with other values. So, the code needs to
be changed so that values are chosen based on a high

(i) Require:Vy represents a video clip of dataset videos; F(t) represents the function used for the extraction of frames;fy represents
a particular keypoint frame; and N is the number of total key points in the particular frame fy.

(ii) Require: Y(a) represents the function of the pose estimation technique, which extracts horizontal and vertical (x, y) coordinates
of eighteen human joints for each frame fy.

(iii) Require: xiyi(fy) represents (x, y) coordinates of the ith key point for a particular frame fy, and frameset is a collection of key
point frames fy for a particular video Vy.

(iv) Require: Bodypoint represents the number of body key points; vk represents the number of the vector connecting origin and body
point; vk1 and vk2 represents the adjacent vector; Vector Jointm represents the vector between the adjacent joints, and m

represents the number of joints.
(v) Require: (cos(θ))b represents the angle made by a vector with the x-axis, and b represents the angle made by m joints with the x-

axis.
(1): for each Vy ∈ DatasetVideo do
(2): F(t)[Vy]⟶ frameset
(3): for each fy ∈ frameset do
(4): Y(a)[fy]⟶ xiyi(fy) \(⊳\) 1≤ i≤N

(5): end for
(6): end for
(7): for each xiyi(fy) ∈ frameset do
(8): if xiyi(fy)[confidencescore]< 0.3 then
(9): remove xiyi(fy)

(10): else if xiyi(fy)< ∈ keypoints[Nose,Ears,Eyes] then
(11): remove xiyi(fy)

(12): else
(13): Bodypoints←xiyi(fy)

(14): end if
(15): end for
(16): for each xiyi(fy) ∈ Bodypoints do
(17): Vk1[x1, y1]←x1y1(fy)

(18): Vk2[x2, y2]←x2y2(fy) \(⊳\) k1≤ k≤ k13
(19): Vk1 � x1i + y1j

(20): Vk2 � x2i + y2j

(21): Vector Jointm � Vk2 − Vk1
(22): Vector Jointm � (x2i + y2j) − (x1i + y1j)

(23): Vector Jointm � (x2 − x1)i + (y2 − y1)j \(⊳\) 1≤m≤ 12
(24): Since, origin in frame fy is present at the top left corner, multiply (− 1) with (y2 − y1)

(25): Vector Jointm � (x2 − x1)i + (− 1)∗ (y2 − y1)j

(26): (cos(θ))b[Vector Jointm] � (x2 − x1)/(x2 − x1)
2 + (y1 − y2) \(⊳\) 1≤ b≤ 12

(27): end for
(28): Trainable Features: (cos(θ))b

(29): For the purpose of yoga pose classification, multilayer perceptron or neural network (MLP) models trained on trainable features
for the multiclass classification of 6 yoga poses.

(30): Output multiclass classification (Cobra (Bhuj), Tree (Vriksh), Mountain (Tada), Lotus (Padam), Triangle (Trik), and
Corpse(Shav))

ALGORITHM 1: Yoga Pose Classification
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confidence level. For example, in the Bhuj pose, for the right
wrist, two body points are detected with different confidence
levels (Figure 4).

3.3. Feature Extraction. To extract key points for pose es-
timation, Keras real-time multiperson pose estimation is
utilized [7, 8]. +is pose estimation is run on every video,
frames are extracted for every 2 seconds, and pose is cal-
culated for 5 consecutive frames of each video, which results
in 350 instances for 70 videos. Every pose outputs an array of
18 key points where every point consists of x and y coor-
dinates. Figure 5 shows key points extracted from a frame by
the pose estimation code.

+e research work has used 320 instances for training.
While detecting poses for a person, many key points are
being detected with different confidence levels. Keras pose
estimation works in such a way where it includes the first key
point detected without taking into consideration confidence
intervals. In this paper, a few modifications were done to the
Keras pose estimation to consider key points of highest
confidence levels. With these x and y coordinates, the study
extracted features like angles between body joints and with
the ground so that models will be trained to achieve good
accuracy. Utmost priority is given to these instances so that

there will be no abnormality data given as input. Figure 6
depicts pose estimation on all 6 yoga poses.

Every extracted point is treated as a vector-connecting
origin. In body points, nose, ears, and eyes features are not
considered as they are not important features, and the
features whose confidence score is less than 0.3 are also not
considered in order to consider the joints that are accurately
visible. So, the number of vectors present is 13. In total, the
feature set has 12 joints without nose, ears, and eyes. +e 12
joints are neck to the right shoulder, right shoulder to the
right elbow, right elbow to the right wrist, neck to the left
shoulder, left shoulder to the left elbow, left elbow to the left
wrist, neck to the right hip, right hip to the right knee, right
knee to the right ankle, neck to the left hip, left hip to the left
knee, and left knee to the left ankle. From these 13 vectors, 12
joints can be obtained by subtracting vectors. Suppose, body
point neck and right shoulder are (x1, y1) and (x2, y2),
respectively. +en, their vectors are x1i + y1j for the neck
and x2i + y2j for the right shoulder. To get a vector for the
joint neck and right shoulder, subtract the neck vector from
the shoulder vector, which is (x2 − x1)i + (y2 − y1)j as
shown in Figure 7. But, − 1 should be multiplied with (y2 −

y1) because origin in images is present at the top left corner,
which is different from the bottom left corner. So, the vector
for the joint is (x2 − x1)i + (− 1)∗ (y2 − y1)j. In this way, 12
vectors for 12 joints are obtained and the angles they are
making with the x-axis need to be calculated. Suppose, the
angle made by a vector with the x-axis is theta, then cos(θ)

for the vector (x2 − x1)i + (y1 − y2)j is
(x2 − x1)/(x2 − x1) + (y1 − y2). With this method, 12 an-
gles for 12 different vectors for 12 joints are obtained. So, the
feature set has 12 columns.

+ese angles extracted are scaled and rotation variants.
Different poses varying in distances from the camera need to
scale key points to train models to achieve high accuracy.
But, when angles are used as features, varying distances does

FEATURE EXTRACTION

EXTRACTED FRAMES

INPUT VIDEO

DETECTED KEYPOINTS

CALCULATING JOINTS
AND ANGLES

FEEDBACK GENERATION

PREDICTED POSE

CALCULATING
DEVIATION AND

DIRECTIONSUGGESTIONS

CLASSIFICATION

Cobra
Lotus

Corpse
Mountain

Triangle
Tree

Figure 2: A schematic diagram of the proposed approach for correct yoga pose estimation and feedback generations for incorrect posture.

Table 1: Summarization of statistics of the dataset for each yoga
pose.

Yoga pose Time (s) Persons Videos
Cobra pose 615 15 14
Lotus pose 495 15 10
Corpse pose 450 15 10
Mountain pose 585 15 12
Triangle pose 540 15 13
Tree pose 500 15 11
Total 70

Computational Intelligence and Neuroscience 5



not have any need to scale any feature. For example, if the
joint left ankle and left knee make 90 with the ground,
considering for different distances from the camera, the
angle made by this joint will be the same at any distance. If
points are rotated, suppose the joint left ankle and left knee
rotate by any slight angle, then the angle made by the x-axis
will be varied. In reference [29], angles made at the hip will
not change if all 3 key points (shoulders, hips, and knees)
rotate at the same angle. In reference [28], if two key points
are swapped, then the angle made concerning the reference
point will not change. Hence, angles used in references
[28, 29] are rotation invariant, and in the system, angles are
rotation variants.

3.4. Feedback Generation. In the dataset, average values or
angles are calculated for every pose by considering all poses
done by everyone. When images are given as input to the

model, the trained model classifies the pose with which it
aligns. +e angles extracted from the image are compared
with the average values calculated. +e differences between
these angles are calculated, respectively, that is, 12 values are
calculated. To give suggestions, two parameters are nee-
ded—howmuch the pose is deviated from the original and in
what direction. +e magnitude of these 12 difference values
tells by how much one must correct his pose, and for the
direction, the researchers used the sign whether it is positive
or negative, which tells us to rotate the joints in either
clockwise or anticlockwise direction. With this method,
suggestions are given to users for every joint.

4. Results

Neural networks (MLP) are built using 3 types of layers,
namely, input layer, hidden layers, and output layer. +ere
can be any number of hidden layers based on the complexity
of training data. If hidden layers are few, the model may
underfit training data, and if they are more, the model may
overfit. MLP is a fully connected neural network, that is,
every node is connected to every other node in consecutive
layers in the neural network. Generally, these networks are
utilized for supervised training where for every input data,
there is a corresponding output label or class.

Multilayer Perceptron (MLP) is used for human pose
classification [31]. In this paper, angles between key points
have been computed and passed as input for MLP. In the

(a) (b) (c)

(d) (e) (f )

Figure 3: Sample frames of every yoga pose: (a) Cobra, (b) Corpse, (c) Mountain, (d) Triangle, (e) Tree, and (f) Lotus pose.

Figure 4: Person pose estimation for the Bhuj pose with different
confidence levels.
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project, the input data length is 12 and has 6 classes to
classify these labels, so the output layer length is 6. Figure 8
describes the input layer size as 12, 1st hidden layer size is 10,
2nd hidden layer size is 8, and output layer size is 6. In total,
there are 350 instances, for the training of which 320 in-
stances are used, whereas for every pose, 5 instances are used
for validation. +e batch size used for training is 20, and the
number of epochs is 10000. Figure 9 shows the graphs of
accuracy and loss for training and validation datasets.

Both training and validation datasets have many ups and
downs in accuracy till the 6900 epoch and attained an ac-
curacy of 0.9958 at the 6900 epoch. From 6900 to 10000
epochs, loss of training and validation decreased gradually,
which results in the training model classifying with high
confidence. From epoch 0 to 10000, the loss of validation and
training datasets decreased gradually. From the training and
validation accuracy obtained, it can be inferred that the
model is not overfitting. +e loss function used is categorical
cross-entropy since the research is classifying input features
into one of the 6 labels. An AdaDelta optimizer is used based
on the adaptive learning rate to address two drawbacks: (1)
decay of learning rates and (2) selection of the global
learning rate.+e activation function used for the last layer is

softmax since it outputs confidence levels for all labels. +e
one with the highest confidence is the predicted label.

Table 2 represents the accuracy result of the experi-
mented models, SVM obtained accuracy results of 0.9319,
CNN obtained accuracy results of 0.9858, and CNN+LSTM
achieved accuracy results of 0.9938. MLP power in the
system is substantially smaller than CNN and CNN+LSTM,
but it obtained an accuracy of 0.9958 with modified features.

To examine the effectiveness of the proposed method-
ology, a confusion matrix is utilized that describes the
classificationmodel performance for all instances in terms of
accuracy as per equation (1). Classification accuracy is also
known as classification score, which is the ratio of correct
classifications and total instances.

+e confusion matrix used in the study has 6 labels, so
the result evaluation has a 6 × 6 confusion matrix. +e ith
row represents the actual class, while the jth column rep-
resents the predicted class of the proposed data. Figure 10
depicts the confusion matrices of training, validation, and
testing datasets. In the confusion matrix of the training,
validation, and training dataset, the total number of in-
stances are 320, 30, and 30, respectively. It can observe that
all the samples are predicted correctly, which results in an

1310

9

84 7

63

1

2 5

0

1716

14 15

12

11

Figure 5: Extracted key points from a frame by the pose estimation method [7].
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accuracy of 0.9958 for all cases. Figure 11 represents the plot
for different competitive models.

ClassificationAccuracy �
Total Number of Correct Classifications

Total Input Samples
. (1)

(a) (b) (c)

(d) (e) (f )

Figure 6: Demonstration of key points extraction on all 6 yoga poses: (a) Lotus pose, (b) Tree pose, (c) Cobra pose, (d) Corpse pose, (f )
Triangle pose, and (e) Mountain pose.

y-
ax

is

x-axis

y-
ax

is

x-axis

Neck
(X1i + Y1j) Neck to Right Shoulder

(X2 - X1)i + (Y2 - Y1)j

Right Shoulder (X2i + Y2j)

(X2 - X1)i + (Y2 - Y1)j

θ

Cos θ=
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Figure 7: +e coordinate vector and angle calculation representation of neck and right shoulder vectors.
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5. Runtime Analysis

+e approaches presented in this research are based on
deep learning to detect incorrect yoga posture and also
advise the user to improve the posture. In this research,

extraction of key points using a pose estimation technique,
computation of vectors for each joint, and the angle be-
tween the vectors for adjacent joints are categorized as
features. Following that, these features were fed into the
classification techniques, and later, the feedback for the

INPUT LAYER

OUTPUT LAYER
HIDDEN LAYER 1

HIDDEN LAYER 2

AC
TI

VA
TI

O
N

 F
U

N
CT

IO
N

AC
TI

VA
TI

O
N

 F
U

N
CT

IO
N

AC
TI

VA
TI

O
N

 F
U

N
CT

IO
N

Layer (type)

dense (Dense)

dense_1 (Dense)

dense_2 (Dense)

input_1 (InputLayer) [(None, 12)]

(None, 10)

(None, 8)

(None, 6)

Output Shape Param #

0

130

88

54

Total params: 272
Trainable params: 272
Non-trainable params: 0

Figure 8: Neural network model architecture.
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Figure 9: Graphs of accuracy and loss for training and validation datasets.
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correctness of the yoga pose is generated. +erefore, the
runtime is divided into three parts: (1) extraction and
computation of features time for every frame, (2) classi-
fication, and (3) feedback generation time of categorizing
yoga pose per frame. +e runtime for the extraction and

computation of features remains constant for each method.
+e runtime analysis is carried out on the Xeon(R) CPU
E3-1240 v5 and NVIDIA GeForce GTX-1080.

Table 3 presents the mean average runtime per frame
together with the standard deviation of the experimental
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Figure 10: Confusion matrices of training, validation, and testing datasets. (a) Training, (b) validation, and (c) testing.
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Figure 11: +e graph illustrates the plot of different competitive models.

Table 2: Table represents the accuracy result of the experimented models.

Model
Accuracy

Training Testing
SVM 0.9532 0.9319
CNN 0.9934 0.9858
CNN+LSTM 0.9987 0.9938
MLP 0.9962 0.9958

Table 3: Evaluation of proposed work runtime in milliseconds with various techniques running. Mean (F.E.+C) demonstrates the mean
average runtime per frame for extraction and computation of features with yoga pose classification.Mean (F.G.) is themean average runtime
per frame for feedback generation.

Methods
CPU GTX-1080

Mean (F.E.+C) Mean (F.G.) Mean (F.E.+C) Mean (F.G.)
SVM 6574.8 ± 134.7 16.4 214.5 ± 10.6 10.32
CNN 6528.6 ± 112.6 15.2 208.4 ± 15.2 8.36
CNN+LSTM 6512.6 ± 118.4 16.6 206.8 ± 16.8 7.18
MLP 6504.4 ± 124.3 12.3 206.3 ± 12.6 6.47
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methodology. +e time is presented in milliseconds. It in-
corporates the time taken per frame on feature extraction
and classification with feedback development.

6. Conclusions

+e approaches presented in this research are based on
deep learning to detect incorrect yoga posture and also
advise the user to improve the pose by specifying where the
yoga pose is going wrong. In the proposed system, the users
can select the desired pose for practice and can upload
recorded videos of their yoga practice pose. +e research
has extracted monitoring activities angles and used them as
a feature as they are scaled. In some cases, if key points are
rotated then angles are not changing, which does not
deliver good results. In this system, angles with the ground
are considered but not between joints, so if there is any
slight rotation of key points, then angles are changed. With
these features, multilayer perceptron is trained to achieve
an accuracy of 0.9958 for testing datasets. In existing re-
search, SVM achieved a test accuracy of 0.9319, CNN
achieved 0.9858, and CNN+LSTM achieved 0.9938. In the
system, MLP power is much lower than CNN and
CNN+LSTM but achieved an accuracy of 0.9958 with
modified features. When compared to existing techniques,
the experimental results show promising results. +e
proposed approach maintains low computational com-
plexity, can be applied to someone’s busy life for self-yoga
learning, and can detect incorrect yoga posture to avoid
chronic problems.

6.1. Future Scope. +e proposed system is confined to 6
yoga poses, where there are a total of more than 80 yoga
poses. +e proposed dataset can be expanded by adding
required yoga pose key points. +e technology may also be
used to make real-time predictions and self-training on a
mobile device. +ere are several instances of real-life
applications in which a single individual posture evalu-
ation will not be enough; for example, a pose estimate in
crowded environments will need to detect and recognize
the pose of each participant. To include many poses and to
get model works on many poses (classifying many poses)
is challenging enough. Keras pose estimation influences
the performance of the model; steps should be taken to get
key points when body parts are overlapped or missing to
achieve better results. +is method to extract angles as
features can be used for other applications like activity
detection and sports activity monitoring.

Data Availability

+e data that support the findings are available on request to
the corresponding author.
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