
Research Article
Fine-Grained Software Defect Prediction Based on the
Method-Call Sequence

Fengyu Yang ,1,2 Yaxuan Huang ,2 Haoming Xu ,2 Peng Xiao ,2 and Wei Zheng 2

1College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
2Software Evaluation Center, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China

Correspondence should be addressed to Fengyu Yang; yangfengyu@nchu.edu.cn

Received 4 May 2022; Accepted 2 July 2022; Published 3 August 2022

Academic Editor: Wei Zheng

Copyright © 2022 Fengyu Yang et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Currently, software defect-prediction technology is being extensively researched in the design of metrics. However, the research
objects are mainly limited to coarse-grained entities such as classes, �les, and packages, and there is a wide range of defects that are
di�cult to predict in actual situations. To further explore the information between sequences of method calls and to learn the code
semantics and syntactic structure between methods, we generated a method-call sequence that retains the code context structure
information and the token sequence representing semantic information. We embedded the token sequence into the method-call
sequence and encoded it into a �xed-length real-valued vector. We then built a defect-prediction model based on the transformer,
which maps the code-vector representation containing the method-call sequences to a low-dimensional vector space to generate
semantic features and syntactic structure features and also predicts the defect density of the method-call sequence. We conducted
experiments on 10 open-source projects using the ELFF dataset. �e experimental results show that the method-call sequence-
level prediction e�ect is better than the class-level e�ect, and the prediction results are more stable than those of the method level.
�e mean absolute error (MAE) value of our approach was 8% lower than that of the other deep-learning methods.

1. Introduction

�e software defect-prediction process involves the extraction
of metrics and the construction of a defect-prediction model.
In recent years, most traditional software defect-prediction
methods use machine-learning algorithms to build defect-
prediction models, and the extracted metrics are used as
model features [1–3]. Several traditional metrics were devised
by researchers to distinguish between defective and non-
defective �les. However, the traditional metrics mainly focus
on code complexity and often neither distinguish programs
with di�erent semantics nor fully capture the complex se-
mantic information in the source code and the relationship
between codemodules. Deep learning can extract features and
combine them for higher-level abstraction and learn the
essential features hidden in changing data by discovering
distributed data representations. Some researchers have used
deep learning to automatically capture the semantic repre-
sentation and syntactic structure of a program.

According to the size of the area in which they appear,
defects are divided into two categories: coarse grained
(packages, �les, classes, etc.) and �ne grained (methods, code
lines, changes, etc.). Currently, most studies on software
defect prediction are based on program modules. However,
during program-module integration, speci�c defects often
appear, but only when executing certain instructions,
resulting in predictions missing this information. �e
method invocation level is between the class and method
levels and is part of the integration process. �erefore, this
study investigates defect prediction from the perspective of
method-call sequences. Analyzing the dependencies of
methods in the invocation process can obtain contextual
information betweenmethods, and this information helps to
discover defects arising from the method invocation process.
With the impressive results of deep learning models in
natural language processing research, researchers have
started to use deep learning models to automatically learn
semantic features in programs, thus improving the

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 4311548, 15 pages
https://doi.org/10.1155/2022/4311548

mailto:yangfengyu@nchu.edu.cn
https://orcid.org/0000-0003-4770-3857
https://orcid.org/0000-0001-7262-5155
https://orcid.org/0000-0001-6289-8379
https://orcid.org/0000-0002-8118-0730
https://orcid.org/0000-0002-1890-8186
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4311548

performance of defect prediction. Inspired by this research
trend, this study uses a deep learning model to learn the
semantic features of a method-call sequence and uses that
semantic feature to predict the probability of defects in the
method-call sequence.

For the effective use of code semantic information and
the potential association between code modules for software
defect prediction, we propose a method of fine-grained
software defect prediction via the method-call sequence. In
the granularity method, we use the transformer to build a
defect-prediction model that generates semantic and syn-
tactic structure features (TSASS). It obtains the defect
density of the new method-call sequence.

Our study makes the following contributions:

(1) We propose a method calling sequence-level defect
prediction and construct the defect prediction model
TSASS, which uses the transformer model to auto-
matically learn the semantic features of the method
calling sequence to construct the defect prediction
model and to predict the probability of defects in the
method calling sequence.

(2) Experiments are conducted on the ELFF dataset, and
the results show that our method can effectively
improve the prediction performance of the defect
predictionmodel and has the lowest error in terms of
comparison with other methods.

'e remainder of this paper is organised as follows:
Section 2 introduces related work on traditional metric
defect prediction, deep-learning metric defect prediction,
and fine-grained defect prediction. Section 3 describes the
proposed TSASS approach. Section 4 presents the experi-
mental setup and parameter settings. Section 5 analyses the
experimental results. Section 6 provides further exploration
and threats to validity. Section 7 summarises our work.

2. Related Work

2.1. Defect Prediction Based on Traditional Metrics.
Traditional code metrics primarily focus on the statistical
characteristics of programs and assume that defective and
nondefective modules have distinguishable statistical and
object-oriented characteristics. Common traditional metrics
are the LOC [3], Halstead metric [4], McCabe metric [5], CK
metric [6], MOOD metric [7], and code smell metric [8].
Aman et al. [9] proved that comment lines can also be used
as metrics for analysing module defects. Considering that
redundant metric elements increase the model construction
time, Chen et al. [10] regarded feature selection as a mul-
tiobjective problem: one objective is to minimize the number
of features selected and the other is to maximize the defect-
prediction performance.

2.2. Defect Prediction Based on Deep-Learning Metrics.
'rough observation of the actualised program modules,
researchers [11] have found that, sometimes, traditional
metrics cannot accurately distinguish if the modules are
defective. 'is is because defective and nondefective

modules have the same traditional metrics, thus negatively
affecting the training of the defect-prediction model. 'is
phenomenon is caused by the differences in the semantic
information and syntactic structure of the modules. It is
necessary to establish a more accurate prediction model to
distinguish modules with different semantics. At present,
researchers [12–15] improve the performance of defect
prediction by learning the semantic features of the source
code.

Wang et al. first proposed the use of deep learning to
automatically capture semantic features. 'ey parsed the
source code into an ASTand then used a deep-belief network
(DBN) to extract token vectors from the AST nodes and
generate semantic features. Subsequently, they extracted
semantic features from source code changes and extended
change-level defect prediction [16]. Deng et al. [17] proposed
a defect-prediction framework based on bidirectional long
short-term memory network (Bi-LSTM). 'e long-distance
dependence of Bi-LSTM can better learn contextual se-
mantic features in long-sequence data. Dam et al. [18] be-
lieved that traversing AST will cause part of the semantic
information to be lost and would not reflect the code syntax
structure. 'ey proposed a tree-based LSTM (TB-LSTM)
method that uses a tree-LSTM to match the AST repre-
sentation. Shi et al. [19] suggested that adjacent source codes
constitute a strong semantic correlation. 'ey used short
paths to describe ASTterminal nodes and control logic using
paired short paths to describe code semantic information.

2.3. Defect Prediction Based on Fine-Grained Analysis.
Fine-grained analysis is a challenge in the field of software
defect-prediction research. Compared with coarse-grained
prediction, fine-grainedmethods can render software testing
more reasonable when allocating resources. Recent studies
in Java software have shown that the file-level prediction
model is more effective than that of the package-level
[17–22], and the method-level [23–25] prediction model is
more effective than those of the package-level and file-level.
Pascarella et al. [25] used different systems and periods to
replicate the research of Giger et al. [26] onmethod-level bug
prediction, and they analysed the defect-prediction per-
formance under actual conditions. It is difficult to collect
method-level metrics manually. In contrast, deep learning
can automatically learn code semantics to easily extract
method-level semantic features. Shippey et al. [27] used an
AST n-gram to identify defective code features and verified
that the ASTn-gram has a strong correlation with defects in
some systems. Mo et al. [28] proposed a series of metrics in
method-level defect prediction and analysed the impact of
different metrics on model prediction performance.

We propose a software defect prediction method based
on an attention mechanism. 'e method inputs the vector
representation of the code into the TSASS model so as to
extract the semantic features and syntactic structure features
of the code, which can localize defects to the method-call
sequence and finally perform defect prediction to predict the
defect density of the method-call sequence and reduce the
development cost of developers [29].

2 Computational Intelligence and Neuroscience

3. Approach

In this section, we introduce in detail the overall architecture
of TSASS, which automatically extracts code semantic and
syntactic structural features from the source code for defect
prediction. As shown in Figure 1, TSASS is divided into four
stages. In the first stage, the method-call sequence is
extracted from the source code. In the second stage, each
method in the source code is parsed into an AST, which is
traversed to obtain the token sequence of each method. 'e
token sequence is then embedded in the method-call se-
quence. In the third stage, one-hot encoding is used to map
the token sequence containing the method-call sequence to
the numerical space to obtain the token real-valued vector
sequence. 'is contains code semantic information and the
syntactic structure. In the fourth stage, the semantic and
syntactic structure features are extracted through the TSASS
model, and finally, the feature is input into the defect-
prediction model for training and prediction.

3.1. Parsing Source Code. To obtain the semantic informa-
tion of each method, we split each Java file into separate
method code blocks, parse each method into an AST (the
root node of each tree is the method name of the method),
and traverse each AST to extract key information nodes. We
used the open-source Python package javalang (https://
github.com/c2nes/javalang) to parse the source code.
First, each class was parsed into an AST. 'en, the method
declaration node in the AST was traversed to determine the
starting line of the first method and the ending line number
of the last method in the class file. Finally, the content
between the closing brace and the next closing brace was cut
into a single method and this was repeated until the end line
number was cut. After obtaining a separate method code
block, we used javalang to parse each method to obtain a
method-level AST.

Several types of ASTnodes were identified after parsing.
Because some node types had insufficient information and
others were too infrequent, we excluded them and only
selected three types of nodes on the AST: method invocation
and class instance creation nodes, declaration nodes, and
control-flow nodes. Because AST is method level, the class
declaration node is not extracted. We, therefore, record the
method invocation and class instance creation nodes as plain
text and mark the method-call structure in parentheses. We
then record the node name of the declared node and the
node type of the control-flow node. Figure 2 shows all the
selected AST nodes. Algorithm 1 describes the process of
parsing the source code.

3.2. Embedding Semantics into the Method-Call Sequences.
Fine-grained program modules can narrow the range of
predicted defects. 'is method can be developed as a finer-
grained program module using Java. 'e existing method-
level defect prediction considers whether the defects are
present separately in each method, but the dependence
between the methods is relatively strong. 'e method-call
sequence reflects the “interaction” relationship between the

different methods, and some defects occur only after a
particular method-call sequence. 'erefore, we generate the
method-call sequence from the project, embed the semantic
information extracted from the AST into the method-call
sequence, supplement the code hierarchical structure in-
formation, and finally encode the sequence into a real-valued
vector that can be input to the deep-learning model.

We used the Java ASM (Java bytecode manipulation
framework, https://asm.ow2.io/) to extract method-level call
relationships to obtain the method-call graph and then used
the random-walk technique to traverse the graph to obtain
the method-call sequence. Random walk works as follows:
starting from a random node, select the next hop from the
child node set of the node according to the probability of the
walk and repeat the operation until the child node of the
current node is empty. At this point, we have reached the
end of the call chain. We store the result in a list and repeat it
for each current node until we have traversed all the child
nodes.'e initial node is the head node of the call chain, and
the probability of setting the walk is determined by the child
nodes. 'e calculation formula is as follows:

seed � N%n, (1)

where n is the number of child nodes, N is a random
number, and the range is N ∈ (2n, 10n).

After obtaining the method-call sequence, we must
embed the token sequence formed by parsing the source
code into the method-call sequence. According to the
method contained in each method-call sequence, the
method-call sequence is matched with the corresponding
token sequence of the method to obtain the token sequence
of the method-call chain. Because the input to the TSASS
model is a method-call sequence, the defect density of each
method-call sequence must be calculated according to the
label of each method to obtain the label of the method-call
sequence defined as follows:

L � 􏽘
n

i�1

li
n

, (2)

where li is the tag value of each method and n is the length of
the method-call sequence.

3.3. Encoding Token Sequences and Handing Imbalance

3.3.1. Encoding Token Sequences. 'e token sequence ob-
tained by the semantic embedding method-call sequence is a
string that cannot be directly input into the deep-learning
model. 'e token sequence must be mapped to the nu-
merical space to obtain a real-valued vector. We used the
tokeniser in the Keras (https://keras.io/) library to map the
words in the text to the real number vector. First, a mapping
dictionary was established between the integers and tokens.
Assuming that the length of the token sequence is n, each
token corresponds to a unique integer, and the mapping
range is 1 to n. 'en, we calculated the frequency of each
token and sorted it according to the token frequency and set
the maximum number of words to be retained as numwords.

Computational Intelligence and Neuroscience 3

https://github.com/c2nes/javalang
https://github.com/c2nes/javalang
https://asm.ow2.io/
https://keras.io/

�is ensures that the most common and most frequent
numwords words are returned. From this, we built an index-
mapping dictionary of ordered tokens, with more frequent
tokens in the front. Finally, each token is represented as a
high-dimensional vector using a dictionary. We set
numwords � 2000.

3.3.2. Handling Imbalance. Because the software defect-
prediction samples are usually unbalanced (i.e., the samples
with defects account for a small part of all samples), if such
samples are directly input into the model for training, the
prediction results will be biased toward nondefective sam-
ples; therefore, the training set must be processed with a data
imbalance. Oversampling randomly selects samples from the

minority class to replicate, whereas undersampling ran-
domly deletes samples from the majority class until all the
classes have the same number of samples. Undersampling
may therefore discard some useful data in the dataset [30].
�erefore, to avoid over�tting, we integrate the over-
sampling and undersampling methods. First, we use random
oversampling to copy samples from the minority class, re-
duce the ratio of defective-to-non-defective samples, and
then use random undersampling to delete most samples,
adjusting the ratio to 1 :1 to generate a balanced training set.

3.4. TSASS Model. Considering that the sequence is rela-
tively long and contains context relations of di�erent
lengths, we built a neural network model, called TSASS,
based on the transformer. �is model comprises an input
layer, an encode layer, a global average pooling (GAP) layer,
and an output layer. �e structure is shown in Figure 3. Nx
represents the number of superimposed encode layers.

3.4.1. Input Layer. �e input layer is responsible for pro-
cessing the input of the data. �e sequence is �rst encoded,
as stated above, to obtain a real-valued vector. However, the
results representing the words are sparse, each word is in-
dependent, and the similarity between di�erent words
cannot be identi�ed. Because the context between the codes
is highly crucial, we use word embeddings to map the
features of words to convert them to lower dimensions and
create words with the same meaning and similar
representations.

Because the length of the sequence is variable and TSASS
requires that each token vector input has the same �xed
length, we pad the sequence. To avoid overly sparse vectors,
the appropriate vector length is selected to add zeros or
delete the sequence. After a uniform sequence length, the
shorter sequence is �lled with several zeros. To prevent the
attention mechanism from focusing on the zero-padded
data, the sequence must be masked. Certain values must

Source files

functiondecl

unsigned gcd params block

param param

unsigned x unsigned y

while return

y

block

>

x 0

vardecl = =

unsigned temp y x % y temp

y x

method AST token sequences

M1 t1,t2,...tn

M2 t1,t2,...tn

M3 t1,t2,...tn

M4 t1,t2,...tn

ĊĊ ĊĊ

... ...

AST node index

for 1

offer() 2

poll() 3

Element() 4

ĊĊ ĊĊ

method call sequences label

M1,M2,...Mn 1

M1,M2,...Mn 2

M1,M2,...Mn 3

M1,M2,...Mn 4

ĊĊ ĊĊ

M'1,M'2,...M'n ?

Output

Global Average
Pooling

Input
Embedding

+

Add & Norm

Feed Forward

Add & Norm

Multi-Head
Attention

Generate

Traverse

(1) Parsing source code (2) Embedding semantics into
the method call sequences (3) Encoding token sequences (4) Generate semantic syntax structure

fearures and defect prediction

Predict
(defect density)

Embed

Map

Encode training instances

new instances

Nx

Positional
Encoding

Parse

Figure 1: Overview of the proposed approach.

Method invocation and Control-flow nodes
class instance creation

nodes
MethodInvocation
SuperMethodInvocation
FormalParameter
BasicType
CatchClauseParameter
MemberReference
SuperMemberReference
ReferenceType

Declaration nodes
InterfaceDeclaration
MethodDeclaration
ConstructorDeclaration
VariableDeclarator

IfStatement
WhileStatement
DoStatement
ForStatement
AssertStatement
BreakStatement
ContinueStatement
ReturnStatement
ThrowStatement
SynchronizedStatement
TryStatement
SwitchStatement
BlockStatement
StatementExpression
TryResource
CatchClause
CatchClauseParameter
SwitchStatementCase
ForControl
EnhancedForControl

Figure 2: AST nodes.

4 Computational Intelligence and Neuroscience

therefore be masked such that they have no e�ect when the
parameters are updated. �e speci�c operation, in this case,
is to add an extremely large negative number to the value of
these positions and SoftMax, to ensure that the weight of
these positions is close to zero.

3.4.2. Encode Layer. �e transformer comprises a super-
position of the encoder and decoder. �e encoder maps the
input sequences to continuous representation sequences,
and the decoder generates output sequences word by word
according to the sequences generated by the encoder. �e
encoder can extract semantic features and syntactic structure
features from the source code; that is, the token sequence is
mapped to a continuous representation sequence.�erefore,
we use the transformer encoder as the encode layer of the
TSASS.

As shown in Figure 4, the coding layer is composed of
multiple self-attention layers, add and norm layer, and
feedforward neural network (FFN). �e multihead attention
layer comprises multiple self-attention layers running in
parallel. �e position of the token is also an extremely
important piece of information in distinguishing the dif-
ferent e�ects of the defects represented by the method-call
sequence in a di�erent location. Because the transformer
does not consider the positional relationship of the sequence
before inputting the encode layer, the token vector sequence
must be positionally encoded. First, a matrix PE that has the
same dimension as the input token sequence is constructed,
and then it is added to the token vector sequence to obtain
the input of the encode layer. �e position vector represents
the position of each word or the distance between di�erent
words, providing e�ective distance information in the

calculation of the multihead attention layer. �e PE con-
struction formula is as follows:

PE(pos,2i) � sin
pos

100002i/dmodel
(),

PE(pos,2i+i) � cos
pos

100002i/dmodel
(),

(3)

where pos denotes the position of the current word in the
sentence, i denotes the ordinal number of each value in the
vector, the word embedding value on the even-numbered
column is activated by the sine function, and the word
embedding value on the odd-numbered column is activated
by the cosine function.

�e add and norm layer is located around other sub-
layers to prevent model over�tting, and the gradient dis-
appears during the training process. �e add function aims
to temporarily remove the neural network units from the
network according to a certain probability calculated during
the TSASS training process to weaken their dependence on
one another. After the network layer, the data are no longer
normalised, and the deviation becomes increasingly larger.
�erefore, the data must be renormalised to solve the
problem of gradient disappearance during backpropagation.

3.4.3. Global Average Pooling Layer. �e local features are
captured by the encode layer. A fully connected layer is
required to integrate the local features through the weight
matrix. We built a GAP layer to map the feature map into a
vector and perform multiplication operations to achieve
dimension reduction. GAP is mainly used to perform a

Output

Global Average
Pooling

Input
Embedding

+

Add & Norm

Feed Forward

Add & Norm

Multi-Head
Attention

Positional
Encoding

Nx

Figure 3: Architecture of TSASS.

Computational Intelligence and Neuroscience 5

mean pooling of the global features on the features of the last
layer to form a feature point, and these feature points are
then combined into the �nal feature vector. Compared with
the fully connected layer, GAP is simpler and more able to
convert between global features and the �nal classi�cation,
reducing spatial parameters, thus rendering the model
highly robust.

3.4.4. Output Layer. After extracting the features from the
semantic information and syntactic structure, the features
must be input into the machine-learning model for defect
prediction. �e commonly used machine-learning model is
logistic regression, which is generally used to handle clas-
si�cation problems. However, as the original output of lo-
gistic regression is the probability, it is a continuous variable.
When logistic regression processes continuous variables, the
simple least square method must be used for parameter
estimation, and the loss function must be set similar to that
in the regression task. �e output layer of the TSASS is built
with a fully connected layer, and the activation function uses
a sigmoid to regress the output of the GAP layer. �e output
result provides the probability that the method-call sequence
contains defects.

3.4.5. Training and Optimisation. In the training stage, we
use Adam [31] for optimisation, Smooth L1 as the training
loss function, and the warmup strategy to update the
learning rate. During the initial stage of training, the model
is not stable. A larger learning rate increases the di�culty of
convergence and causes over�tting. �erefore, warmup
must be initiated with a low learning rate at the beginning of
training and then switched to a higher learning rate for the
usual attenuation after the loss has dropped to a certain
extent.

4. Experimental Setup

4.1. Research Questions. In this section, we present the
design of our experiments to verify the e�ectiveness of
TSASS and discuss the following three questions:

(1) RQ1: can the method-call sequence-level defect
prediction produce better performance than the
class-level defect prediction and method-level defect
prediction?

(2) RQ2: is the TSASS model better than the latest deep-
learning model?

4.2. Experimental Datasets. To conduct experimental veri-
�cation and evaluation, we selected 10 Java open-source
projects in the ELFF [32] datasets as our evaluation dataset.
�e ELFF datasets contain information on 23 Java defects at
the class and method levels of the open-source project and
have been used in previous software defect-prediction
studies [27]. Table 1 lists the basic information of these
projects, where the number of method defects is the number
of methods containing defects in the project, and the pro-
portion of method defects is the ratio of the number of
method defects to the total number of methods.

4.3. Evaluation Metrics. In general, the most commonly
used evaluation indicators for evaluating a machine-learning
regression model are the mean squared error (MSE), root-
mean-squared error (RMSE), and mean absolute error
(MAE). We therefore used the MSE and MAE to evaluate
our proposed model. �ese two indicators are often used to
evaluate defect density in software defect prediction [33–36].

4.3.1. MSE. MSE is the average of the squared di�erence
between the predicted target value and the actual target value
in the dataset:

MSE �
1
n
∑
n

i�1
fi − yi()2, (4)

where fi is the expected number of defects in the program
module, yi is the corresponding actual value of the defect,
and n is the number of modules. �e greater the di�erence
between the predicted and the actual values, the greater the
square of the resulting positive error.

Add & Norm

Add & Norm

Self-Attention

FFN FFN

+ +Positional
Encoding

X1 X2

Figure 4: Encode layer.

6 Computational Intelligence and Neuroscience

4.3.2. MAE. MAE measures the average magnitude of the
error in a set of predictions, representing the difference
between the predicted value and the actual value:

MAE �
1
n

􏽘

n

i�1
fi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (5)

When the difference is small, owing to the square of the
error value, MSE provides more weight to the larger dif-
ference, which then increases the average error score. MAE
does not assign error weights to different types but makes the
error score linearly increase with the increase in the error,
thereby compensating for the shortcomings of MSE.

4.4. Baselines. To study RQ1 and RQ2 and evaluate the
effectiveness of our method, we performed three sets of
experimental comparisons:

(1) Verification of the Validity of the Method-Call Se-
quence. To study the effectiveness of the method-call
sequence-level defect prediction, we compared the
prediction models of different levels, namely, class
level and method level, to verify the effectiveness of
the method-call sequence. 'e label of the dataset is
the number of defects contained in each class/
method. 'e semantic information extracted from
the program module and the defect-prediction
model is the TSASS model proposed in our research.
We performed all the comparative experiments us-
ing the best parameters to ensure the validity of the
experiment.

(2) Verification of the Effectiveness of the TSASS Model.
Currently, the deep-learning models commonly used
for software defect prediction are the convolutional
neural network (CNN), recurrent neural network
(RNN), and LSTM. To verify the effectiveness of the
TSASS model, we compared our model with other

deep-learning models in terms of software defect-
prediction capabilities. We designed two compara-
tive experiments. We input the proposed method-
call sequence into the latest Seml [37] andDP-ARNN
[38] models to perform experiments on defect
prediction. Both Seml and DP-ARNN transform the
ASTof the program into vectors and then input them
into the RNN model with attention mechanism and
LSTM model respectively, which both learn the
contextual information of the code automatically
and achieve better performance in defect prediction.
'e TSASS model in this study learns the semantic
and contextual information of the sequence of
method calls, so these two deep models are used as a
baseline approach to verify the effectiveness of
TSASS in semantic feature extraction. Further, we
used the best model parameters in our experiment.
To facilitate comparison, the predicted defect ten-
dency of the Seml and DP-ARNN models was
changed to the predicted defect density, and the loss
function of the comparison model was changed to
Smooth L1, which is consistent with our results.

(3) Verification of Effectiveness of the Overall Method. To
verify the effectiveness of the overall method, we
compared the Seml and DP-ARNN methods to our
method. Seml uses the continuous bag-of-words
(CBOW) model to characterise the program AST
with vectors followed by LSTM to extract semantic
features from the vectors and predict defects. DP-
ARNN uses an RNNwith an attention mechanism to
automatically learn semantic features from the token
sequence extracted from the AST and then uses the
attention mechanism to assign higher weights to
important features, ignore unimportant informa-
tion, and finally perform defect prediction. Both
Seml and DP-ARNN are class-level defect predic-
tions, and the parameters of the model are used with

Input: Source files F � f1, f2, . . . , fn􏼈 􏼉, the set of AST node types to be retained, S

Output: AST token sequences for each method T � t1, t2, . . . , tk􏼈 􏼉

Algorithm:
(1) for i← 1, n do
(2) ASTi← constructing AST from fi

(3) method[1 . . . m]← split ASTi into method
(4) for j← 1, m do
(5) ASTj← constructing AST from method[j]

(6) Traversing node in ASTj by DFS
(7) if node in S

(8) Adding node into tj

(9) end if
(10) Adding tj into T

(11) end for
(12) end for
(13) return T

ALGORITHM 1: Parsing source code process.

Computational Intelligence and Neuroscience 7

their corresponding best parameters. For the con-
venience of the comparison, the output was changed
to predict the defect density of each class.

5. Results

Table 2 presents the defect information of the method-call
sequence of the project, calculated as explained in Section 3.2.

5.1. RQ1: Can Method-Call Sequence-Level Defect Prediction
Outperform Class-Level Defect Prediction and Method-Level
Defect Prediction? Class-level defect prediction differs from
method-level and method-call sequence-level defect pre-
diction. Classes are more than just methods. To fairly
compare class-level, method-level, and method-call se-
quence level methods, we disregard everything other than
methods and extract the AST, which is the same as the node
type extracted at the method-call sequence level. Class-level
and method-level samples also have class imbalance
problems. First, random oversampling was performed to
adjust the ratio of the minority class to the majority class,
and then, random under-sampling was performed to
achieve a ratio of 1 : 1. For each experimental dataset, a 4 : 1
ratio was used to divide the training and test sets. 'e
model used TSASS. 'e label of the test sample was
compared with that of the model output, and the MAE and
MSE were calculated.

'e experimental results of the class level and method-
call sequence level are presented in Table 3. 'e lower MAE
and MSE values are presented in bold. 'e table indicates
that 8/10 projects in the method-call sequence have better
MAE values than those of the class, and 7/10 projects have
better MSE values than those of the class. 'e MAE of the
method-call sequence level is 6.3% lower than that of the
class level, and the MSE is 2.33% lower, indicating that the
defect prediction of the method-call sequence has an ad-
vantage over the class-level one.

Table 4 presents the results of defect prediction at the
method-level and method-call sequence level. Tables 5 and 6
indicate that the MAE values of the method-call sequence-
level prediction are better than those of the method-level one
on 2/10 projects, and the MSE values of 7/10 projects are
lower than those of the method-level one. 'e MAE of the
method level is 4.44% lower than that of the method-call
sequence level, and the MSE of the method-call sequence
level is 1.75% lower than that of the method level. Although
the method-level MAE value is lower than that of the
method-call sequence, the MSE value is not as low as the
method-call sequence, indicating that method-level defect
prediction is unstable. However, study results have revealed
that the method-level defect-prediction model has poor
generalisation. When a more practical strategy is used for
evaluation, the performances of all the models will fall
significantly, and the results are close to those of random
classifiers [25]. From an intuitive perspective, it is more
difficult to find defects in large program modules. Fine-
grained predictions may be more effective than coarse-
grained predictions. Because the method-call sequence is a

sequence of relationships between methods, the methods in
the sequence are cross-class, and the granularity of the
method-call sequence is fine, which is between that of the
class level and the method level.

We analysed the reasons why method-call sequence is
more effective from the perspective of LOC and the number
of defects using HTML Unit 2008 and Unicore1.4. Previous
studies [39] have used the LOC as a metric. Figure 5 shows a
box plot of the LOC for classes, methods, and method-call
sequences. Comparing the median LOCs of the three, in the
HTML Unit 2008 project, the median LOC of the class is
between 15 and 70, the median of the method-call sequence
is between 15 and 40, and the method is between 2 and 12. In
Unicore1.4, the median LOCs of the three projects are
10–90, 10–30, and 2–12, respectively. 'e method-call se-
quence requires two to three times less work to locate defects
than at the class level. If more defects are found in a small
number of LOCs, it means that when the same number of
LOCs is studied, the method-call sequence can find more
defects in quality assurance. Developers can find defects
more conveniently based on integration tests. 'is validates
the proposed method-call sequence.

5.2. RQ2: Is the TSASS Model Better than the Latest Deep-
Learning Model? We used the Seml and DP-ARNN models
for comparative experiments to evaluate the effectiveness of
the TSASS model. Seml is a defect-prediction model based
on the long- and short-term memory network proposed by
Liang et al. [37]. DP-ARNN is a defect-prediction model
based on the attention-based recurrent neural network
proposed by Fan et al. [38].

We used the same method as the original papers to
generate the inputs of Seml and DP-ARNN. When con-
structing its network structure, we used the same parameter
settings as those in references [37, 38]. Table 5 lists the Seml
and DP-ARNN inputs for each project.'rough comparison
and analysis of the MAE and MSE values of the ARNN and
TSASS models, 9/10 projects of the TSASS model were
found to have lower MAE values than those of Seml, and the
values were lower in all the projects than those of DP-
ARNN. 'e MAE value reached 0.095, which is 6% and
21.7% lower than those of Seml and DP-ARNN, respectively.
'e MSE value was 0.0254, which is 1.23% and 9.36% lower
than those of Seml and DP-ARNN, respectively.

Table 1: ELFF datasets.

Project Methods Defects Method defect rate (%)
EclEmma2.1 919 36 3.92
HTML unit 2008 4048 404 9.98
HTML unit 2010 9929 328 3.30
Jmol9 2979 166 5.57
Jmol10 4879 93 1.91
OmegaT3.5 5536 91 1.64
OmegaT3.6 6011 83 1.38
Saros1.0.6 1612 60 3.72
Unicore1.4 2269 176 7.76
Unicore1.6 3937 217 5.51

8 Computational Intelligence and Neuroscience

Figures 6 and 7 compare the MAE and MSE values of
models. 'e overall index value of our proposed TSASS
model is lower than that of the others, and the model yields
better prediction results than those of other models because it
not only solves the problem of long-distance dependence of
the DP-ARNN model but also solves the parallel problem of
the calculation process, so that the semantic syntax structure
features extracted by the model can better reflect the code
semantics, and the experimental results are more accurate.

Figures 8 and 9 compare the MAE andMSE values of the
overall methods, respectively. 'e MAE value of TSASS is
generally lower than 0.1, and the MSE value is generally

approximately 0.02. 'e effect of Seml is better than that of
DP-ARNN. DP-ARNN is particularly poor for the HTML
Unit 2008 and Saros1.0.6 projects.

In summary, our method is superior to class-level
defect-prediction and other deep-learning models, and it
is better than the Seml and DP-ARNN methods as a
whole. We introduce a method-call sequence, which can
better express semantic and grammatical structures,
according to which the method-call sequence can reduce
the size of the program module tested by the developer
and can predict specific defects during the integration
process.

Table 2: Method-call sequence defect information.

Project Method-call sequence Defects Method-call sequence defect rate (%)
EclEmma 2.1 588 20 3.40
HTML Unit 2008 5823 2074 35.62
HTML Unit 2010 1058 73 6.90
Jmol9 1729 168 9.72
Jmol10 3965 356 8.98
OmegaT3.5 6155 338 5.49
OmegaT3.6 7034 302 4.29
Saros1.0.6 1190 102 8.57
Unicore1.4 1103 275 23.11
Unicore1.6 3624 710 19.59

Table 3: Comparison of class and method-call sequence.

Project
MAE MSE

Class Method-call sequence Class Method-call sequence
EclEmma2.1 0.157 0.070 0.0466 0.0062
HTML Unit 2008 0.160 0.201 0.0360 0.0529
HTML Unit 2010 0.108 0.063 0.0314 0.0062
Jmol9 0.193 0.064 0.0551 0.0079
Jmol10 0.338 0.067 0.1245 0.0295
OmegaT3.5 0.098 0.093 0.0186 0.0544
OmegaT3.6 0.086 0.072 0.0299 0.0344
Saros1.0.6 0.255 0.082 0.0919 0.0138
Unicore1.4 0.134 0.104 0.0430 0.018
Unicore1.6 0.056 0.140 0.0100 0.0313
Average 0.158 0.095 0.0487 0.0254

Table 4: Comparison of method and method-call sequence.

Project
MAE MSE

Method Method-call sequence Method Method-call sequence
EclEmma2.1 0.055 0.070 0.0211 0.0062
HTML Unit 2008 0.043 0.201 0.0383 0.0529
HTML Unit 2010 0.029 0.063 0.0140 0.0062
Jmol9 0.028 0.064 0.0252 0.0079
Jmol10 0.015 0.067 0.0127 0.0295
OmegaT3.5 0.014 0.093 0.0111 0.0544
OmegaT3.6 0.051 0.072 0.0434 0.0344
Saros1.0.6 0.120 0.082 0.1158 0.0138
Unicore1.4 0.105 0.104 0.0898 0.0180
Unicore1.6 0.062 0.140 0.0583 0.0313
Average 0.051 0.095 0.0429 0.0254

Computational Intelligence and Neuroscience 9

Table 5: Comparison of di�erent models.

Project
MAE MSE

Seml DP-ARNN TSASS Seml DP-ARNN TSASS
EclEmma 2.1 0.084 0.126 0.070 0.0076 0.0198 0.0062
HTML Unit 2008 0.273 0.321 0.201 0.0865 0.1237 0.0529
HTML Unit 2010 0.088 0.176 0.063 0.0091 0.044 0.0062
Jmol9 0.053 0.290 0.064 0.0041 0.0892 0.0079
Jmol10 0.138 0.346 0.067 0.0307 0.1251 0.0295
OmegaT3.5 0.148 0.376 0.093 0.037 0.1456 0.0544
OmegaT3.6 0.102 0.451 0.072 0.0213 0.2079 0.0344
Saros1.0.6 0.291 0.221 0.082 0.0952 0.0721 0.0138
Unicore1.4 0.165 0.415 0.104 0.0324 0.1941 0.0180
Unicore1.6 0.207 0.395 0.140 0.0536 0.1694 0.0313
Average 0.155 0.312 0.095 0.0377 0.1190 0.0254

Table 6: Comparison of di�erent methods.

Project
MAE MSE

Seml DP-ARNN TSASS Seml DP-ARNN TSASS
EclEmma2.1 0.118 0.053 0.070 0.0417 0.0407 0.0062
HTML Unit 2008 0.271 0.298 0.201 0.0806 0.0955 0.0529
HTML Unit 2010 0.156 0.131 0.063 0.0380 0.0393 0.0062
Jmol9 0.122 0.116 0.064 0.0390 0.0402 0.0079
Jmol10 0.180 0.109 0.067 0.0515 0.0201 0.0295
OmegaT3.5 0.109 0.121 0.093 0.0198 0.0249 0.0544
OmegaT3.6 0.242 0.189 0.072 0.0631 0.0739 0.0344
Saros1.0.6 0.174 0.371 0.082 0.0724 0.1436 0.0138
Unicore1.4 0.206 0.219 0.104 0.0576 0.0622 0.0180
Unicore1.6 0.172 0.168 0.140 0.0338 0.0323 0.0313
Average 0.175 0.177 0.095 0.0497 0.0572 0.0254

Class Method Method Call

0

100

200

300

400

500

600

LO
C

(a)

Class Method Method Call

0
50

100
150
200
250
300
350
400
450
500
550

LO
C

(b)

Figure 5: Program module: class, method, and method-call sequence. (a) HTML Unit 2008. (b) Unicore1.4.

10 Computational Intelligence and Neuroscience

TSASS
Seml
DP-ARNN

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

M
A

E

Ec
lE

m
m

a 2
.1

H
TM

L
U

ni
t 2

00
8

H
TM

L
U

ni
t 2

01
0

Jm
ol

9

Jm
ol

10

O
m

eg
aT

3.
5

O
m

eg
aT

3.
6

Sa
ro

s1
.0

.6

U
ni

co
re

1.
4

U
ni

co
re

1.
6

Figure 6: MAE values of di�erent models.

TSASS
Seml
DP-ARNN

0
0.05

0.1
0.15

0.2
0.25

M
SE

Ec
lE

m
m

a 2
.1

H
TM

L
U

ni
t 2

00
8

H
TM

L
U

ni
t 2

01
0

Jm
ol

9

Jm
ol

10

O
m

eg
aT

3.
5

O
m

eg
aT

3.
6

Sa
ro

s1
.0

.6

U
ni

co
re

1.
4

U
ni

co
re

1.
6

Figure 7: MSE values of di�erent models.

TSASS
Seml
DP-ARNN

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

M
A

E

Ec
lE

m
m

a 2
.1

H
TM

L
U

ni
t 2

00
8

H
TM

L
U

ni
t 2

01
0

Jm
ol

9

Jm
ol

10

O
m

eg
aT

3.
5

O
m

eg
aT

3.
6

Sa
ro

s1
.0

.6

U
ni

co
re

1.
4

U
ni

co
re

1.
6

Figure 8: MAE values of di�erent methods.

Computational Intelligence and Neuroscience 11

6. Discussion

6.1. Further Exploration. Research on software defect pre-
diction in this study has solved some problems, but there is
still scope for improvement and research in many areas;
therefore, future research methods can focus on the fol-
lowing aspects:

(1) Aiming at the characteristics of Java language pro-
grams, this paper proposed the use of the method-
call sequence to re®ect the code hierarchy and
predict the defect density of the method-call se-
quence. Future research can build a semantic and

syntactic structure feature extraction model for
di�erent programming language characteristics
without losing the code structure.

(2) �is paper constructed a method-call relationship
key-value pair collection, which is similar to a tree
structure because methods can call each other, and
the tree can be treated as a graph structure. �is
study uses the idea of a random walk to extract the
method-call sequence from the program. In graph
embedding, there are better random-walk algo-
rithms. In the future, the method-call sequence
generation process can be improved.

2 4 8 16

Number of Multi-Head Attention heads

0.2

0.22

0.24

0.26

0.28

0.3

M
A

E

(a)

1 2 3 4 5 6 7 8

Number of Encode layers

0.16
0.18

0.2
0.22
0.24
0.26
0.28

0.3

M
A

E

(b)

16 64 128 256 512 1024 2048

Number of Word vector dimensions

0.12

0.14

0.16

0.18

0.2

0.22

0.24

M
A

E

(c)

64 128 256 512 1024

Number of FFN layer nodes

0.18
0.2

0.22
0.24
0.26
0.28

0.3
0.32

M
A

E

(d)

64 128 256 512 1024

Batch size

0.15
0.17
0.19
0.21
0.23
0.25
0.27
0.29
0.31

M
A

E

(e)

Figure 10: MAE of TSASS under di�erent parameter settings. (a) Multihead attention heads, (b) encode layers, (c) word-vector dimensions,
(d) FFN layer nodes, and (e) batch size.

TSASS
Seml
DP-ARNN

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

M
SE

Ec
lE

m
m

a 2
.1

H
TM

L
U

ni
t 2

00
8

H
TM

L
U

ni
t 2

01
0

Jm
ol

9

Jm
ol

10

O
m

eg
aT

3.
5

O
m

eg
aT

3.
6

Sa
ro

s1
.0

.6

U
ni

co
re

1.
4

U
ni

co
re

1.
6

Figure 9: MSE values of di�erent methods.

12 Computational Intelligence and Neuroscience

(3) In this study, to obtain semantic information from
the source code, the code is converted into an AST,
and then, the depth-first traversal method is used to
convert it into a sequence. In addition to the AST,
control-flow graphs can represent code semantics
and syntactic structures. Future research can express
the code with a control-flow graph and so forth and
then use the graph-embedding technology to learn
the semantic structure information in the graph for
defect prediction.

(4) Code change-level defect prediction is also a concern
for researchers. Current research only considers
change information. In the future, we can consider
combining change information with semantic
structure information as a semantic feature of code
change.

6.2. =reats to Validity

6.2.1. Implementation of Compared Models. We compared
Seml and DP-ARNN with our proposed TSASS. As the
original implementation of Seml and DP-ARNN has not yet
been disclosed, we implemented these models in Python. For
fairness, we used a consistent loss function and class im-
balance technology. In the training process, to achieve the
best results, the learning rate was fine-tuned. 'e other
parameters strictly refer to the original parameters of the
article. 'is may be different from the original imple-
mentation of these methods. TensorFlow was used as the
deep-learning framework.

6.2.2. Experimental Result Might Not Be Generalisable.
All the experimental projects were derived from ELFF
datasets composed of Java projects. Aiming at the charac-
teristics of Java language programs, we proposed the use of
the method-call sequence to reflect the code hierarchy and
predict the defect density of the method-call sequence. 'is
information may be language specific. 'erefore, it may not
be universal for the characteristics of different programming
languages.

6.2.3. MAE and MSE Are Not the Only Suitable Evaluation
Indicators. 'is study selected MAE and MSE as the
evaluation indicators of the prediction model, but other
indicators can be used for the regression problem of
defect prediction such as the magnitude of relative error
(MRE).

6.2.4. Parameter Selection. 'e main hyperparameters that
affect the TSASS model are the number of multihead at-
tention heads, the number of encode layers, the number of
FFN neurons, the dimension of the word vector, and the
batch size. We controlled the other variables to ensure that
only one variable changes each time and conducted ex-
periments on the aforementioned parameters to find suitable
values. We chose the HTML Unit 2008, Unicore1.4, and
Unicore1.6 projects to adjust the parameters and determine

the best parameters based on the average of these three
projects. As shown in Figure 10, we set the number of
multihead attention heads, number of encode layers,
number of FFN neurons, dimension of the word vector, and
batch size of the MAE value peaks as 2, 1, 1024, 256, and 128,
respectively.

7. Conclusion

'is study proposes software defect prediction at the level of
method-call sequences, where method-call sequences can
preserve method-to-method dependencies, thus reflecting
whether defects will arise during method invocation. In
addition, this study constructs a transformer-based deep
learning model to automatically learn the semantic infor-
mation and syntactic structure of method-call sequences.
'is method can obtain the semantic features in each
method and also capture the contextual information be-
tween methods during method invocation to find the
method-call sequences with high defect risk. 'is study
conducts experiments on 10 open source projects in the
ELFF dataset. 'e results show that defect prediction at the
method call sequence level is better than that at the class
level and more stable than that at the method level. 'e
TSASS model is also better at learning program semantic
features than the deep learning models compared, and the
MAE and MSE values of the TSASS model are lower than
those of the other deep models. In terms of the overall
performance of defect prediction, the MAE andMSE values
of the TSASS method are lower than those of the baseline
methods.

'is study chose to obtain semantic features by analysing
the abstract syntax tree of the program when characterizing
the method call sequences. In future studies, richer features
will be extracted. In addition, future research will be ex-
tended to cross-version and cross-project defect prediction.

Data Availability

'e authors selected 10 Java open-source projects in the
ELFF [32] datasets as their evaluation dataset. 'e dataset
can be found at “T. Shippey, T. Hall, S. Counsell, et al., So
you need more method level datasets for your software
defect prediction?: Voila!, Proc. 10th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and
Measurement. ACM, (2016) 12.”

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

Acknowledgments

'is work was supported by the Key Research and Devel-
opment Programme of Jiangxi Province (grant no.
20202BBEL53002) and the National Natural Science
Foundation of China (grant no. 61762067).

Computational Intelligence and Neuroscience 13

References

[1] Z. Xu, J. Liu, X. Luo et al., “Software defect prediction based
on kernel PCA and weighted extreme learning machine,”
Information and Software Technology, vol. 106, pp. 182–200,
2019.

[2] X. Cai, Y. Niu, S. Geng et al., “An under-sampled software
defect prediction method based on hybrid multi-objective
cuckoo search,” Concurrency and Computation: Practice and
Experience, vol. 32, no. 5, Article ID e5478, 2020.

[3] A. O. Balogun, S. Basri, S. J. Abdulkadir, and A. S. Hashim,
“Performance analysis of feature selection methods in soft-
ware defect prediction: a search method approach,” Applied
Sciences, vol. 9, no. 13, p. 2764, 2019.

[4] M. H. Halstead, Elements of Software Science, Elsevier, New
York, 1977.

[5] T. J. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, vol. SE-2, no. 4, pp. 308–320, 1976.

[6] M. Jureczko and D. Spinellis, Using Object-Oriented Design
Metrics to Predict Software Defects, Models and Methods of
System Dependability, pp. 69–81, Oficyna Wydawnicza
Politechniki Wrocławsk iej, Poland, 2010.

[7] R. Harrison, S. J. Counsell, and R. V. Nithi, “An evaluation of
the MOOD set of object-oriented software metrics,” IEEE
Transactions on Software Engineering, vol. 24, no. 6,
pp. 491–496, 1998.

[8] T. Hall, M. Zhang, D. Bowes, and Y. Sun, “Some code smells
have a significant but small effect on faults,” ACM Transac-
tions on Software Engineering and Methodology, vol. 23, no. 4,
pp. 1–39, 2014.

[9] H. Aman, S. Amasaki, T. Sasaki, and M. Kawahara, “Lines of
comments as a noteworthy metric for analyzing fault-
proneness in methods,” IEICE - Transactions on Info and
Systems, vol. E98.D, no. 12, pp. 2218–2228, 2015.

[10] X. Chen, Y. Shen, Z. Cui, and X. Ju, “Applying feature se-
lection to software defect prediction using multi-objective
optimization,”vol. 2, pp. 54–59, in Proceedings of the IEEE
41st Annual Computer Software and Applications Conference,
vol. 2, pp. 54–59, IEEE Press, Turin, Italy, July 2017.

[11] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” in Proceedings of the IEEE/
ACM the 38th International Conference on Software Engi-
neering, pp. 297–308, IEEE Press, Austin Texas, May 2016.

[12] J. Xu, F. Wang, and J. Ai, “Defect prediction with semantics
and context features of codes based on graph representation
learning,” IEEE Transactions on Reliability, vol. 70, no. 2,
pp. 613–625, 2021.

[13] X. Yang, X. Zhang, and Y. Tong, “Simplified abstract syntax
tree based semantic features learning for software change
prediction,” Journal of Software: Evolution and Process,
vol. 34, no. 4, p. e2445, 2022.

[14] H. Wang, W. Zhuang, and X. Zhang, “Software defect pre-
diction based on gated hierarchical LSTMs,” IEEE Transac-
tions on Reliability, vol. 70, no. 2, pp. 711–727, 2021.

[15] J. Lin and L. Lu, “Semantic feature learning via dual sequences
for defect prediction,” IEEE Access, vol. 9, pp. 13112–13124,
2021.

[16] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature
learning for software defect prediction,” IEEE Transactions on
Software Engineering, vol. 46, no. 12, pp. 1267–1293, 2020.

[17] J. Deng, L. Lu, and S. Qiu, “Software defect prediction via
LSTM,” IET Software, vol. 14, no. 4, pp. 443–450, 2020.

[18] H. K. Dam, T. Pham, S. W. Ng et al., “Lessons learned from
using a deep tree-based model for software defect prediction

in practice,” in Proceedings of the IEEE/ACM the 16th In-
ternational Conference on Mining Software Repositories,
pp. 46–57, IEEE Press, Montreal, QC, Canada, May 2019.

[19] K. Shi, Y. Lu, J. Chang, and Z. Wei, “PathPair2Vec: an AST
path pair-based code representation method for defect pre-
diction,” Journal of Computer Languages, vol. 59, p. 100979,
Article ID 100979, 2020.

[20] T. H. D. Nguyen, B. Adams, and A. E. Hassan, “Tudying the
impact of dependency networkmeasures on software quality,”
S, IEEE, in Proceedings of the 2010 IEEE International
Conference on Software Maintenance, pp. 1–10, IEEE, Timi-
soara, Romania, September 2010.

[21] Y. Kamei, S. Matsumoto, and A. Monden, “Revisiting com-
mon bug prediction findings using effort-aware models,” in
Proceedings of the 2010 IEEE International Conference on
Software Maintenance, pp. 1–10, IEEE, Timisoara, Romania,
September 2010.

[22] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A sys-
tematic and comprehensive investigation of methods to build
and evaluate fault prediction models,” Journal of Systems and
Software, vol. 83, no. 1, pp. 2–17, 2010.

[23] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction based on
fine-grained module histories,” in Proceedings of the 34th
International Conference on Software Engineering (ICSE),
pp. 200–210, IEEE, Zurich, Switzerland, June 2012.

[24] L. Pascarella, F. Palomba, and A. Bacchelli, “Re-evaluating
Method-Level Bug Prediction,” in Proceedings of the 25th
International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 592–601, IEEE, Campobasso,
Italy, March 2018.

[25] L. Pascarella, F. Palomba, and A. Bacchelli, “On the perfor-
mance of method-level bug prediction: a negative result,”
Journal of Systems and Software, vol. 161, Article ID 110493,
2020.

[26] E. Giger, M. D’Ambros, M. Pinzger, and H C Gall, “Method-
level bug prediction,” in Proceedings of the 2012 ACM-IEEE
International Symposium on Empirical Software Engineering
and Measurement, pp. 171–180, IEEE, Lund, Sweden, Sep-
tember 2012.

[27] T. Shippey, D. Bowes, and T. Hall, “Automatically identifying
code features for software defect prediction: using AST
N-grams,” Information and Software Technology, vol. 106,
pp. 142–160, 2019.

[28] R. Mo, S. Wei, Q. Feng, and Z. Li, “An exploratory study of
bug prediction at the method level,” Information and Software
Technology, vol. 144, Article ID 106794, 2022.

[29] Y. Wang, L. I. Yi, and L. L. Wang, “Software stage effort
prediction based on analogy and grey model,” Computer
Science, vol. 45, no. S2, pp. 480–487, 2018, (in Chinese).

[30] Q. Song, Y. Guo, and M. Shepperd, “A comprehensive in-
vestigation of the role of imbalanced learning for software
defect prediction,” IEEE Transactions on Software Engineer-
ing, vol. 45, no. 12, pp. 1253–1269, 2019.

[31] D. P. Kingma, J. Ba, and Adam, “A Method for Stochastic
Optimization,” 2014, https://arxiv.org/abs/1412.6980.

[32] T. Shippey, T. Hall, S. Counsell, and D Bowes, “So You Need
More Method Level Datasets for Your Software Defect Pre-
diction?: Voila!” in Proceedings of the 10th ACM/IEEE In-
ternational Symposium on Empirical Software Engineering and
Measurement, p. 12, ACM, Spain, September 2016.

[33] H. B. Yadav and D. K. Yadav, “A fuzzy logic based approach
for phase-wise software defects prediction using software
metrics,” Information and Software Technology, vol. 63,
pp. 44–57, 2015.

14 Computational Intelligence and Neuroscience

[34] S. S. Rathore and S. Kumar, “An empirical study of some
software fault prediction techniques for the number of faults
prediction,” Soft Computing, vol. 21, no. 24, pp. 7417–7434,
2017.

[35] L. N. Gong, S. J. Jiang, and L. Jiang, “Research progress of
software defect prediction,” Journal of Software, vol. 30,
no. 10, pp. 3090–3114, 2019, (in Chinese).

[36] C. López-Mart́ın, Y. Villuendas-Rey, M. Azzeh, A Bou Nassif,
and S Banitaan, “Transformed k-nearest neighborhood output
distance minimization for predicting the defect density of
software projects,” Journal of Systems and Software, vol. 167,
Article ID 110592, 2020.

[37] H. Liang, Y. Yu, L. Jiang, and Z. Xie, “Seml: a semantic LSTM
model for software defect prediction,” IEEE Access, vol. 7,
pp. 83812–83824, 2019.

[38] G. Fan, X. Diao, H. Yu, K Yang, and L Chen, “Software Defect
Prediction via Attention-Based Recurrent Neural Network,”
Scientific Programming, vol. 2019, Article ID 6230953,
14 pages, 2019, https://doi.org/10.1155/2019/6230953.

[39] F. Akiyama, “An example of software system debugging,” Proc
of IFIP Congress, vol. 71, no. 1, pp. 353–359, 1971.

Computational Intelligence and Neuroscience 15

https://doi.org/10.1155/2019/6230953

