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Aiming at the problems of the traditional industrial robot fault diagnosis model, such as low accuracy, low efficiency, poor
stability, and real-time performance in multi-fault state diagnosis, a fault diagnosis method based on DBN joint information
fusion technology is proposed. By studying the information processing method and the deep learning theory, this paper takes the
fault of the joint bearing of the industrial robot as the research object. It adopts the technique of combining the deep belief network
(DBN) and wavelet energy entropy, and the fault diagnosis of industrial robot is studied.)e wavelet transform is used to denoise,
decompose, and reconstruct the vibration signal of the joint bearing of the industrial robot. )e normalized eigenvector of the
reconstructed energy entropy is established, and the normalized eigenvector is used as the input of the DBN. )e improved D-S
evidence theory is used to solve the problem of fusion of high conflict evidence to improve the fault model’s recognition accuracy.
Finally, the feasibility of the model is verified by collecting the fault sample data and creating the category sample label. )e
experiment shows that the fault diagnosis method designed can complete the fault diagnosis of industrial robot well, and the
accuracy of the test set is 97.96%. Compared with the traditional fault diagnosis model, the method is improved obviously, and the
stability of the model is good; the utility model has the advantages of short time and high diagnosis efficiency and is suitable for the
diagnosis work under the condition of coexisting multiple faults. )e reliability of this method in the fault diagnosis of the joint
bearing of industrial robot is verified.

1. Introduction

Currently, automated production is developing rapidly in
the direction of automation and intelligence. More andmore
companies use industrial robots to replace traditional
manual operations, which significantly improves production
efficiency while reducing labour costs [1, 2]. In automated
production operations, the division of labour among the
robots in each segment is relatively straightforward, and the
synergistic relationship is close. When a robot malfunction
occurs, it will inevitably lead to problems in the whole
operation process, which has a significant impact on the
progress and safety of the operation [3–5]. )erefore, it is
necessary to judge the operation status of industrial robots in
advance and deal with the initial failure in time to avoid
various safety hazards caused by robot failure.

Based on this, some scholars used different methods to
complete the fault diagnosis of industrial robots. Verma and
Simmons [6] established a plan of robot fault diagnosis based
on discrete-time observers by designing observers.)emethod
achieves the fault diagnosis of robot joints through the co-
operation of detection and diagnosis observers, which requires
a large amount of joint sensor information. Jaber and Bicker [7]
collected the vibration signal of the working state of the robot,
used the methods of wavelet transformation time-frequency
domain analysis to analyze the fault signal of the robot under
various working conditions, and realized the fault diagnosis of
the robot. Capisani et al. [8] established a fault diagnosis model
for robots using a sliding observer and applied it to the fault
diagnosis of Comau robots. )is method can accurately di-
agnose a single fault, but it does not performwell in diagnosing
robots with multiple responsibilities. Long et al. [9] used sparse
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hybrid autoencoder (SAE) and support vector machine (SVM)
to build a basic fault diagnosis model by learning fault in-
formation posture dataset, which can better complete the di-
agnosis of different faults of multi-joint industrial robots.
However, it is difficult to implement large-scale sample
training, and the accuracy of multi-fault classification is not
high. Shan et al. [10] presented a fault diagnosis method for
rolling bearings based on variable mode decomposition
(VMD) and backpropagation (BP) neural networks. )e en-
ergy of each component is obtained by decomposing the time-
domain signal of bearing vibration into an intrinsic mode
function, and the point is input as a feature into the training of
the BP network. A diagnostic model for VMD-BP is estab-
lished. )e bearing fault type diagnosis can be completed well,
but the accuracy of diagnosis is not ideal due to the boundary
effect and the impact of sudden signals.

With the deepening of fault diagnosis research, the fault
diagnosis method based on DBN has achieved good results
in mechanical fault diagnosis such as bearing, gearbox, and
motor [11–13]. )erefore, taking the joint bearing of in-
dustrial robot as the research object and the vibration signal
as the starting point, this paper constructs the fault diagnosis
method of industrial robot based on DBN. At the same time,
considering that the accuracy of information fusion con-
clusion of traditional D-S theory is not ideal, the fusion
problem of high conflict evidence is solved by improving
D-S evidence theory. Taking the output layer of the model as
fault evidence, the conflict between sample evidence is
analyzed by using the improved D-S fusion rules and de-
cision rules. Finally, a fault diagnosis model based on DBN
joint improved D-S is established to improve the recognition
accuracy of the fault model. It is of positive significance to
further improve the service life and operation safety of
industrial robots.

2. Related Knowledge

2.1. Information Fusion Technology. Information fusion
technology is a multi-level and multi-faceted statistical
process in its essence by detecting and combining the es-
timation of multiple sources of data to obtain information
that information fusion can use [14]. Unlike simple signal
processing techniques, multi-source information fusion
techniques are suitable for handling multi-modal and
conflicting forms of data and can achieve different levels and
conditions of information fusion [15]. )us, it performs well
in improving the real time and reliability of mechanical
systems, increasing the detectability of mechanical systems,
and reducing the uncertainty of mechanical equipment.

According to the different levels of fusion processing,
information fusion is mainly divided into three groups: data
layer fusion, feature layer fusion, and decision layer fusion.
Among them, the feature layer fusion technology extracts
the corresponding features of the sensor data based on the
type of the original signal, fuses the resulting feature in-
formation in the feature layer, and after normalization,
forms a single feature vector to finally complete the clas-
sification of information and realize the identification of
faults. )e fusion process is shown in Figure 1.

2.2. Deep Belief Networks. Deep belief network (DBN) is a
kind of neural network that can perform the tasks of feature
recognition, data classification, and generation well. )e
scalability of the network is vital, so it is widely used in
machine learning. DBN framework adopts the restricted
Boltzmann vector machine (RBM) structure, and the model
consists of visible, hidden, and output layers. In the DBN
model, any two adjacent layers can be considered one RBM
structure. )e number of neurons in the visible layer is
consistent with the dimension of the input data, which is
mainly responsible for receiving the data from the bottom
layer and outputting the computation results to the hidden
layer. )e BP artificial neural network (BPNN) in the top
layer of the network classifies the features. It combines some
of the labelling information to fine-tune the network pa-
rameters backwards to obtain the optimal network model
[16, 17]. )e DBN structure is shown in Figure 2.

)e probabilistic generative model used in DBN differs
from the discriminative model of traditional neural networks.
DBN uses probability generation models to build the joint
distribution of data and labels, train the hidden and visual
layers of the network layer by layer, update and optimize the
weights between layers and transfer parameters continuously
so that the entire network model can generate training data
with maximum probability, mine the correlation between
higher-order data, and realize the extraction, classification, and
identification of fault feature data [18]. )e neurons in the
same layer of the network are independent of each other and
connected with the neurons in the adjacent layer, which makes
the network have good conditional independence, which
improves the parallel computing ability of the network and
dramatically improves the training efficiency. Taking the DBN
containing two RBMs as an example, the network training
process is shown in Figure 3.

)e training process of DBN consists of two main
phases: unsupervised pretraining and supervised reverse
fine-tuning.

(1) Unsupervised Pretraining. Multiple stacked restricted
Boltzmann machines form a deep Boltzmann ma-
chine, and the output of the previous RBM is the
input of the next RBM. Two steps carry out the
training process of each RBM: forward computation
and reverse reconstruction, and the optimal pa-
rameters of each RBM are finally obtained after
multiple iterations in different batches.

(2) Supervised Inverse Fine-Tuning. After the pretraining,
the RBM extracts the original data features, then
classifies them using the top-level classifier, and finally
fine-tunes all parameters top-down using the BP al-
gorithm in combination with the label information to
finally obtain the optimal model parameters.

3. Fault Diagnosis of Industrial Robot
Based on DBN

3.1. Vibration Signal Preprocessing. )e signal collected by
the sensor contains the vibration of the joint itself and in-
ternal and external noise and non-smooth interference
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signals such as resonance signals, so the vibration signal
needs to be processed for noise reduction for the next op-
eration. Wavelet packet transform (WPT) can divide the
signal in a multi-level form and decompose the high-fre-
quency part in depth, adaptively select the frequency band
according to the characteristics of the analyzed signal, ensure
the frequency band and the signal spectrum match each
other, and thus improve the time-frequency resolution [19].
)erefore, in this paper, wavelet packets are used to com-
plete the noise reduction of industrial robot vibration sig-
nals. )e wavelet transform process and decomposition
process are shown in Figure 4.

)e steps of noise reduction based on wavelet packet
transform signal are as follows.

Step 1. Select the wavelet basis according to the de-
composition level of wavelets and decompose the
signal.
Step 2. Determine the optimal wavelet packet basis and
calculate the optimal tree after the entropy criterion.
Step 3. Select an appropriate threshold value for the
high-frequency coefficients at different decomposition
scales and perform threshold quantization. )e wavelet
coefficients larger than the threshold value are
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considered to have signal generation and are retained;
those smaller than the threshold value are deemed to be
caused by noise and are set to zero, thus completing the
purpose of noise reduction.
Step 4. Reconstruct the signal using the processed
coefficients. )e signal-to-noise ratio (SNR) and the
root mean square error (RMSE) of the estimated signal
and the original signal are often used to judge the merit
of the denoising performance [20].

3.2. Energy Entropy Normalized Eigenvectors. After the vi-
bration signal is processed by wavelet transform, it is not
suitable as the underlying input to the DBN due to the vast
amount of information contained in the signal [21]. )e
signal’s energy entropy normalized feature vector is further
calculated, and the energy entropy normalized feature vector
is used as the underlying input to the DBN model.

)e energy entropy represents the measure of uncer-
tainty [22]. It is defined as follows: if there is a system S
containing multiple events S� {E1, E2, . . ., En} inside, each
with a probability distribution P� {p1, p2, . . ., pn}, then the
information of each event itself is

Ie � − log2pi. (1)

)e sum of the information entropy of all events in the
whole system is the energy entropy, expressed as

Es � 
i�1

piIe. (2)

After the wavelet transform of the vibration signal, a total
of 2K nodes are reconstructed, and the energy entropy of
each node is calculated to obtain a feature vector composed
of 2K elements. )e energy entropy function is expressed as

E uK(  � − 
J

uKlog uK( . (3)

)e resulting energy entropy is normalized to [0, 1]. )e
energy entropy normalized eigenvector of the decomposed
reconstructed signal is obtained as follows:

E uJ ∗ �
E uJ  − E uJ min

E uJ max − E uJ min

. (4)

3.3. Improving Information Fusion with D-S Evidence2eory.
Dempster–Shafer (D-S) evidence theory is a kind of un-
certainty inference, which effectively solves the influence of
incomplete and uncertain information and other factors on
the inference results by describing the uncertainty of the
state of each part of the system from different perspectives
and generalizing and estimating its probability. However,
when the conflict between the evidence is severe, the tra-
ditional D-S theory information fusion accuracy is not
satisfactory [23, 24]. To solve the fusion problem of high
conflicting evidence, this paper uses the improved D-S
evidence theory to complete the fusion of information to
improve the identification accuracy of the fault model.

)e inner vector product is added to the modification of
the evidence combination rule. For any set of evidence,
represented by a space vector, the average of each evidence
vector is obtained by extending the evidence vector w to the
n dimension as

w �
w1 + w2 + · · · wn

n
. (5)

)e distance between each evidence vector and the
average evidence vector is

DM � c1, c2, . . . cn ,

ci �

�
2

√

2
c wi, w( .

(6)

)e similarity measure Swi � 1 − ci between two evi-
dence vectors, i.e., the support of each evidence to evidence i,
is calculated to represent the support of each evidence to
evidence Sup(wi). )en, the weight Crd(wi) of evidence wi is

Crd wi(  �
Sup wi( 


n
i�1 Sup wi( 

. (7)
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Figure 4: Wavelet transform flow and decomposition process.
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By assigning a weighted average to the basic probabilities
of each piece of evidence and then fusing the data, we can
effectively solve the problem of conflicting evidence and
further improve the accuracy of the fusion results.

4. Fault Diagnosis Model Based on DBN Joint
Improved C-S Information Fusion

)e DBN-based industrial robot fault diagnosis model is
shown in Figure 5. )e diagnosis model mainly contains the
feature extraction part, DBN part, information fusion part,
etc. Firstly, the vibration signal of the industrial robot joint is
collected by the acceleration sensor. )e wavelet packet
transform is used to filter and reduce the signal’s noise to
avoid the deviation of the signal caused by the motion
frequency and resonance frequency. )e energy entropy
normalized feature vector of the vibration signal is estab-
lished using the information energy entropy theory. Sec-
ondly, the energy entropy normalized feature vector is
divided into the training and test sets. )e basic parameters
of the DBN model are fine-tuned by unsupervised forward
training and reverse supervised fine-tuning.)e DBNmodel
is constructed in this way. )e output layer of the DBN
model is used as the fault evidence for the evidence conflict
factor analysis to check whether there is high conflict evi-
dence, and the corresponding combination rules and de-
cision rules are selected accordingly to realize the
information fusion and complete the robot fault diagnosis.

5. Experimental Validation

5.1.FaultDataset. )eproposedmethod is used to construct
a DBN classification model, and experiments are conducted
to verify the effectiveness of the proposed method by ac-
quiring vibration signals from the joint bearings of industrial
robots. )e experiments are shown on the Anaconda de-
velopment platform running on the Windows 10 system as
the base environment.)e DBN deep learning model is built
based on the Google deep learning framework TensorFlow.

Taking the FANUC Robot M-710C industrial robot as an
example, set artificial fault on its joint bearing with f� 12.5KHz
frequency to collect collaborative vibration data. )e data are
divided according to the location and degree of the spot. Seven
data types are obtained, including normal conditions and 350
sampled data points in each vibration cycle. )erefore, the
original data of 7 categories are divided into 840 samples
according to the window size, moving step of 1050 data points,
and window moving step of 1050 data points to obtain the
subseries sample space R840×1050, and each sample in the space
is decomposed to calculate the time-frequency characteristics
of each component to form a feature vector. According to the
different fault categories corresponding to each feature vector,
the category calibration is performed individually.)e training
and test sets are divided according to the ratio of 7 : 3. Table 1
shows the industrial robot joint bearings’ fault data and cat-
egory labels.

In the experiment, wavelet transform is used to reduce
the noise of all data signals. )en, the energy entropy
normalized feature vector and fusion features of the signals

are calculated. )e features’ characteristics are analyzed, and
finally, the different feature sets are input to the DBN-CS
model for verification. )en, the fault diagnosis of industrial
robot joint bearings is completed.

5.2. Experimental Results. Parameter setting of industrial
robot fault diagnosis model is as follows: DBN network
structure 128-100-36-7, network forward training is set to
100 times, and reverse optimization is set to 1000 times. )e
learning rate ε� 0.05, the momentumm� 0.6, the maximum
number of iterations of the network is 50, and the training
batch size is 100.)en, 180 rounds of training are carried out
on the model using the training set, and the test set is used to
verify the model's accuracy. )e accuracy change curves of
different sample sets are shown in Figure 6.

As shown in Figure 6, the accuracy rate increases with
training rounds and stabilizes when the number of training
rounds reaches 95. If we continue to train the data, it will not
only not improve the accuracy significantly but also increase
the computational time cost and even lead to the occurrence
of overfitting. )erefore, the DBN model was tested after 95
rounds using the test set data, and the prediction results were
compared with the actual category. Figure 7 shows the
comparison between the predicted results and the actual
categories.

In Figure 7, if the category labels obtained by the clas-
sification model overlap with the corresponding actual
category labels, the classification result is correct; otherwise,
it means that the classification fails. Of the 252 test samples, 5
were misclassified (points offset in Figure 7). Among them,
one fault-free state was misclassified as outer ring light fault,
two external ring light faults were misclassified as outer ring
medium faults, one outer ring serious fault was misclassified
as outer ring medium faults, and one inner ring medium
fault was misclassified as internal ring light faults. To
quantitatively analyze the accuracy of different fault clas-
sifications, the confusion matrix is used to represent the
classification results of DBN on the test set, and the test
statistics are shown in Table 2. )e rows and columns in the
table indicate the actual fault type and the diagnosed fault
type, respectively.

To verify the stability and adaptability of the diagnostic
model in the paper, the model is trained ten times with the
same parameters, and the data are selected from the dataset
without repetition as the training set and the test set in a
randomway to test the detection accuracy of the fault diagnosis
model. )e classification results are shown in Figure 8.

As can be seen from Figure 8, the diagnostic accuracy of
the training set varies smoothly, with an average accuracy of
99.12%; the accuracy of the test set is lower than that of the
training set, but the average accuracy still reaches 97.96%,
which shows that the model designed in the paper has a high
fault diagnosis rate and good stability. It is suitable for the
diagnosis of joint bearings in multi-state coexistence.

5.3. Performance Comparison of Different Diagnostic Models.
To make the industrial robot fault diagnosis models
designed in this paper comparable, different fault
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Table 1: Joint bearing data and category labels.

Fault location Degree of failure Depth of failure (inch) Training set samples Training set samples Failure tags
Fault-free No 0 84 36 0

Outer ring
Minor 0.004 84 36 1

Moderate 0.008 84 36 2
Severe 0.012 84 36 3

Inner ring
Minor 0.004 84 36 4

Moderate 0.008 84 36 5
Severe 0.012 84 36 6

Joint bearings Vibration
signals

Wavelet transform

Normalized Eigenvectors

Sample Data

Training set

Initialize network parameters

Pre-training

So�max classification

Test set

DBN Model

Improving information
fusion for C-S evidence
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Information
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Feature
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fine-tuning

Figure 5: Industrial robot fault diagnosis model.
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Figure 6: Accuracy variation curves of different sample sets.
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diagnosis models are constructed for testing with the same
standard data, and the accuracy on the final test set is used
as the evaluation criterion for model performance to
verify the performance of the models in the paper. )e
fault diagnosis domain models involved are standard
DBN, VMD+ BPNN, VMD+ SVM, EMD+DBN, and
EMD+ SVM models. )e performance comparison re-
sults are shown in Table 3.

As can be seen from Table 3, compared with other al-
gorithmic models, the diagnostic accuracy of the model
designed in this paper is higher, and the standard deviation
of the model is lower. Although the running time increases
compared with VMD+ SVM and EMD+SVM models, the
increase is lower. It can better balance the relationship
between diagnostic accuracy and real time to complete the
fault diagnosis in complex fault states.

Table 2: Diagnostic accuracy of different faults.

Failure tags 0 1 2 3 4 5 6 Accuracy (%) Average accuracy (%)
0 35 1 0 0 0 0 0 97.22

98.01

1 0 34 2 0 0 0 0 94.44
2 0 0 36 0 0 0 0 100
3 0 0 1 35 0 0 0 97.22
4 0 0 0 0 36 0 0 100
5 0 0 0 0 1 35 0 97.22
6 0 0 0 0 0 0 36 100
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Figure 8: Accuracy of the experiment.
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6. Conclusion

Taking industrial robot joint bearings as the research object,
the problems of the current fault diagnosis methods are
investigated by combining modern signal processing
methods and deep learning theory. )e accuracy rate is low
when fault diagnosis is performed by the DBN alone, and it
cannot meet real-time demand. )erefore, information
fusion technology is combined to improve the performance
of the fault diagnosis model to ensure the stability of the
model and the accuracy of the diagnosis results. )e ex-
perimental results show that the fault diagnosis accuracy of
our method is higher than that of the traditional method and
the average accuracy of the test set reaches 97.96%. )e
information fusion method with improved D-S evidence
theory can effectively solve the evidence conflict problem
and further improve the accuracy of the fusion results,
suitable for handling the diagnosis of robot joint bearings
under multiple fault states.
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