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Te satellite communication is embellished constantly by providing information, ensuring security, and enables the commu-
nication among huge at a particular time efciently. Te satellite navigation helps in determining the people’s location. Global
development, natural disasters, change in climatic conditions, agriculture crop growth, etc., are monitored using satellite ob-
servation. Hence, the satellite includes detailed information data, and it must be protected confdentially.Te feld of the satellite is
enhanced at an astonishing pace. Satellite data play an important role in this modern world; hence, the onboard-satellite data must
secure through the proper selection of error detection and estimation schema. Lightweight deep learning algorithm based on
Extended Kalman Filter (KFK) is proposed to detect and estimate onboard pointing error such as an error in attitude and orbit.
Te Extended Kalman Filter (EKF) is widely used in the satellite system. EKF is utilized in this proposed model to detect the
onboard pointing error such as attitude and orbit determination. An autonomous estimation of orbit position is possible through
space-borne gravity. Te information obtained through the observation of satellite data is compared with the accurate gravity
model in detecting the error. Te utilization of EKF reduces the dependence of the ground tracking system in satellite de-
termination.Te orbital altitude and orbital position are the most important challenges faced in the satellite determination system.
Te satellite model using the Extended Kalman Filter is an optimummethod in estimating the orbital parameters.Te errors in the
linearization process are detected, and this can be overcome through the proper selection of linear expansion point with the EKF
algorithmic model with the Jacobian matrix calculation. Te results show that the EKF implementation helps in attaining better
accuracy than other methodologies. Its contribution is enormous to many space missions, autonomous rendezvous and docking
for manned and unmanned missions (e.g., ISS operations and beyond, in-orbit servicing, and in-orbit refueling), routine satellite
OD operations, orbital debris removal systems, Space Situational Awareness (SSA) operations, and others.
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1. Introduction

In recent times, the global telecommunication system is
more dependent on satellite communication. Te satellite is
more important in a contemporaneous application such as
long-distance cellular calls, radio, and cable television. Te
satellite design includes the Global Positioning System
(GPS) which provides the information regarding the present
location and helps in directing us to the place we want to go.
Satellite is usually of two types: manmade and natural. Earth
and moon are the natural satellites, whereas the manmade
satellites are machines that are launched into space and
orbits around a body in space. Te source error in GPS is
atmospheric interference, and the calculation and rounding
errors are done using ephemeris data error and multipath
efects. Te error detection and estimation in the satellite are
performed using more algorithmic methods, namely, Ex-
tended Kalman Filter (EKF), Unscented Kalman Filter
(UKF), and particle flter [1–3]. In the contemporaneous
applications, the optimum algorithmic method in error
detection and estimation is Extended Kalman Filter (EKF)
[4]. Te features which make the EKF practically suitable are
easy implementation, reduced complexity during compu-
tation, and less hardware [5]. Te optimum method is EKF
which is ideally employed in satellite projects imple-
mentation. Alsat-1, SNAP-1, and UoSAT are examples of
onboard satellite computers that operate normally [6, 7].
Tough EKF has more advantages, it is not an optimal
estimator (it is optimal if the measurement and the state
transition model are both linear, as in that case the extended
Kalman flter is identical to the regular one). It is unable to
adjust itself as per the sensor uncertainty.

Te algorithmic model is also developed for the accurate
determination for the Low Earth Orbit (LEO) [8]. In this
algorithmic model, IGS orbits and accurate clock are used
for the GPS satellite. Te diference obtained between the
code-derived position and phase-derived position helps in
identifying the position of the satellite. Te satellite position
and processing speed can be monitored through the posi-
tioning of the orbit model in the desired position. Te orbit
model is ftted depending on the least square adjustment that
requires the pseudo-observations.Te pseudo-observation is
formed by the combination of estimated position from both
the code observation and phase observation. Unscented
Kalman Filter (UKF) is utilized in the development of an
onboard orbit determination algorithm to satisfy the space-
borne GPS receiver applications [9]. In onboard processing,
accurate orbit navigation is attained through the employ-
ment of geopotential, atmospheric drag, the pressure of solar
radiation, and the gravity of the Sun and Moon. Te
propagation of orbit is measured through the theoretical
calculation method, namely, the Runge–Kutta method. Te
orbit motion is estimated through the implementation of the
Cowell method. Te position of the orbit in an artifcial
satellite could be determined using the least square algo-
rithm where this algorithmic model includes sequential
rotation and GPS receiver’s data for the estimation purpose
[10]. Te Extended Kalman Filter (EKF) and the GPS form
an algorithmic model to determine onboard orbit in a

satellite. Tis algorithmic model is simple and compact;
hence, its computational cost is very low. Te state vector,
bias, GPS receiver clock drift rate, position and velocity
composition, and drift are determined through the utili-
zation of Extended Kalman Filter (EKF). Te onboard error
detection and estimation in the satellite are efective in the
case of the Extended Kalman Filter (EKF) algorithmic model
[11].

2. Related Works

Te dynamic model can determine the orbit. Te system
model is more stable and provides accurate information
regarding the orbital position [12]. Te observation helps in
estimating the error and helps in determining the geo-
metrical orbit. Tis is more challenging as the model re-
quires accuracy in observation; hence, it is a difcult task that
traces the accurate orbit position [13]. Te association of
dynamical state and the information gathered from the
geometric observation results in the development of kine-
matic orbit estimation. Tis kinematic method based on the
observation quality can provide the accurate orbit compu-
tation point [14]. Te drawbacks mentioned above can be
overcome by the proposed reduced dynamic orbit deter-
mination. Te target can be achieved by the geometric
measurement and dynamic force model which consists of
sequential fltering [15, 16].

Te conventional orbit determination has powerful
ground computing with the available ground-based tracking
data. Many tracking stations are set up to provide the in-
formation from the observed data, and the gathered in-
formation is sent to the International GNSS Service (IGS) to
develop three diferent types of orbital products, namely
ultra-rapid orbit, rapid orbit, and fnal orbit. Tese orbital
products can achieve accuracy [17]. When the observation
length is small or troposphere delay is severe, then the
accuracy of the ground geometric measurement method is
poor.Te processing system based on the ground-based data
is not highly secured. In the case of natural calamities such as
water disasters and earthquakes, ground devices are afected
[18]. An autonomous satellite navigation system developed
in space generates information regarding orbit position and
the inter-satellite velocity which is independent of ground-
based support.

Autonomous space-based satellite navigation has im-
proved reliability and stability [19]. Te accurate orbit de-
termination is achieved through the implementation of
satellite navigation as it provides very precise information
than the ground-based support [20]. Tough the complexity
is more in the satellite navigation, the benefts are also si-
multaneously high. Te complex functional features such as
fxed the transceivers in the satellite can send and receive
signals. Te programs are inbuilt in the satellite to perform
automatically. High computing potential, high energy, and
high reliability are required for the autonomous performance
of satellites. If there is no availability of tracking data, then the
autonomous navigation faces difculty in orbit measurement.
During the analysis of the orbit parameter, rotational error
may result in rank defect if it is not esteemed [21].
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Te batch processing mode is the aptest conventional
satellite navigation system for data smoothing. Te orbit
estimation process can be performed by collecting a huge
number of data, and these data are even suitable for post-
processing. Tis conventional satellite navigation consists of
computing and storage resources to satisfy the space-based
environment. Te sequential method is far better than the
batch processing mode as this method generates the new
observation for the accurate orbit determination. Tis
method requires a very low computing capability and less
memory. Tus, for the implementation of autonomous
satellite navigation, this sequential method is mostly pre-
ferred as it requires fewer hardware resources and battery
power. Te fltering algorithms include the sequence pro-
cessing which is well known as the Kalman flter.

Te recursive Kalman flter is the most efective in de-
termining the internal state of the proposed system. Te
Kalman flter is more apt for the linear system, whereas the
contemporaneous application such as orbit determination
comes under the nonlinear satellite navigation systems [22].
Te most familiar method in the fltering method is Ex-
tended Kalman Filter (EKF). Te standardized linear re-
cursive Kalman flter algorithm uses the Taylor series
approximation [23]. Te estimation of nonlinear state,
navigation systems, and GPS are determined by the Ex-
tended Kalman Filter (EKF) system model. Te orbit de-
termination in the contemporaneous is estimated through
EKF. In EKF, during the kinematic calculation, the previ-
ously available state estimation is required. Te orbit de-
termination and autonomous satellite navigation are
independent of the historical observation while increasing
computational efciency. In comparison with the traditional
methods, EKF has the potential to predict accurately using
the previous states. EKF forecasts orbit determination along
with the velocity satellite. Accurate orbit determination,
satellite attitude coefcients [24, 25], atmosphere, velocity,
and clock are estimated using EKF.

Accuracy in determination can be achieved through the
utilization of a reduced dynamic model based on the pro-
cessor of the satellite. Te stability of the flter algorithm is
afected due to the error ignorance in the dynamic model.
Te error in the no-modeling system is compensated using
the dynamic noise [26, 27]. Jacobian matrices along with the
Extended Kalman Filter (EKF) implementation faced more
challenges in some satellite systems. Tese challenges are
solved through the development of the Unscented Kalman
Filter (UKF). Te big observations error, sample intervals,
and large initial errors are overcome using UKF [28, 29].
Some other flter algorithms are H∞flter and particle flter
(PF). Te performance speed is high in PF in comparison
with EKF and UKF [30].

In the case of satellite orbit determination, the EKF
algorithm is the most preferred algorithmic model in the
feld of satellite [31]. Te high-order truncation error is the
difculty faced due to the implementation of the frst-order
Taylor series in the EKF algorithm. Te distinction observed
from the processing model and practical model causes the
linearization and approximation error. Te nonlinear is the

important feature in the proposedmodel.Te higher the rate
of nonlinear level, the higher will the error in the system
model. EKF also depends on the diference between the
linear expansion point and the original state. Te divergence
is caused by incorrect Jacobian matrix computation [32].
Tese are the consequences which result in fltering error
over space [33]. Te satellite communication is the latest
emerging feld and it helps in agriculture, whether moni-
toring and cultivation etc. there may be certain error that
occurs in the space station and transfer wrong information
in order to correct that the EKF flter has been used and the
way of estimation error fltering is way better than the other
flters [34, 35].

3. Materials and Methods

3.1. SystemNonlinearDegree. Te system nonlinear degree is
the important feature considered in the satellite determi-
nation. In the case of the nonlinear systemmodel, the Taylor
series expansion is used in the orbit determination. Te
system consists of many nonlinear characters that corre-
spondingly increase the linearization error. An accurate
linear model is achieved only with a zero-linearization error.
Te satellite orbital position keeps on changing due to the
nonlinear degree of force model. Te elliptical orbit in a
satellite consists of perigee and apogee [36]. At the perigee
and apogee points, the nonlinear degree is higher than at the
orbital position. Te perigee position faces more complexity
due to drags. Te precession of the orbit is caused by the
apogee. Hence, the linearization error is larger at the perigee
and apogee points.

3.2. Linear Expansion Point. Te time of the linear function
and predicted time can be acquired under ideal conditions
without any error. Te orbit determination is not like its
original state due to the random errors at the linear ex-
pansion point which results in a linearization error in a force
model. If the linear expansion error increases, then the
linearization error also increases. Te linearization faces
difculty in attaining the accuracy of the linear expansion
point. Te point nearer to the original state must ignore the
magnifed error in an orbit determination task. Orbit ele-
ments, broadcast ephemerides, and geometric approaches
are some of the parameters considered in the determination
process. Te various determination approaches result in
diferent accuracy rates. Te satellite traction by ground-
based and space-based stations faces challenges in fxing the
initial orbital position. Te flter approach is unstable when
the big bias occurs periodically in the initialization phase. In
case of any disaster, the satellite loses its orbital capability.

3.3. JacobianMatrixCalculation. Te linearization applies to
the nonlinear system only when the Jacobian matrix cal-
culation exists. Te orbit determination is very challenging
in the force model while executing practically and analyti-
cally using the Jacobian matrix.Te Jacobian matrix must be
implemented very carefully. Te Jacobian matrix is
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implemented in converting the errors of a nonlinear variable
space to linearized function space. Te Jacobian matrix
calculation is depending on the expansion point. Te proper
selection of expansion points is necessary for meeting the
contemporaneous application of satellite. In the case of an
improper Jacobian matrix, EKF is leading to an unstable and
divergence system. During the fltering procedure, the
complex infuence is ignored. Tis algorithmic model has a
very good performance evaluation.

3.4. Extended Kalman Filter (EKF)¶. Te attitude and orbit
determination of the satellite are determined through the
implementation of Extended Kalman Filter (EKF). In case of
gyroscope malfunctions, this flter model is inconsiderable
for measurements. Te REKF is employed in this proposed
system as follows [37]. Te seven-dimensional state vector is
given as follows:

X � [q,ω]
T

� q1, q1, q1, q1,ωx,ωy,ωz􏽨 􏽩
T
. (1)

Step 1. Propagation cycle:
Te numerical integration represents the dynamic states

of the satellite.
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1
2

􏽚
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tk
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(2)

Te covariance matrix of the predicted error is given as
follows:

Pk � ϕk􏽢Pkϕ
T
k + Qk. (3)

Here, the covariance matrix process is denoted as Qk and the
state transition matrix is denoted asϕk.

Te state transition matrix is expressed as follows:
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TS. (4)

Here, I7×7 is the representation of identity matrix with 7 × 7
dimension.

Te sampling period is expressed as TS � tk+1 − tk.

Step 2. Correction cycle:
Te observation matrix is estimated as follows [7]:
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. (5)

TeKalman gain Kk is tuned by introducing a noise scale
factor in the flter which is given as follows:

sk �
eTk ek − tr HkPkH

T
k􏽮 􏽯

tr R{ }
, (6)

here, ek is the representation of residual term or innovation
sequence.

Te residual term is expressed as follows:

ek �
􏽥Bk

􏽥ωk

⎡⎣ ⎤⎦ −
􏽢Bk

􏽢ωk

⎡⎣ ⎤⎦. (7)

Temagnetometer value is determined with 􏽢B � A(􏽢q)B°.

Here, the trace of the related matrix is represented as tr ∙{ }.

Te Kalman gain is determined through the following
expression:

Kk � PkH
T
k HkPkH

T
k + Sk R􏼐 􏼑

− 1
. (8)

Te expression for the estimation of covariance cor-
rection matrix is given as follows”

􏽢Pk � I7×7 − KkHk( 􏼁Pk, (9)

here, the corrected error covariance matrix is denoted as 􏽢Pk
and the value of R gives the noise measurement of the
covariance matrix. Tus, the noise measurement of the
magnetometer sensors and gyroscope is obtained [38–45].

Te expression for the corrected state vector is given as
follows:

􏽢Xk �
􏽢qk
􏽢ωk

􏼢 􏼣 � Xk + Kkek. (10)

Figure 1 explains the original orbit state vector (i.e., 6 state
position and velocity elements) and the 6× 6 original state
error covariance matrix are generally attained from an IOD
process, and the entire processing infow illustrates the typical
EKF data processing. Te left side of the illustration presents
the EKF state processing which consists of two main ways of
state prediction via dynamic propagation and state update via
sensor measurement processing. Te right-hand side of the
illustration represents the covariancematrix processing which
also consists of two stages: prediction and update. Te pro-
cessing cycle is also repeated with new measures supplied
from the detectors, and the prediction step will be propagated
via the dynamic process between the measurement times.

4. Results and Discussion

Te performance of orbit determination is evaluated under
the consideration of few features. Te main feature im-
portant in determination is attaining accuracy. Te
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comparison between the obtained state value and original
state value generates the time-domain error curve. Tis
time-domain error curve implies the accuracy of the flter.
Te consequence faced in the satellite navigation is estimated
using the conditional covariance matrix. Te accuracy of the
prediction is also represented by this matrix.

Te variance of the flter is observed and predicted. Te
information regarding the state components is continuously
gathered through the steady observation capability; hence,
the occurrence of an error in state condition is estimated
through the observation. Te features such as sampling rate
of data and measurement of noise level are responsible for
afecting the steady-state variance.Te convergence speed of
the flter generates information about the performance of the
flter which is inferred during observation.

Te Extended Kalman Filter (EKF) is a recursive flter
that is efective in the determination of the internal state
from noisy measurement series. It only requires an esti-
mation of the previous state for performing its calculation.
From the results obtained and the graphs plotted, it is clearly
shown that the Extended Kalman Filter with the improve-
ments using the Jacobian matrix calculation point showed
fewer truncation errors at a higher order and also increased
the orbit accuracy signifcantly.

Te relationship between the approaching line and the
nonlinear curve is shown in Figure 2. Te point of inter-
section of the approaching line and the nonlinear curve is at
point D.Te point D shows the function of the true state x’k.
In the true state xk, the function of xk is given as f(xk) at

point B in the no-linear curve and the function at the same
true state is given as f∗ (xk) point A in the approaching line.
Te diference between the approaching line and the non-
linear curve is given by AB.

Te approaching line in Figure 3 is obtained from the
explosion point. Te explosion point is placed at the esti-
mation level endpoint. Tis point is used in obtaining the
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Gate Gi
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P (k|k) =[I-K (k)˙H (X)]˙P (k|k-1)

ˆ

ˆ ˆ ˆ
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Figure 1: EKF processing fow.
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Figure 2: Relationship between nonlinear curve and approaching
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Computational Intelligence and Neuroscience 5



approaching line. In the Jacobian matrix calculation, the
explosion point calculation is randomly chosen from the
interval of estimation.Tus, in the true state xk, the function
of xk is given as f (xk) at point B in the nonlinear curve and
the function at the same true state is given as f∗ (xk) point A
in the approaching line. Te diference between the
approaching line and the nonlinear curve is given by AB.

Te endpoint of the interval is taken as the explosion
points as is shown in Figure 4. Te endpoints of the com-
puting interval are used for the Jacobian matrix calculation
point. Tus, the explosion points are used in the process of
obtaining the approaching line.Tus, in the true state xk, the
function of xk is given as f (xk) at point B in the nonlinear
curve and the function at the same true state is given as

f∗ (xk) point A in the approaching line. In the above curve,
both the points overlap, and thus the diference between
both the points becomes zero.Tus, this makes clear that the
approaching line error due to truncation becomes nil.

Figure 5 includes the estimation interval which is chosen
for both the explosion point and for the Jacobian matrix
calculation point. In the true state xk, the function of xk is
given as f (xk) at point B in the nonlinear curve and the
function at the same true state is given as f∗ (xk) point A in
the approaching line. In the above curve, both the points
overlap, and thus the diference between both the points is
less. Tus, the error due to the truncation and localization is
found to be very low.

5. Conclusion

In this proposed system model, onboard pointing error such
as an error in attitude and orbit determination is detected
and estimated through the development of lightweight deep
learning based estimation algorithm on the Extended Kal-
man Filter (EKF) with the Jacobian matrix calculation. Te
feld of the satellite is enhanced at an astonishing pace as the
data available in the satellite are more valuable and sensitive.
Tus, there is a demand for error detection, and estimation is
essential to protect the satellite data. Te satellite determi-
nation system is mainly based on the gyroscope partial
failure during the estimation. Te Extended Kalman Filter
(EKF) algorithmic model is examined in predicting the error
in the satellite system. Te error in the onboard pointing is
estimated accurately with the better fltering performance.
Te Extended Kalman Filter (EKF) is utilized as a backup
determination system to protect the microsatellite mission.
Te nonlinearity, observation noise, and initial condition
errors are some of the errors occurring at the linear ap-
proximation.Te proper selection of linear expansion points
enables the performance of the linearization process. Te

f (Xk)

Xk
ˆ

NONLINEAR LINE
APPROACHING LINE

C

Y

X

B =A
f (Xk) = f* (Xk)

ˆ

Xk

Figure 4: Approaching line is acquired when the explosion point is
fxed.
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ˆ
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Figure 5: Linearization error at the estimated interval is very small.
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Y

NONLINEAR LINE
APPROACHING LINE
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Figure 3: Linearization error when the explosion point is at the
estimated interval.
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EKF satellite determination system has a higher accuracy
rate and strong reliability. Tis shows that EKF is the op-
timum method for contemporaneous orbit determination.
In the future, Extended Kalman Filter (EKF) will be utilized
for the development of autonomous satellite navigation.
Hence, the LEO satellite determination is better analyzed
using the improvised model [32].
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