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It is well known that we, as human beings, are prone to a variety of undesirable emotions such as excitement, boredom, and fear, all
of which are induced by varying degrees of negative states. In this paper, we designed an emotion-evoking experiment to induce
calm, excited, bored, and fearful emotions, as well as low, moderate, and high levels of tension. Based on the six physiological
signals such as heart rate and respiration rate of the subjects in these emotion states, feature extraction was performed after
removing the baseline preprocessing, combined with particle swarm optimisation algorithm for feature selection, and the
k-nearest neighbour algorithmwas used to classify the di�erent emotion and tension levels in the undesirable states. By comparing
the results of several sets of experiments, we found that with baseline removal and particle swarm feature selection optimisation,
our experimental results using k-nearest neighbour classi�cation showed a signi�cant improvement in recognition accuracy
compared to the traditional k-nearest neighbour algorithm, which indicates that the proposed method has better
recognition results.

1. Introduction

Emotions are a combination of states that arise when a
person is exposed to external stimuli. A good emotional state
is conducive to maintaining physical and mental health,
while chronic bad moods can have a great impact on a
person’s mental health and physical health. For example,
prolonged bad moods can easily lead to depression, which
a�ects one’s social functioning and interpersonal interac-
tions and can even be life-threatening [1]. For people with
cardiovascular diseases, extreme emotions such as anger and
anxiety can increase the risk of morbidity. Anger generated
by drivers during driving can easily trigger road rage, which
can seriously a�ect the life safety of drivers and other tra�c
participants, etc. In summary, emotions have a signi�cant
impact on all aspects of human life, so it is particularly
important to identify them accurately.

At the present stage, the way of emotion recognition is
mainly divided into two aspects; one is recognition through
nonphysiological signals such as human facial expression,

voice tone, and body posture [2], because these non-
physiological signals can be arti�cially controlled by means
of camou�age and other means, resulting in sometimes not
being able to obtain the real signal that can represent the
emotion, thus not being able to accurately identify the real
emotional state. On the other hand, physiological signals
such as EEG signals, electro-ocular signals, ECG signals,
EMG signals, and skin current responses can be used for
emotion recognition [3, 4]. Emotion recognition based on
physiological signals can obtain more objective and realistic
results, which is also more conducive to practical applica-
tions [5].

An adverse state in the article is a combination of
physical and mental re�ections when people �nd that
something real or imagined is beyond their expectations [6].
Chronic stress can lead to an increased susceptibility to
illness, which can induce a variety of diseases [7]. In terms of
emotions themselves, there is an important correlation
between them and dysphoric states. Often, people wear black
in bad states with a variety of complex emotions, of which
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excitement, fear, and boredom are more common [8]. In
contrast, emotions are expressed differently as a mental
feeling and state, which often requires the use of language,
tone of voice, facial expressions, behavioural gestures,
breathing, and other media [9]. Physiological signals are
more objective and realistic in reflecting people’s emotional
state and psychological feelings at the time [10].

)e theory of “affective computing,” which reflects
specific emotions through changes in physiological signals,
was first proposed by Professor Pi card [11] at the MIT, who
suggested the feasibility of extracting features from physi-
ological signals for emotion recognition [12]. Nasoz et al.
[13] from the University of Central Florida, USA, used k-
nearest neighbour (kNN), Discriminant Function Analysis
(DFA), and Marquardt back propagation (MBP). Kim et al.
of Yonsei University, Korea [14], used the Support Vector
Machine (SVM) algorithm; the Institute for Computational
Science at the University of Augsburg, Germany, focused on
comparing the recognition effects of combining different
feature selection methods and classifiers [15]. )e research
on emotion computing in China started late, among which
Guangyuan Liu’s team from Southwest Jiaotong University
conducted a comparative study on the effect of emotion
recognition on emotion data samples from Augsburg
University using a combination of various feature extraction
and selection methods and classifiers [16].

Zhai et al. [17] used the SVM algorithm, and Setz et al.
[18] carried out the classification using DFA and SVM al-
gorithms. At present, there are relatively few studies at home
and abroad on affective computing in adverse states, es-
pecially for different stress levels. )e particle swarm opti-
misation (PSO) algorithm is combined with the kNN
algorithm to investigate the identification of emotional
experiences under adverse states based on multiple physi-
ological signal parameters. Based on the removal of baseline
emotions, the PSO algorithm optimises the selection of
multiple features of multiple physiological signals and then
uses kNN for classification to obtain better recognition
results.)e highest recognition rate reaches over 80%, which
improves the correct rate of the traditional method of
recognising emotional states with multiple physiological
signals [19] and provides a way to explore the relationship
between emotions in adverse states, and this provides a basis
for exploring the relationship between emotions and mul-
tiple physiological signals in adverse states.

2. Research Methods for Identifying
Emotions in the Adverse States

)is study firstly designed different emotion and tension
level evoking experiments under adverse states and collected
six physiological signal parameters such as heart rate, res-
piration rate, skin impedance, blood oxygen saturation,
pulse rate, and blood pressure under specific emotional
states of multiple subjects in real time. )rough pre-
processing and feature extraction of these physiological data,
combined with the results of the experimental subjective
experience questionnaire, the PSO-kNN algorithm was used
to select and classify the features of the experimental sample

data and finally to establish the emotion recognition model
under the adverse state [20].

2.1. Particle Swarm Algorithms. )e algorithm is concep-
tually simple, easy to implement, and fast to converge, has
few parameter settings, and is little affected by changes in
feature dimensions, making it an efficient search and op-
timisation algorithm [21]. )erefore, this paper uses the
particle swarm algorithm for feature optimisation selection
of physiological features.

Assuming that the total number of features isD and there
are m individuals in the population, the velocity of the ith
particle is Vi � (vi1, vi2, vi3, . . . , vi D)T, its position is
Xi � (xi1, xi2, xi3, · · · , xi D)T, and the value of the
position is a solution. By comparing the fitness values, the
optimal position experienced by the current ith particle can be
obtained as Pbesti � (pbesti1, pbesti2, pbesti3, · · · , pbestiD)T

and by comparing all particles, the optimal position of the
whole population can be obtained as Gbest � (gbest1,
gbest2, gbest3, · · · , gbestD)T.

V
n+1
i � w × V

n
i + C1 × rand1( ) × Pbesti − X

n
i(  + C2

× rand2( ) × Gbest − X
n
i( , (1)

X
n+1
i � X

n
i + V

n
i , (2)

where w is the inertia weight factor, usually with values 0.4 to
0.9. C1 and C2 are the learning factors, and usually,
C1 � C2 � 2. rand1 and rand2 are the random vectors be-
tween 0 and 1. A too-large inertia weight can increase the
flight speed of the particles, which is conducive to jumping
out of the local extremes, which makes the particles search
locally. According to (3), let the inertia weight linearly
decrease with the number for weight adjustment, faster to
achieve convergence of the algorithm.

w(t) � wmax − wmax − wmin(  ×
T

Tmax
, T � 1, 2, .., Tmax, (3)

where wmax is the maximum value of inertia weight, wmin is
the minimum value of inertia weight, Tmax is the maximum
number of iterations, and T is the current number of it-
erations.)e initial values of the parameters in this paper are
set using the inertia weight method [22], where w will be
initialized to a constant 0.729 and C1 � C2 � 1.494. To
prevent particles from flying out of the search space,
Vi ∈ [−Vmax, Vmax] is generally taken; Vmax will be too large
to fly away from the best solution, and too small value will
fall into a local optimum.

2.2.&e k-NearestNeighbourAlgorithm. )e kNN algorithm
is a well-established and simple classification algorithm that
makes full use of the physiological features of the entire
emotion sample. )e kNN algorithm, a commonly used
classification algorithm, works on the principle that a sample
is defined as belonging to a class if the vast majority of its
sample points in the feature space belong to that class within
a neighbourhood [23]. kNN algorithm is an algorithm in
which the selected neighbours are all objects of the training
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set that have been correctly classified. )e nearest neighbour
parameter is set to 1 in this paper.

2.3. PSO-kNNAlgorithm. In the PSO-kNN algorithm [24], a
particle is considered to have a higher fitness value when the
number of features it produces is smaller and its classifi-
cation accuracy is higher. )e fitness function for evaluating
each particle is f(x). )e larger the f(x) is, the better the
fitness is, and the fitness function can be defined as follows:

fitness �
1

RMSE × Factor + Features
, (4)

where RMSE is the root mean square error, Features is the
number of subsets of sample features, and Factor is the
balance factor. We have the following steps:

Step 1. Design particles, represented by a binary bit
string, with each binary bit corresponding to a feature
in the physiological signal feature set, where a 1 in the
bit indicates that the corresponding feature is in the
selected feature subset and a 0 in the bit indicates that
the corresponding feature is not in the selected feature
subset [25].
Step 2. Initialize the particle swarm, i.e., set the Xi and
initial velocity Vi of each particle at random.
Step 3. Learn and train with the kNN algorithm, and
calculate the particle fitness according to equation (4).
Step 4. For each particle, compare the fitness function
value f(xi) with its own optimal value f(pbesti), and if
f(xi)<f(pbesti), replace the previous round’s optimal
value with the fitness value and replace the previous
round’s particle with the new one.
Step 5. Compare the best-fit value f(xi) of each particle
with the best-fit value f(pbesti) of all particles. If
f(xi)<f(pbesti), replace the original global best-fit
value with the best-fit value of that particle, while saving
the particle.
Step 6. )e particles according to model equations (1)
and (2) of PSO produce a new population Xi+1 with the
following velocity adjustment rules: when vi >Vmax,
vi � Vmax; when vi ≤ − Vmax, vi � −Vmax.
Step 7. Update the inertia factor ω.
Step 8. Update the binary bits of the particle.
Step 9. Check the end condition. If it is satisfied, the
search ends and the current optimal feature subset and
classification accuracy are returned; otherwise, the
number of iterations is increased so that iteration T �

T + 1 is reached and the search ends at the maximum
number of iterations Tmax or the evaluation value is less
than the given accuracy.

3. Emotion-Evoking Experiments

3.1. Experimental Materials. )e International Affective
Picture System (IAPS) [26] from the NIMH Emotion and
Attention Research Center at the University of Florida was
used as the main material for the different emotion

elicitation experiments in adverse states. )ese selected
images were assessed for validity and arousal by a large
number of subjects in different emotion elicitation experi-
ments to determine the reliability of this approach. In this
process, the validity and arousal are determined by the size
of the defined data, where smaller numbers indicate lower
validity and arousal and larger numbers indicate higher
validity and arousal. Elicitation experiments for different
levels of tension in the dysphoric state were elicited using
different digit addition and subtraction mental arithmetic
tasks. )e efficacy values and arousal levels for the four IAPS
emotionally arousing picture materials are given in Table 1.

A visual comparison of the effect of these four emo-
tionally evocative picture material values and arousal levels
is shown in Figure 1.

3.2. Experimental Subjects. )ere were 14 subjects (8 males
and 6 females) from Shanghai Jiaotong University, aged 22
to 27 years old. )ey were physically and mentally healthy,
had normal vision and hearing, had no previous history of
psychiatric or neurological disorders, and had participated
voluntarily in the experiment. )ey were not involved in
strenuous exercise within 4 hours prior to the experiment
and did not use any drugs within one week prior to the
experiment. Before the start of the experiment [27], each
subject was made fully aware of the purpose and procedure
of the experiment and was tested with a stress-tolerance
questionnaire, and all had a certain level of stress tolerance.
)e whole experiment was conducted in strict compliance
with the Declaration of Helsinki.

3.3. Experimental Equipment. A high-performance com-
puter system (Intel(R) CoreTM i5-2310 CPU @2.90GHz,
4GB DDR3RAM, Lenovo, China; 17-inch professional
display, 300 c d/m2, resolution 1280× 768, vertical refresh
rate 75Hz) was used for the presentation of the emotionally
evoked material. )e screen for the presentation of pictures
and mental arithmetic questions is approximately 50 cm
away from the subject. Physiological signals are detected and
recorded based on a portable multiphysiological parameter
acquisition device developed by the laboratory, which can
acquire a variety of physiological signal parameters such as
ECG, heart rate, respiration rate, skin impedance, oxygen
saturation, pulse rate, and blood pressure. )e heart rate can
be monitored from 30 bpm to 240 bpm with an error of≤2%,
respiratory rate≤5%, skin impedance≤3%, blood oxy-
gen≤2%, pulse rate ≤3%, and blood pressure within ±1.3 kPa
(10mmHg).

3.4. Experimental Procedure

Experiment 1. Firstly, in an emotion-evoking experiment
with different visual stimuli, each of the ten emotion-
evoking pictures of the same type was presented in sequence
for 12 s. )e whole process was completed in 2min. )e
subjects took 2min to calm down after each slide show and
assessed the emotion elicited by the pictures. Before the start
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of the experiment, each participant was given a set of pretests
to familiarise them with the process and the experimental
environment. )e preexperiment images were also taken
from the IAPS.

Experiment 2. For the elicitation of tension in different
difficulty tasks, elicitation of tension in adverse states by
giving two-digit, three-digit, and four-digit addition and
subtraction mental arithmetic tasks with different levels of
difficulty was done [28]. Each question was presented for 5 s,
for a total of 125 s. Subjects were told to complete all
questions as correctly as possible within the time limit, with
an additional bonus if they obtained 95% or more score.
Subjects were given a 2min break between each set of
questions to allow for emotional recovery. After the three
sets of mental arithmetic tasks were completed [29], subjects
were asked to give a subjective assessment of the level of
tension induced by the three sets of tasks. Before the start of
the experiment, a pretest was also conducted to familiarise
the subjects with the procedure.

3.5. Experimental Data Processing. A total of 98 samples of
physiological signals were obtained from 14 subjects through
the tension elicitation experiment under different emotions
and different difficulty tasks. Based on the subjects’ sub-
jective questionnaires [30], a total of 89 valid physiological
signals were selected. Among them, 14 were calm, 10 were
fearful, 12 were excited, 11 were bored, 14 were low tension,
14 were moderate tension, and 14 were high tension. In
order to eliminate the differences in physiological data
between subjects, the baseline physiological data of each
subject in a calm emotional state were subtracted from the
sample data obtained under fear, excitement, boredom, low
tension, moderate tension, and high tension to obtain the
baseline physiological sample data, i.e., 33 samples of the
three types of emotions and 42 samples of the three tension
levels. After completing the preprocessing of the data, fea-
ture extraction was performed on the various types of
physiological signal data samples according to Table 2 and 33
features were finally obtained.

)e specific distribution structure of the features
extracted from the six physiological signals is illustrated in
Figure 2.

4. Experimental Results and Analysis

In the emotion elicitation experiments of the article, the
emotion recognition algorithm performed on the basis of
adverse states with multiple physiological signals was

implemented on Matlab 2019a. For the 33 samples in the
target, 21 of them were randomly selected as the training set
and the remaining 12 samples were used to test the ex-
perimental results. In order to fully validate the experimental
performance, we conducted the experiments separately for
the samples with and without the removal of baseline data
and the average results of the multiple experiments are
shown in Table 3. ALL in the experimental data refers to the
set of physiological signals containing BP, HR, RR, PR, SpO2,
and SC.

)e effect of the comparison of the average recognition
rate of the un-baselined versus the baselined in the recog-
nition results of the three types of emotional states and the
three levels of tension in the adverse state is shown in
Figure 3.

In order to identify the level of tension in poor states, 30
samples were drawn from a dataset of 42 tension level
samples for training and the remaining 12 were used for
testing. In order to conduct sufficient experiments to test the
recognition effect in multiple situations, multiple

Table 1: Efficacy values and arousal levels of the four IAPS
emotion-evoking picture materials.

Emotions Image RMS Image wakefulness
Excitement 6.0± 0.5 6.5± 0.5
Boredom 3.0± 0.5 3.5± 0.5
Fear 2.0± 0.5 7.0± 0.5
Calm 5.0± 0.5 4.0± 0.5
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Figure 1: Visual comparison of the effect value and arousal of four
different emotion-evoking picture materials.

Table 2: Characteristics of the six physiological signals extracted.

Physiological signals Extraction characteristics

Blood pressure Systolic, diastolic, and systolic-
diastolic differential

Heart rate, respiratory rate,
pulse rate, oxygen saturation,
and skin impedance

Mean, variance, first-order
difference mean, maximum,

minimum, maximum-
minimum difference
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experiments were conducted in both situations and the
average of the multiple experiments was used as the final
result. We conducted separate experiments on samples with
and without the removal of baseline data, and the recog-
nition results for the test set are shown in Table 4.

A comparison of the number of features of the optimal
subset for the two cases is shown in Figure 4.

Particle swarm optimisation algorithms allow collabo-
ration and information sharing between individuals in a
population to find the optimal solution, which has the
advantage of being simple and easy to implement and does
not require many parameters to be adjusted. )e results of
kNN and PSO-kNN with the removal of baseline physio-
logical data are presented in Table 5

A visual comparison of the recognition rates between
kNN and PSO-kNN with the removal of baseline physio-
logical data is shown in Figure 5.

)e results of the kNN and PSO-kNN without the re-
moval of baseline physiological data are shown in Table 6.

A visual comparison of the recognition rates between
kNN and PSO-kNN without the removal of baseline
physiological data is shown in Figure 6.

)e IAPS picture system was used in the study here to
design the emotion arousal experiment, which was evaluated
using a subject emotion arousal questionnaire with high
reliability. It can be concluded from the data in Tables 3 and
4 that when using the PSO-kNN algorithm for the identi-
fication of adverse emotions, the average recognition rates
for all three different emotions were lower than the average

recognition rates for the three different levels of tension and
that the data processing results without the removal of the
baseline data were lower than the recognition results with
the removal of the baseline physiological signal. )is indi-
cates that the removal of the baseline physiological signals
can effectively improve the recognition of emotions in ad-
verse states by eliminating the differences in physiological
signals between individuals. Another very important finding
is that the selected combination of signals is more accurate
than the single signal feature.

In the training, diastolic blood pressure and heart rate
maximum-minimum difference as well as pulse minimum
were repeatedly selected as the optimal subset of features for
emotion recognition. )is indicates that the selected signals
play an important role in the recognition of emotions in
adverse states. Compared with the recognition results of
Nasoz et al. using the kNN algorithm directly, this paper
obtained better recognition results by combining the re-
moval of baseline emotions with the PSO algorithm and
optimising the selection of multiple features of multiple
physiological signals before using kNN classification. Fi-
nally, based on the removal of baseline physiological signals,
three predictions were made using the kNN-PSO algorithm
for each of the three different emotions and three different
levels of tension evoked by the experiment, and the pre-
dictions obtained are shown in Table 7.

Pie charts of the predicted outcomes for three of these
different moods and three different levels of tension are
shown in Figure 7.

Extraction
characteristics

Physiological
signals

Extraction
characteristics

Heart rate, pulse
rate

respiratory rate

oxygen saturation,
skin impedance

Mean, variance
max. minimum

first order difference
mean

maximum minimum
difference

Figure 2: Structure of the specific distribution of features extracted from the six physiological signals.
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Table 3: )e classification of three stress emotions by physiological signals and their features’ combination.

Physiological
signals

Number of original
features

Optimal subset feature number Average recognition rate (%)
Not to baseline

kNN Removal of baseline kNN Not to baseline kNN Removal of baseline
kNN

BP 3 2 1 41.67 50.00
HR 6 2 2 50.00 66.67
RR 6 3 3 58.33 66.67
PR 6 2 3 58.33 66.67
SpO2 6 1 1 33.33 33.33
SC 6 2 1 58.33 66.67
ALL 33 7 7 66.67 75.00
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Figure 3: Comparison of the identification results of the (a) three types of emotional states and (b) three levels of tension.

Table 4: )e classification of three tension degrees by physiological signals and their features’ combination.

Physiological signals Number of
original features

Optimal subset feature number Average recognition rate (%)
Not to baseline

kNN Go to baseline kNN Not to baseline kNN Go to baseline kNN

BP 3 1 2 33.33 41.67
HR 6 3 2 58.33 66.67
RR 6 2 1 58.33 58.33
PR 6 3 2 50.00 58.33
SpO2 6 1 1 33.33 33.33
SC 6 3 2 50.00 66.67
ALL 33 6 5 75.00 83.33
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Table 5: Recognition rate results of kNN and PSO-kNN with the removal of baseline physiological data.

Category
Average recognition rate (%)

kNN PSO-kNN
BP 50.00 66.67
HR 66.67 75.00
RR 66.67 66.67
PR 66.67 75.00
SpO2 33.33 50.00
SC 66.67 75.00
ALL 75.00 83.33
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Figure 4: Comparison of the number of features of the optimal subset for the two types of cases: (a) three types of emotional states and (b)
three levels of tension.
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Figure 5: Visual comparison of recognition rates between kNN and PSO-kNN with the removal of baseline physiological data.
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Table 6: Recognition rate results between kNN and PSO-kNN without removal of baseline physiological data.

Category
Average recognition rate (%)

kNN PSO-kNN
BP 33.33 50.00
HR 58.33 75.00
RR 58.33 75.00
PR 50.00 66.67
SpO2 33.33 58.33
SC 50.00 75.00
ALL 75.00 83.33

BP

HR

RR

PR

SP

SC

ALL

33

75

50

83

KNNCategory

BP
HR
RR
PR

SP
SC
ALL

PSO-KNN

Figure 6: Visual comparison of kNN and PSO-kNN recognition rates without removal of baseline physiological data.

Table 7: )ree sets of emotion-evoking experiments with three different emotions and three different levels of tension.

Experimental group
Accuracy (%)

)ree stress emotions )ree tension
degrees

1 75.00 83.33
2 83.33 91.67
3 83.33 91.67

34.48%34.48%

31.04%

1
2
3

(a)

1
2
3

34.38%34.38%

31.25%

(b)

Figure 7: Pie charts of predicted outcomes for (a) three different emotions and (b) three different levels of tension.
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5. Conclusions

In this paper, three types of emotions and three stress levels
were induced using IAPS picture visual stimuli and mental
calculation task experiments to build up a sample library of
emotion-related physiological signals. Six feature vectors for
effective recognition of stressful emotions were found
through PSO feature optimisation, and the kNN algorithm
was used to achieve emotion calculation and stress level
recognition under adverse states. Experimental results show
that the PSO-kNN algorithm achieves an effective recog-
nition rate of 75% for the three emotions and 83.33% for the
stress level. )rough baseline data removal and PSO feature
optimisation, the recognition results are better compared to
the traditional kNN without feature optimisation selection.
It provides some reference for the research of physiological
signal processing and pattern recognition algorithms in
affective computing research. Due to the limited sample data
at present, it is difficult to test the deeper performance of the
model. Future work will further expand the sample of
emotion-related data in bad states, study the model with
better performance for emotion recognition algorithm, and
make the model work faster by considering the weighting
relationship of the parameters in the PSO and kNN algo-
rithms in more samples. Finally, we aim to extend the
emotion recognition model to practical applications to make
a real contribution to social change.
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