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In the �eld of natural language processing (NLP), machine translation algorithm based on Transformer is challenging to deploy on
hardware due to a large number of parameters and low parametric sparsity of the network weights. Meanwhile, the accuracy of
lightweight machine translation networks also needs to be improved. To solve this problem, we �rst design a new activation
function, Sparse-ReLU, to improve the parametric sparsity of weights and feature maps, which facilitates hardware deployment.
Secondly, we design a novel cooperative processing scheme with CNN and Transformer and use Sparse-ReLU to improve the
accuracy of the translation algorithm. Experimental results show that our method, which combines Transformer and CNN with
the Sparse-ReLU, achieves a 2.32% BLEU improvement in prediction accuracy and reduces the number of parameters of the
model by 23%, and the sparsity of the inference model increases by more than 50%.

1. Introduction

Machine translation, an essential branch of computational
linguistics, is a process of translating source language into the
target language by computer. Translation has extremely high
requirements for translators, and at the same time, there is a lack
of professional translators, so machine translation has made
signi�cant progress in international exchanges [1]. In recent
years, deep learning technology has developed rapidly. Re-
searchers have introduced neural network into language model,
which can better process the representation of common and
rare words. For example, a recurrent neural network (RNN) can
adapt to any sentence length and process the context recurrently
to get the �nal result. Transformer applies the attention
mechanism to machine translation and has better translation
quality than traditional methods.

Compared with traditional statistical machine transla-
tion, which requires elaborate features, the �exibility of

existing machine translation based on neural networks is
greatly improved. Methods based on RNN and its derived
models such as GRU and LSTM need to learn the long-
distance dependencies of each input word vector. �e
principle is to use the embedding layer to map sentences to
the embedding space and then use the hidden layer to
compute the knowledge obtained in the previous step. As
multiple hidden layers compute sequentially, calculations
within a single hidden layer are executed sequentially and
cannot be carried out in parallel. Di�erent from the scheme
of the RNN model that continuously accumulates input
information, the Transformer network uses the Encoder-
Decoder structure.

Because of its stacking self-attention layer and point-by-
point full connection layer, the recursive structure in RNN is
eliminated, and the network based on Transformer has the
advantage of high parallelism. Transformer o�ers signi�cant
improvements to machine translation, but at the cost of a
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large number of parameters. &e number of BERT large
parameters is 334M, the number of BERT base parameters is
109M, and the number of IB-BERT large parameters is
293M. Due to its large number of parameters and low
sparsity of parameters, it is generally applied to the server
side, and there is no suitable edge side Transformer algo-
rithm. &e existing RNN model must wait for all previous
input processing to be completed before processing the next
input, which is a bottleneck when processing long sequences.
&e number of operations required by the RNN model to
correlate information from two arbitrary input or output
positions increases as the position distance increases. &is
makes extracting complicated dependencies between far-
away positions more difficult. &erefore, RNN is difficult to
parallel, which is not conducive to hardware acceleration,
and the translation effect is not ideal. On the other hand, the
hardware-implementation-friendly CNN can not effectively
process location information and is not effective in machine
translation tasks when applied alone.

It is an effective method for hardware deployment of the
neural network to reduce parameter storage and transmis-
sion amount and reduce the dependence on hardware data
transmission bandwidth by using the compressed sparse
matrix method. And it has little influence on algorithm
accuracy. &e premise of this scheme is that the sparsity of
algorithm parameters is high enough.&e weight parameters
of the Transformer have not been optimized for sparsity,
which is difficult to be applied to hardware accelerated by a
compressed sparse matrix [2, 3]. &e traditional ReLU ac-
tivation function adopted by Transformer models such as [4]
does not improve the sparsity of the neural network algo-
rithm to the maximum extent. An appropriate activation
function is an important measure to improve network
performance and reduce the number of network parameters.

&e hardware deployment machine translation algorithm
must meet the requirements of lightweight and maintain high-
precision translation results. At the same time, in order to
further reduce the difficulty of deployment on edge devices, the
algorithm optimization must improve the sparsity of weight
parameters, so as to use the sparse matrix compression method
for hardware deployment. To solve the above problems, this
research proposes a new activation function that can improve
the algorithm accuracy and parameter sparsity at the same time
and designs a cooperative machine translation algorithm
combining CNN to extract local features and Transformer to
process sequence information. Our method combined with
Sparse-ReLU improved the BLEU score of the algorithm to
35.24, increased the sparsity bymore than 150%, and controlled
the total number of parameters within 38M. Our main con-
tributions are as follows:

(1) A new activation function, Sparse-ReLU, is proposed
and applied to the machine translation model. &e
BLEU score of the IWSLT14 German-English
translation task is enhanced from 34.29 to 35.16 by
using the model whose parameter scale is 36.42M.
&e number of parameters has been reduced, and
more than 50% of sparsity has grown. Meanwhile,
Sparse-ReLU can improve the translation effect.

(2) A Transformer structure with low number of pa-
rameters is proposed, which only uses three attention
heads and a 7-layer encoder and decoder. &e
number of parameters of this structure is only
36.42M, which solves the problem that Transformer
is too large to be deployed on the hardware.

(3) A CNN structure for machine translation tasks is
proposed and combined with a Transformer to
optimize the network. &e number of parameters of
the overall algorithm is 37.99M. &e BLEU score is
increased from 35.16 to 35.24.

1.1. Related Works. &e machine translation algorithm
based on the neural network generally adopts the Encoder-
Decoder model to deal with the machine translation task [5].
&e encoder takes the source sentence as input and calcu-
lates a real expression value. &e decoder inputs the real
expression value and generates the target translation. CNN,
RNN, and Transformer are the classical algorithms for
constructing the Encoder-Decoder structure.

Machine translation jobs can be processed serially using
an approach based on RNN and its derivatives LSTM [6, 7]
and GRU [8]. It has the advantage of high extraction ability
in processing series information. For example, the RNN-
based algorithm [9, 10] generates dynamic context repre-
sentation through its Encoder-Decoder architecture based
on attention mechanism. Research [11] creates target
phrases with fixed source statement representation. To make
the RNN and its derivative networks deeper and better, [12]
employs a residual strategy and skip connections to further
the RNN development.

&e Transformer based algorithm [4] and its variants
[5, 13–16] achieve the most advanced results on multiple
language pairs only based on the attention mechanism. Re-
search [13] improves the effect by increasing the scale ofmodel
parameters. Still, increasing the number of parameters means
that more extensive data sets are needed, and the training is
more complicated. It is not suitable for hardware, especially
edge devices. CNN-based algorithms [17, 18] are concerned
because of their high parallelism. Among them, [17] proposes
a CNN-based machine translation algorithm with higher
parallelism and a shorter long-term dependency than RNN.

Machine translation projects employ a variety of
Transformer structures to optimize the size of the model and
precision, as well as the bandwidth required for hardware
deployment. Research [2] proposes a pruning algorithm to
increase model sparsity and deploy the model on GPU, and
research [19] proposes a sparse matrix calculation method.
Both of them reduced the bandwidth requirements of matrix
calculation on hardware. One is to improve the activation
functions such as the ReLU and SoftMax. Research [20]
introduces a novel activation function WReLU for light-
weight neural network design. Research [16] introduces a
random calculation method to replace the traditional
SoftMax calculation, which reduces the calculation com-
plexity and improves the speed. Research [14] is a collab-
orative processing scheme that combines the advantages of
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multiple networks, and it combines BiLSTM and recurrent
attention for machine translation tasks.

&ese works have effectively promoted the development
of machine translation. However, most of the existing
Transformer schemes dealing with machine translation tasks
only use the attention mechanism and lack the research
results combined with the CNN model. Most optimized
networks are still too large, and there are defects in input
sequence order when using the RNN model to process se-
quence information. &e effect of processing sequence in-
formation using the CNN model is not ideal, making them
challenging to deploy in edge devices. Based on these, the
new activation function Sparse-ReLU, CNN submodel
structure, Transformer submodel structure, and cooperation
scheme proposed in this research achieve a better effect
under a particular parameter scale condition.

1.2. Method. Unlike prior machine translation Transformer
algorithms, this study proposes a Transformer model with
few parameters, a CNN submodel, and a novel activation
function Sparse-ReLU. CNN and Transformer submodels
use Sparse-ReLU to optimize the effect. &e three of them
cooperate in dealing with machine translation tasks. CNN
can process local information of word vectors and extract
multiple features containing position-coding, and the at-
tention mechanism can process local features extracted by
CNN rather than input sentences. Figure 1 shows the process
of our algorithm.

Figure 1 depicts the translation process. &e input and
output of the algorithm model are symbol sequences, and
the word segmentation operation of the input symbol se-
quence uses the BPE word segmentation method. &e po-
sition-coding operation embeds the position information
into the symbol sequence obtained by word segmentation.
&e CNN submodel extracts the features of sentences
containing location coding information. &e Transformer
submodel further extracts the output information of the
CNN submodel. Both submodels use Sparse-ReLU.

2. Model Structure

2.1. Activation Function 0at Can Improve Sparsity and
Accuracy. Most neural network algorithms currently

require activation functions to introduce nonlinear opera-
tions. However, activation functions such as sigmoid have
the disadvantages of complex hardware implementation and
high resource consumption in algorithm deployment. When
implementing the algorithm in hardware, sparse matrix ac-
celeration is a viable option, and sparse matrix acceleration
necessitates high weights sparsity. &e ordinary activa-
tion function can not maximize sparsity matrix compression
technology. Based on this, this research proposes a new ac-
tivation function Sparse-ReLU for hardware optimization.
&e activation function has the advantages of low hardware
implementation cost and low computing time like the tra-
ditional ReLU function. It solves the disadvantages of limited
representation ability and insufficient flexibility of the con-
ventional ReLU function.

For machine translation and other applications in nat-
ural language processing, real-time computing requirements
are high. Because of its low power consumption and small
area, the edge devices cannot effectively deploy translation
algorithms with huge parameters. In particular, the Trans-
former algorithm, although the translation effect is good, can
only be deployed on the server-side. It is of great significance
to realize the activation function with high flexibility and
simple hardware implementation.

&e activation function designed in this research can
improve the sparsity and accuracy of neural networks. &e
expression is shown in formulas (1)–(4), in which the range
of parameter a is (0, 1), the content of b is (0,1), which
satisfies a< b and c< d, and both a and b need to meet the
relationships of 0.125x, to complete the multiplication cal-
culation only through the hardware shift operation. As
shown in formula (1)–(3), the three subfunctions of Sparse-
ReLU are y0, y1, and y2.

y0 � 0, (1)

y1 � a ×(x − c), (2)

y2 � b ×(x − d). (3)

&e function of the subfunction y0 � 0 shown in For-
mula (1) is to set the activation value of the neural network to
0 and improve the sparsity of its activation value. &e

+

New activation function

output

Transformer
sub-model

CNN
sub-model

Location
coding

word
segmentationsentence

Algorithm modelPretreatment

Figure 1: Overall structure of the algorithm.
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traditional ReLU function sets the input of all negative
numbers to 0 and the positive part to itself. &e y0 function
in this research puts the output to 0 nomatter what the input
is. However, doing so will cause all information to be lost, so
formulas (2) and (3) are required to retain the information.
Taking the maximum value of the three subfunctions can
obtain the formula of Sparse-ReLU.

Sparse − ReLU � f(x) � max
x∈(−∞,+∞)

y0, y1, y2( 􏼁. (4)

When determining parameters a, b, c, and d, the
functions with large c and d are preferred under the same
translation effect, improving the sparsity of the weights and
activations of neural network. When setting the parameters
of Sparse-ReLU to a� 0.25, b� 1, c� 0.2, and d� 0.4 in
Figure 2(a) , the translation effect of the activation function
is the best. According to the formula, the traditional ReLU
function is a subset of the activation function designed in
this research. Figure 2(b) is the image of setting parameters
a� 1, b� 1, c� 0.2, d� 0.2 to make Y1�Y2 in Sparse-ReLU.
In this case, Sparse-ReLU degenerates into an offset tradi-
tional ReLU function. Furthermore, ReLU is a subset of
Sparse-ReLU, and the characterization power of Sparse-
ReLU is higher.

In this research, Sparse-ReLU replaces the traditional
function to provide nonlinear characteristics for the net-
work. It is applied between two fully connected layers or
between the CNN layer and the fully connected layer in the
network. Parameters a, b, c, and d in Sparse-ReLU are found
through training, to make the effect of the network model
better than that of the traditional ReLU activation function.
According to the iterative experiment, the German-English
translation task of IWSLT14 dataset performs best when the
parameters are a� 0.25, b� 1, c� 0.1, and d� 0.4. After
determining parameters in Sparse-ReLU, combined with the
pruning operation, the sparsity of the network model is
improved. Unlike other sparsity improvement methods, this
activation function can enhance the sparsity of weight pa-
rameters and the sparsity of activation, which is convenient
for further hardware acceleration using a sparse matrix.

Because it can efficiently use shift and addition opera-
tions to realize the activation function in hardware and
complete the prediction task of the model based on Sparse-
ReLU, Sparse-ReLU can obtain multiple zero values, in
which the experimental statistics are more than 50% higher
than the value close to zero in the ordinary ReLU activation

value. So, it can effectively improve the network sparsity. It
has the characteristics of low resource consumption in
hardware implementation and can enhance the sparsity of
neural network parameters and the accuracy of the model
prediction. Figure 3 shows the application of Sparse-ReLU in
the model, as discussed in Section 1.2.

2.2. Transformer and CNN Submodels Combined with Sparse-
ReLU. Figure 1 shows the overall design, which is made up
of a CNN and a Transformer submodel. We will introduce
the Transformer structure used in this research in detail.

&e Transformer structure has a high ability to extract
sequence information. Figure 4 shows the Transformer
structure in this research, composed of the residual layer,
multihead attention layer, Sparse-ReLU layer, and layer
normalization. As shown in Table 1, the parameters of each
Transformer structure are listed. It has the characteristics of
low parameter quantity. &e Encoder combines Sparse-
ReLU, which can improve prediction accuracy.

&e CNN submodel needs to process the input sentences
and extract the features without changing the size of the
feature map. Convolution can improve the extraction ability
of local features of the network. Figure 5 shows the CNN
submodel. After the sentence is entered into the model, it
needs to go through embedding and position-coding oper-
ation and then carry out layer normalization operation. Fi-
nally, utilizing two-dimensional CNN toprocess the sentence
coding results containing position information. Figure 5
shows the CNN structure, where Len is the sentence length.

&e input channel of CNN is 1, the output channel is the
length of the word vector, that is, 512 channels, the size of
convolution kernel is (5,512), the stride step is 1, and the size
of padding is two zeros for rows and no padding for col-
umns. &e dimension of the feature map before CNN
processing is (Len, 512), Len is the sentence length, and the
dimension of the feature map after CNN is (512, Len). After
dimension transformation and Sparse-ReLU, the fully
connected layer maps the result to another dimension and
makes the residual connection with the original input. Ta-
ble 2 lists the detailed measurements of each structure of
CNN.

2.3. Collaborative Processing Scheme between CNN and
Transformer Submodels. Considering the strong ability of

0.200 0.470

y0

y2
y1

Sparse-ReLU=max (0, 0.25* (x-
0.2), x-0.4)

a=0.25, b=1, c=0.2, d=0.4

(a)

0.200

y0

y1=y2

Sparse-ReLU=max (0, (x-0.2))

a=1, b=1, c=0.2, d=0.2

(b)

Figure 2: Sparse-ReLU function.
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CNN to extract local features, the combination of Trans-
former and CNN submodels can effectively improve the
power of the algorithm to extract local features. &ere are a
variety of cooperative processing strategies for multinet-
works, including the concatenation operation method [21],
result addition method [22], result point multiplication
method [23], and matrix transformation after the concat-
enation operation. &e model in research [21] adopted the
method of submodules in series, effectively combined CNN
and attention, and proposed an end-to-end ResNet structure
model, which was used to extract local features, and sum-
marized the local feature sequence through the attention

mechanism. &is research discusses the impact of CNN and
Transformer on machine translation tasks. Figure 6 shows
the details of various collaborative processing schemes
discussed in this research. &e CNN submodel of Figure 6 is
the structure in Figure 5. Encoder and decoder are also the
forms discussed in Figure 4.

To make the size of the matrix output of the CNN
submodel be the same as that of the attention submodel, we
set the number of output channels of the convolution kernel
to be 512, which is the same as the length of the word vector
in the matrix output of attention submodel. Figure 6(a)
shows the scheme that the attention submodel learns the

FC

Sparse-ReLU
FCDropout

Input

+

Dropout

(a)

CNN

Sparse–ReLU
FCDropout

+

Input

Dropout

(b)

Figure 3: &e deployment method of Sparse-ReLU function.
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Masked
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attention

Add&
Norm

Add&
Norm

Add&
Norm

Linear Softmax

Positional
encoding

Encoder * 7

Decoder * 7

Figure 4: Structure of Transformer submodel.

Table 1: Transformer submodel size.

Description Substructure Layer name Size

Encoder

MultiHeadAttention

cast_queries (512, 384)
cast_keys_values (512,768)

cast_output (384,512)
softmax softmax

layer_norm eps� 1e-05

PositionWiseFCNetwork

LayerNorm eps� 1e-05
fc_1 (512,1024)
fc_2 (1024,512)

Sparse-ReLU Sparse-ReLU ：a� 0.25,b� 1,c� 0.2,d� 0.4

Decoder

Embedding Embedding (10000, 512)
MultiHeadAttention tgt_emb (10000, 512)
MultiHeadAttention pos_emb (10000, 512)

PositionWiseFCNetwork Sparse-ReLU Sparse-ReLU ：a� 0.25,b� 1,c� 0.1,d� 0.4

Output LayerNorm LayerNorm eps� 1e-05
Fc Fc (512,10000)
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feature of input data, and the feed-forward module con-
sisting of a CNN and a fully connected layer processes the
result of attention computation, which is illustrated with the
gray box. As shown in Figure 7, the output characteristic
matrix of the feed-forward module is the result of the ad-
dition of a CNN and a fully connected layer. Figure 6(b)
shows how to add a CNN submodel after the multihead
attention layer of the encoder in the Transformer. Figure 6(c)
uses the attention submodel to summarize the feature se-
quence from the original sentence, then uses a CNN sub-
model with a ResNet structure to extract local features from
the features summarized by the attention submodel, and
finally uses the decoder submodel to decode the target text.

Figure 6(d) shows that the CNN submodel first processes the
input sentence and learns the local features of the sentence.
&e Transformer submodel extracts the sequence features
processed by the CNN submodel. After the encoder oper-
ation in the Transformer, it is handed over to the decoder
submodel for decoding operation again.

2.4. Algorithm Model. Figure 8 shows the details of the
model in this research. According to the introduction of the
previous three sections, the model in this research mainly
includes the convolutional neural network feature extraction
layer, encoder layer, and decoder layer. Table 3 shows the
structural parameters of the algorithm.

Sparse–ReLU

…

Convolution kernel

+

Output

Kernel 0 Kernel 511

Full connectionLayer_norm

(Len, 512)

(1, Len, 512) (512, Len, 1) 512x512

(Len, 512)

Input Dimension
extension
operation

Kernel =5*512
Stride = (1, 1)
Padding= (2, 0)

Figure 5: Structure of CNN submodel.

Table 2: CNN submodel size.

Description Substructure Layer name Size
Pretreatment Embedding and location coding Embedding (10000, 512)

CNN Convolution submodel
LayerNorm eps� 1e-05
Conv2d in_ch� 1, out_ch� 512, kernel� (5, 512), stride� (1, 1), pad� (2, 0)
Linear (512, 512)

Activation function Sparse-ReLU Sparse-ReLU ：a� 0.25,b� 1,c� 0.1,d� 0.4

Inputs
embedding + Multi–head

attention
Add&
Norm

Add&
Norm

CNN
+

Positional
encoding

Encoder

(a)

Inputs
embedding + Multi–head

attention
Add&
Norm FC Add&

Norm

Positional
encoding Encoder

CNN

(b)

Inputs
embedding +

Positional
encoding

Encoder CNN Decoder

(c)

Inputs
embedding +

Positional
encoding

EncoderCNN Decoder

(d)

Figure 6: Collaborative scheme of transformer and CNN submodel.
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3. Experiment and Result Analysis

3.1. Machine Translation Dataset and Word Segmentation
Algorithm. &is research selects the German-English

translation task for the experiment, and the dataset is
IWSLT14. &e training set contains 160250 sentences, and
the testing set uses 6750 independent sentences [24].

&e input and output of the translation algorithm are
symbol sequences. &ese symbols are the basic units of
sentences. Because extensive vocabulary cannot be natu-
rally decomposed into words, using words as the basic units

FC Sparse–ReLU FC

Zero Matrix

Input

Concatenation FC+Sparse–ReLU

…

CNN Kernel

+

5 5

Output

Figure 7: Structural details of CNN in Figure 6(a).

Full connection layer
output

Layer
normalization

Transpose+full connection
+Sparse–ReLU

Convolution kernel

+

Attention

OutSparse–ReLU

Attention

Encoder*7 Decoder*7

Full
connection

Full
connectionDropout

+
Residual network

+

sentence
CNN Output

Kernel 0 Kernel 255…

…

… …

……

size: 5x512
512x512 Y=max (0, 0.25* x-0.1, x-0.4)

+

512x1024 1024x512

Dropout

Residual network

Sparse–ReLU

Lenx512
Lenx512

Lenx512
Lenx512

5x512 5x512 5x512

Location coding

Figure 8: Final translation model combined with Sparse-ReLU.

Table 3: Parameters of the model.

Parameter name Small model
d_model 512
n_heads 3
d_queries 128
d_values 128
d_inner 1024
n_layers 7
max_len 300
cnn_kernel (5,512)
beam_size 5

Table 4: Experimental environment.

CPU Intel(R) Xeon(R) silver 4116 CPU @
2.10GHz

Experiment framework PyTorch 1.4.0
GPU 8 TITAN XP graphics cards
CUDA CUDA 10.2
OS Ubuntu 16.04.12

Computational Intelligence and Neuroscience 7



to form sentences will make it challenging to train the
algorithm. An alternative is to use word segmentation
algorithms such as [19, 25] to learn subwords from the
dataset. &is research uses the method of research [19] for
word segmentation, which introduced the BPE algorithm
variant for word segmentation, which can encode the
available vocabulary with the vocabulary of variable length
subword units. In this experiment, the size of the word table
is 10000.

3.2. Evaluation Metric. Many automatic evaluation metrics
have been proposed in the machine translation task to
evaluate the quality of translation results. &is research
adopts the most popular BLEU [26] evaluation. It sum-
marizes the overlapping words and phrases between ma-
chine translation and reference results. &e translation
results judged by the BLEU evaluation metric are highly
consistent with those considered by human beings and have
become a de facto translation evaluation standard after being
proposed. &is research does not use single testing set for
BLEU score evaluation but combines multiple testing sets for
score evaluation.

3.3. Experimental Environment and Model Training. &is
experiment uses 8 Titan XP graphics cards. PyTorch version
is 1.4.0, and the CUDA version is 10.2. Table 4 lists the
detailed configuration used in the experiment.

&e algorithm uses a dropout operation to prevent
training overfitting to ensure the training quality [27]. We
use the dropout operation before the layer normalization of
the CNN submodel, multihead attention submodel, encoder
and decoder submodel output, and final output layer. Table 3
lists the network parameter configuration. &e step of
warmup is 8000. In the prediction process, a beam search
algorithm is used instead of a greedy algorithm to obtain
better prediction results, where the beam size is 5.

3.4. Result Analysis

3.4.1. BLEU Score Comparison. &is model is being used to
test German-English translation tasks. Table 5 lists
the translation results of this algorithm and expected
results.

Table 6 lists the comparison between the translation
results of various types of machine translation algorithms
and the algorithms in this research. &e parameter size of
the algorithm proposed in this research is 37.99M, and the
BLUE score reaches 35.24, which is 52.554% higher than
other schemes such as research [17], 17.860% higher than
research [29], and 2.442% higher than research [16]. &e
score of the algorithm model in this work is enhanced by
2.323% compared to the classic Transformer model [4],
and the parameter size is decreased by 11.28M, which is
reduced by 23%. Compared with Dynamic CNN [30], the
score of the proposed algorithm is 1.264% higher, and the
parameter size is decreased by 247.01M, which is reduced
by 87%. Compared with the Transformer using the ReLU,
the score of the Transformer using Sparse-ReLU is im-
proved by 0.87 scores from 34.29 scores to 35.16 scores, an
increase of 2.54%. &e score of the optimization result
using Sparse-ReLU and CNN is 35.24, an increase of
2.77%.

According to the four cooperation schemes between
CNN and Transformer designed in Section 2.3, Table 7
lists the translation results obtained by the seven struc-
tures. &e CNN structure of structure 2 is the one-di-
mensional CNN proposed in Figure 7, and the other CNN
structures are the two-dimensional CNN submodel
structure proposed in Figure 5. &e input channel is 1, and
the Transformer submodule is the structure proposed in
Section 2.2. &e input and output channels are word vector
lengths, and the word vector dimension is the input
channel of the convolution kernel. Using structure 7, when
the convolution kernel size is 5× 512, the BLEU score
achieves the best result of 35.24 points.

Table 5: Translation results of the model.

Standard results Results of this research
And of course, we all share the same adaptive imperatives And of course, we all share the same adaptive applications
We’re all born. We all bring our children into the world We’re all born. We bring children to the world

And the great indicator of that, of course, is language loss And the key indicator for this
is the extinction of languages

Table 6: &e comparison results between this model and others (German-English translation task using IWSLT14 dataset).

BLEU Size M Model
Research [17] 23.1 — Encoder model based on 6-layer CNN.
Research [28] 28.83 — Tag-less backtranslation
Research [29] 29.9 — Linear transformer
Research [16] 34.4 — Random feature attention

Research [30] 34.8 285 Pay less attention with lightweight CNN
35.20 296 Pay less attention with dynamic CNN

Traditional transformer model [4] 34.44 49.27 Traditional transformer model

&is paper scheme Small model + Sparse-ReLU 34.29 36.42 Small transformer
35.16 Sparse-ReLU+ Small transformer

Small model + Sparse-ReLU+CNN 35.24 37.99 Sparse-ReLU+ small transformer +CNN

8 Computational Intelligence and Neuroscience



Figure 9 shows the comparison results of the decline
curves of loss during different structure training. &e solid
line in the figure is the loss decline curve of the benchmark
model, and the dotted line is the loss decline curve of the
Transformer model with CNN and Sparse-ReLU. Compared
with the benchmark model, the loss reduction speed of the
model with CNN and Sparse-ReLU is much higher than that
of the benchmark model. Under the same 300 epochs, the
loss value is reduced by 10.6%.

3.4.2. Sparsity Comparison. Table 8 lists the effects of Sparse-
ReLU and ReLU on the sparsity of the algorithm. Compared
with the conventional ReLU function, the Sparse-ReLU
proposed in this research increases the sparsity of the rel-
evant layer by 150.95% and reduces the loss value by 42.2%.
Both indexes have an excellent optimization effect.

When the parameters of the new activation function are
set to a� 0.25, b� 1, c� 0.2 and d� 0.4, the algorithm is
pruned to improve the sparsity of the parameters. Table 9

lists the effects of traditional and new activation functions on
the sparsity of the model when the model adopts different
pruning algorithms. Table 9 shows that, compared with L1
norm pruning, the random unstructured pruning algorithm
and Sparse-ReLU jointly improve the sparsity of the weight
to 78.26% and the sparsity of the activation value of the
tested layer to more than 120%.

&e bar graph of key information in the above two tables
is shown in Figure 10. Figure 10(a) shows that the Sparse-
ReLU used in this paper significantly decreases the loss value
and improves the sparsity when training the model com-
pared with ReLU. According to Figure 10(b), when the
model with Sparse-ReLU uses different pruning algorithms,
it can further improve the sparsity with little accuracy loss.

4. Conclusion

&is paper proposed a cooperative machine translation al-
gorithm based on CNN and Transformer submodels com-
bined with Sparse-ReLU, where the CNN is used to extract

Table 7: Comparison of translation results of different structures between CNN and Transformer (512 convolution output channels).

Structural details Convolution type Convolution kernel size BLEU
Structure 1: Figure 6(a) 2d convolution Same as structure 7 34.32
Structure 2: Figure 6(a) 1d convolution in_ch� 512, kernel� (5, 1), stride� (1, 0), pad� 0 34.15
Structure 3: Figure 6(b) 2d convolution in_ch� 1, kernel� (3, 512), stride� (1, 0), pad� (1, 0) 31.46
Structure 4: Figure 6(b) 2d convolution Same as structure 7 33.61
Structure 5: Figure 6(c) 2d convolution Same as structure 7 30.86
Structure 6: Figure 6(d) 2d convolution in_ch� 1, kernel� (7, 512), stride� (1, 0), pad� (3, 0) 34.37
Structure 7: Figure 6(d) (&is research adopts) 2d convolution in_ch� 1, kernel� (5, 512), stride� (1, 0), pad� (2, 0) 35.24

Loss value (Ours), 2.126
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Figure 9: Falling curve of loss value of each structure.

Table 8: Influence of Sparse-ReLU on model sparsity.

Sparse-ReLU parameters Formula Relative loss value Relative sparsity
a� 1, b� 1, c� 0, d� 0 Y�max(0, x) 100% (Baseline) 100% (Baseline)
a� 1, b� 1, c� 0.2, d� 0.2 Y�max(0, x-0.2) 100.92% 127.09%
a� 1, b� 1, c� 0.4, d� 0.4 Y�max(0, x-0.4) 114.68% 150.96%
a� 0.25, b� 1, c� 0.2, d� 0.4 Y�max(0,1/4(x-0.2), x-0.4) 57.80% 150.95%
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Table 9: Experimental results of the combination of Sparse-ReLU and pruning algorithm.

Pruning algorithm Set parameters Relative activations sparsity Relative loss value Weights sparsity
No pruning + Sparse-ReLU \ 100% (Baseline) 100% (Baseline) 0.00% (Baseline)

L1Unstructured + Sparse-ReLU 0.3 121.22% 173.60% 22.58%
0.5 122.97% 195.12% 68.47%

RandomUnstructured + Sparse-ReLU
0.3 120.18% 120.42% 65.99%
0.2 120.55% 110.79% 48.70%
0.4 120.70% 288.05% 78.26%

100% 100.92%

114.68%

57.80%

100%
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150.96% 150.95%
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Figure 10: &e influence of Sparse-ReLU on sparsity and accuracy.

10 Computational Intelligence and Neuroscience



local features of sentences containing location information,
the Transformer is used to further extract sequence features,
and the Sparse-ReLU can optimize the algorithm. Compared
with the traditional counterpart, the count of parameters
decreased by 23% with accuracy increased by 2.77%, and the
sparsity increased by 50%. Consequently, Transformer and
CNN parameters are only 36.42M and 1.57M, respectively.
Test results show that the proposed scheme can effectively
improve the accuracy of model translation and the sparsity
of activation and weight value.

In future works, the author of this research will continue
to study the collaborative scheme between CNN and
Transformer and the parameter training method of Sparse-
ReLU, hoping to achieve better results.
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evaluation campaign,” in Proceedings of the 2014 International
Workshop on Spoken Language Translation, vol. 57, Hanoi,
Vietnam, December 2014.

[25] T. Kudo and J. Richardson, “SentencePiece: a simple and
language independent subword tokenizer and detokenizer for
neural text processing,” in Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing: System
Demonstrations, Brussels, Belgium, December 2018.

[26] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “BLEU: a
method for automatic evaluation of machine translation,” in
Proceedings of the Annual Meeting Of 0e Association For
Computational Linguistics, Philadelphia, PA, USA, July 2002.

[27] N. Srivastava, G. Hinton, A. Krizhevsky, and S. Ruslan,
“Dropout: a simple way to prevent neural networks from
overfitting,” Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[28] I. Abdulmumin, B. S. Galadanci, and G. Aliyu, “Tag-less back-
translation,” pp. 1–31, 2021, https://arxiv.org/abs/1912.10514.

[29] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret,
“Transformers are rnns: fast autoregressive transformers with
linear attention,” in Proceedings of the International Confer-
ence on Machine Learning PMLR, pp. 5156–5165, New York,
NY, USA, July 2020.

[30] F. Wu, A. Fan, A. Baevski, and A. Michael, “Pay less attention
with lightweight and dynamic convolutions,” 2019, https://
arxiv.org/abs/1901.10430.

12 Computational Intelligence and Neuroscience

https://arxiv.org/abs/1912.10514
https://arxiv.org/abs/1901.10430
https://arxiv.org/abs/1901.10430

