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Digital twins (DTs) can realize the integration of information and entities. It is widely used because of its simulation characteristics
and virtual reality (VR) mapping. Its application to industrial product management and control is explored. First, the concept and
the functions in different stages of DTs are expounded. Second, the Workench simulation platform and SolidWorks software are
applied in the design of the aluminum alloy flange according to DTs in the design stage of industrial product management and
control. ,ird, the role of DTs in industrial product management and control is confirmed through a comparative experiment.
Finally, an intelligent algorithm for the automatic identification of internal defects is designed based on lightweight deep learning
to improve the efficiency of ultrasonic detection.,e results show that the accuracy of the lightweight convolution neural network
(CNN) is 94.1%; the model size is 2.9MB; the network is more lightweight and has an excellent performance in ultrasonic defect
detection; the nonlinear finite element analysis results and the test results are consistent. ,erefore, it is proved that the finite
element analysis method is reliable and helps to improve the efficiency and shorten the design cycle. ,e emergence of DTs
provides a technical scheme for product management and control under the three-dimensional model.

1. Introduction

In recent years, with the continuous development of new
technologies such as artificial intelligence (AI) and the In-
ternet of things (IoT), which have been applied to the
manufacturing industry one after another, a large number of
industrial applications under the condition of new tech-
nologies have also emerged one after another and have
attracted the attention of all countries. In theMade in China
2025 plan, China government proposes that intelligent
manufacturing will become an important direction and core
content of China’s industrial development in the future [1].
Intelligent manufacturing is a system integrating intelligence
and man-machine integration. Concurrently, it can also
carry out a series of intelligent activities in the process of
manufacturing [2].

,e key problem of intelligent manufacturing is how to
integrate the physical world and the information world, and
the DTs just solve this problem [3]. So far, DTs have been

successfully applied to different industries, including
product design, production, prediction, health management,
and some other fields [4, 5]. DTs make full use of the physical
model, sensor update, and operation history, and other data
integrate multidisciplinary, multiphysical quantity, multi-
scale, and multiprobability and complete the mapping in the
virtual space, to reflect the simulation process of the whole
life cycle process of corresponding physical equipment.
Furthermore, it can also realize some scenarios such as real-
time monitoring, data collection, simulation, analysis, and
reasoning of physical objects [6–11]. In the process of
continuous improvement and development of the concept of
DTs, academia has mainly carried out relevant research on
the modeling, the integration of information physics, in-
teraction and collaboration, and service applications of DTs.
At present, some research has been carried out on the
framework andmodeling process of DTsmodeling, but there
is no consistent conclusion. Some progress has been made in
modeling theory, including physical behavior research,
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nondestructive material measurement technology, quanti-
tative error, and confidence evaluation. ,ese auxiliary
technologies will help to determine the model parameters,
construct the behavior constraints, and verify the model
accuracy. Using the DTs model for personalized production
of products and integrating the DTs model into the product
design and production process can achieve rapid product
design and improve production efficiency and realize per-
sonalized product customization, modular design, and
highly scalable production. In ultrasonic testing technology,
identifying and classifying the defects of the detected object
is exactly the application category of pattern recognition. At
present, the most commonly used method in ultrasonic
testing is neural networks. ,e neural network has good
adaptability and can learn and form many complex judg-
ment models in mode space. However, its application in
practical engineering is limited due to its poor stability. With
the progress of computer vision, it also further promotes the
development of ultrasonic detection technology. ,e con-
volutional neural network (CNN) shows great advantages in
image recognition and classification. With the help of
computer vision, the detection efficiency and the quality of
detection results will be greatly improved. In the existing
CNN, the deeper the network is and the more the number of
feature planes is, the larger the feature space the network can
represent and the more the network can learn. However, the
CNN model will become more and more complex if its
performance is improved by deepening the network and
increasing the number of feature planes, making the pa-
rameters in the network increase greatly and the calculation
of the network model more complicated.,erefore, the real-
time detection efficiency of the network will be lowered.

At present, enterprises have realized product control
under the two-dimensional development mode. However,
how to realize the product control under the full three-di-
mensional mode is a key problem in industrial product
control. DTs can provide a technical scheme for product
control under the full three-dimensional mode. ,erefore,
the DT model is implemented in industrial product man-
agement and control, which confirms the importance of
DTs. In addition, the efficiency of ultrasonic detection of
internal defects in industrial production is improved, and an
intelligent algorithm for automatic identification of internal
defects is designed based on the relevant theory of light-
weight deep learning. ,e algorithm has an excellent per-
formance in ultrasonic defect detection of castings.

2. Materials and Methods

2.1. DTs Technology. DT is a simulation process that makes
full use of the physical model, sensor update, operation
history, and other data, integrates multidisciplinary, mul-
tiphysical quantity, multiscale, and multiprobability, and
completes mapping in virtual space, to reflect the whole life
cycle process of corresponding physical equipment. DTs can
also be called digital images or digital mapping. DTs create a
virtual model of the physical object in a digital way, to
simulate the behavior of the physical object in the real
environment [12–15]. One twin in the DTs is an entity that

exists in the real world.,is entity can refer to a part, such as
a simple screw, or a factory, or even a complex human
structure. ,e other twin in the DTs only exists in the virtual
and digital world, which is the symmetrical mirror of the real
world created by digital technology. It can map various
attributes of physical equipment to the virtual space with the
help of digital means such as design tools, simulation tools,
the IoT, and virtual reality, to form a digital image [16, 17].
,e DTs can be realized from different dimensions, as shown
in Figure 1.

A typical DTs system usually includes physical objects,
measurement perception, terminal controller, communi-
cation network, DTs operation platform, and user domain
(Figure 2). ,ese five parts are interrelated, which can
achieve positive data acquisition and transmission analysis
and realize reverse data feedback and decision control,
forming a closed-loop interconnection of information
transmission.

In general, DTs refers to a virtual model that is com-
pletely corresponding and consistent with the physical
entities in the real world and can simulate its behavior and
performance in the real environment in real time, also
known as the DTs model [18, 19]. DTs are the key tech-
nology for manufacturing enterprises to move towards the
strategic goal of Industry 4.0. It connects all stages (product
creativity, design, manufacturing planning, production,
and use) through the digital idea of mastering product
information and its life cycle process and connects to
production intelligent devices that can understand and
respond to these pieces of information. Figure 3 demon-
strates the application of DTs technology in the equipment
industry.

,e corresponding functions of DTs technology in
different stages are also different, as signified below.

2.1.1. DTs in the Design Stage. In the product design stage,
the accuracy of design can be greatly improved through DTs,
and the performance of products in the real environment
can be verified. ,e specific functions include digital model
design, simulation, and imitation [20]. As for the product
DTs, a model-based system-engineering-product develop-
ment model will be developed driven by demand. It will
realize the whole closed-loop management of “demand
definition-system simulation-function design-logic design-
physical design-design simulation-physical test.”

2.1.2. DTs in the Manufacturing Stage. Building a virtual
production line to meet manufacturing needs through
digital methods requires a high degree of collaboration at
this stage, and various factors such as products, equipment,
production, and supervision need to be concentrated and
coordinated. Figure 4 demonstrates the implementation
method, which mainly includes three functions. If some
abnormal conditions that violate the strategy are found in
the production process, these abnormal conditions need to
be adjusted or handled in time to ensure the stability and
optimization of the production process [21].
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2.1.3. DTs in the Service Stage. In recent years, the devel-
opment of IoT technology has become gradually mature,
accompanied by the corresponding reduction of the cost of
sensors, not only large equipment but also some consumer

products. ,ese industrial products collect the working
environment and state in the product operation stage
through sensors and then analyze and optimize the collected
information. ,is can both prevent faults in product
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Figure 1: Implementation form of different dimensions of DTs.
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Figure 2: Architecture of DTs system.
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production and help to improve the user experience of
products [22]. Figure 5 illustrates the functions that DTs can
achieve in the service phase.

,e realization of remote monitoring and predictive
maintenance function is to read the sensors of intelligent
industrial products or various parameters of the control
system. ,en, remote monitoring is established, health
evaluation indicators are built, and the prediction through
AI is realized [23]. Next, the maintenance strategy is opti-
mized according to the predicted results, to reduce the loss
caused by unplanned downtime. ,e production index
function of customers is optimized because many industrial
customers realize production through industrial equipment.
So, whether the setting of these industrial equipment pa-
rameters is reasonable and applicable to different production
conditions is determined by the quality of customers’
products and delivery cycle [24]. On the one hand, it can
speed up the introduction cycle of new products, prevent
some problems caused by the wrong use of products, and

improve the accuracy of parameter configuration. On the
other hand, obtaining the real needs of customers in this way
can greatly reduce some mistakes in R&D decision-making
[25].

2.2. Workench Simulation Platform. Workench is a collab-
orative simulation environment proposed by ANSYS
company. Its user interface is more user-friendly than that of
the classic ANSYS. Researchers can pay more attention to
product R&D when using Workench. Furthermore,
Workench can be well connected with SolidWorks software
to import complex three-dimensional models into
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Workench simulation platform, which can solve the pre-
vious heterogeneous problem [26].

Under the environment of Workench and CAD col-
laborative simulation, all these steps can be completed on
this platform, from product concept design to model sim-
ulation analysis and finally to the preliminary finalization of
products, which greatly improves the work efficiency of
designers. In the collaborative simulation environment, in
addition to the sharing of Workench and various CAD
software, hardware, and data resources, it can also allow
different designers and analysts to carry out collaborative
R&D, data integration, and data exchange, which will help to
improve the efficiency of design R&D and shorten the design
cycle [27].

2.3. Behavior Model Based on Finite State Machine. ,e
behavior model of DTs refers to the geometric model driven
by disturbance factors and driving factors, so that it has the
behavior ability of response mechanism and physical entities
and the ability of complex actions. ,at is, the response of
geometric models is driven by multisource data of physical
entities. Creating a physical production line behavior model
is a complex process, so Moore finite state machine mod-
eling method is used to create a production line system or
device object behavior model. ,e finite state machine
(FSM) is a mathematical model of the behavior of the system
or object obtained abstractly. ,e mathematical model is a
set of different states of the system or object.,emultisource
data set of the system equipment and the transition rules
between states are used to describe the behavior process of
the system or object. ,e FSM consists of three parts: all
possible states of the system or object; the input set of the
system or object, the input set received by the FSM in the
process of motion; a set of rules for state transitions of a
system or object. When a system or object receives different
input information, the state of the machine changes from
one state to another. Moore’s classical finite state machine
model is expressed as a six-tuple:

M � Q, ,Δ, δ, λ, q0 . (1)

In equation (1), Q � q0, q1, q2, . . . , qn , which indicates
the set of finite states of the system or object can only be in a
certain state during the movement;

 � δ0, δ1, δ2, . . . , δm  represents a finite input set of
systems or objects;
Δ � a0, a1, a2, . . . , ar  denotes a finite input set of sys-

tems or objects;
δ: Q × ⟶ Q refers to the state transition function;
λ⟶Δ represents the output function of the system or

object, and the output function is only related to the current
state of the system;

q0 ∈ Q stands for the initial state of the system or the
object.

Equation (1) demonstrates that, in Moore FSM, the state
of the next moment of state transition is determined by the
current state and the current input state, and the output state
is only determined by the current state, independent of the
current input, and there is no state hesitating. Equation (1) is

used to express defects existing in the production line be-
havior model. Improvements are made combined with the
status of the intelligent processing production line as
follows:

(1) ,e output of Moore FSM only depends on the
current state of the system or object, which is in-
dependent of the input at present, and there is
λ⟶Δ. However, the real-time data of physical
equipment throughout the production process is the
engine for the system or object to make behavioral
responses, so the output function of the production
line should be determined by the current state of the
system or object and the current real-time data; i.e.,
there is  ×λ⟶Δ.

(2) ,ere is no “stop” state for the Moore FSM. How-
ever, in the actual production process, the produc-
tion line has a state of shutdown and no movement,
so the “stop” state qe is added to the FSM.

,erefore, equation (2) illustrates the FSM model of the
optimized intelligent processing production line.

FSM � Q, ,Δ, δ, λ, q0, qe . (2)

In equation (2), Q � q0, q1, q2, . . . , qn  indicates the set
of finite states of the system or object, which can only be in a
certain state during the movement;

 � δ0, δ1, δ2, . . . , δm  denotes the infinite input set of
the system or the object;
Δ � a0, a1, a2, . . . , ar  represents the infinite output of

the system or the object; δ: Q × ⟶ Q stands for the state
transition function;

 ×λ⟶Δ refers to the output function of a system or
object, determined by the current state of the system or
object and the current real-time data;

q0 ∈ Q bespeaks the initial state of the system or the
object;

qe ∈ Q accords with the final state of the system or the
object.

Figure 6 indicates the working flow of the behavior
model of the production line. ,rough the real-time data
mapping module of the physical equipment of the pro-
duction line, the real-time data of the production line system
is mapped to the input set  � δ0, δ1, δ2, . . . , δm  of the
behavior model. ,e behavior model is calculated to output
the behavior characteristics Δ � a0, a1, a2, . . . , ar  of the
production line system. ,en, the behavior characteristics
and the internal logic of the equipment geometric model are
combined to realize the behavior of the production line
geometric model.

2.4. Establishment of Finite Element Model: Case Analysis.
When the DTs of a product are established, the models of
different working conditions and different scenes can be
loaded on the DTs. One or more different DTs can be derived
from each stage and each link, to carry out the simulation
analysis, evaluation, and decision-making of various activ-
ities in the whole life cycle of the product, so that the physical
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products can obtain better manufacturability, assembly,
detection, and security, as shown in Figure 7. ,e feasibility
of the application of DTs in physics experiments is verified
by case analysis.

2.4.1. Element Selection and Mesh. Because the stress con-
dition of each component of the aluminum alloy flange joint
is complex, the geometric model of aluminum alloy flange is
modeled by SolidWorks software and then imported into
Workench simulation platform. High-order 3D 20 node
solid structure element “Solid186” is adopted to ensure
calculation accuracy. ,e high-order element is selected
because it can simulate the boundary of the structural curve
and surface, which is helpful to improve the calculation
accuracy. However, when some structures with irregular
shapes and uneven stress distribution are encountered, the
high-order element can just avoid problems such as the
shear locking. Figure 8 manifests the flow of the finite el-
ement analysis.

Based on the high-order element “Solid186,” the mesh
division at each irregular structure of the aluminum alloy
flange node model is relatively fine. ,e purpose is to make
the result of the stress concentration area more accurate.
Simultaneously, the division scale of other parts of the flange
node is relatively large, which is to reduce the computing
resources of the node to a certain extent. Figure 9 dem-
onstrates the mesh of a specific element grid.

2.4.2. Settings of the Contact Surface and Constitutive Model
of Material. When the axial load acts on the flange joint, the
nut ring, flange, screw, and cushion block will be in contact
with each other. Except that the friction-free contact is set
between the screw and the bolt hole, all other parts are set in
friction contact, and the friction coefficient is 0.15. Sliding
contact is automatically controlled. Fine sliding is adopted
where rotation or sliding is relatively large, which can allow
sliding or separation on the contact surface. Small sliding is
used in other places, which can enhance the convergence
and increase the calculation speed when the accuracy is
guaranteed. Table 1 lists the settings for the contact surface

and the target surface, during the calculation of the contact
pressure.

,e components of aluminum alloy flange joints are
assembled by extrusion and welding of aluminum alloy
materials. ,erefore, it is necessary to define the flange and
the tube separately, and the Ramberg-Osgood model is used
to define the constitutive model of the material, as shown in
Figure 10.,e nominal yield strengths f0.2 of aluminum alloy
flange and aluminum alloy tube are 265.22Mpa and
233.40Mpa, respectively, and the ultimate tensile strengths
are 292.71Mpa and 252.82Mpa, respectively. ,e fastener
bolt is a 10.9-grade high-strength bolt, and its yield strength
is 500Mpa.

2.4.3. Boundary Conditions and Assembly Settings. ,e
setting of the boundary conditions of the finite element
model remains the same as the actual test situation. One end
of the specimen is fixed and constrained, and the other end is
loaded with displacement control. ,e convergence is im-
proved by turning on the weak springs switch in the
workbench solution module. In the analysis, firstly, the bolt
preload is applied, and then each contact pair is created.
Secondly, the displacement load is applied after the bolt
preload is locked until the joint is completely damaged.

2.5. Product Defect Identification and Detection. CNN is a
change structure based on multilayer perceptron (MLP),
proposed by Hubel and Wiesd in their early research on the
primary visual cortex in the cat visual system. During the
study, they found that the primary visual cortex of cats had
two different cells, simple cells and complex cells. ,rough
simple cells, special edge signals in the receptive field can be
perceived, while the input of complex cells is the output of
simple cells. In this way, the perception of edge stimulation
signals can be realized in a larger receptive field [28]. CNN is
actually a simulation of the biological visual cortex, which
contains three unique structures: local receptive field, shared
weight, and downsampling process, so that it can ensure the
invariance of displacement, scaling, and distortion.

Geometric model of
production line behavior Finite output set of

production line:

Finite input set of
production line:

∑ = {δ0, δ1, δ2, …, δm}

Δ = {α0, α1, α2, …, αr}

Figure 6: Behavior model.
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By using the local receptive field and weight sharing
CNN, the feature image containing only some features
can be extracted, which makes its translation invariant to
the image, and CNN is not sensitive to locating the fea-
tures [29]. At present, deep learning algorithms, especially
CNN, are widely used in face recognition, natural lan-
guage processing, general object recognition, robot, and
automatic driving technology and have achieved very
successful results [30]. ,e classical CNN structure
generally includes an input layer, convolution layer,

activation layer, pooling layer, fully connected layer, and
output layer. Figure 11 is a schematic diagram of the
network structure.

,e convolution layer is unique to CNN, and its acti-
vation function ReLU is expressed as follows:

ReLU(x) � max(0, x). (3)

,e characteristic calculation corresponding to the
convolution layer is defined as follows:

Table 1: Contact settings of flange nodes.
Number Contact type Target surface Interface
1 Face-to-face contact Stainless steel flange Nut torus
2 Face-to-face contact Stainless steel flange Aluminum alloy flange
3 Face-to-face contact Q235 cushion block Aluminum alloy flange
4 Face-to-face contact Q235 cushion block Nut torus
5 Face-to-face contact Q235 cushion block hole Screw
6 Face-to-face contact Flange hole Screw

Figure 9: ,e meshing of the joint.
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indicates the weight of the connection between the m-th
characteristic graph in the upper layer of the lth layer and the
nth neuron in the lth layer, and Vl

n denotes the set of
characteristic graphs connected to the lth layer.

Based on the basic theory of CNN, considering that the
complexity of the picture itself is not particularly high and
the amount of information is relatively small, it is designed
to include a convolution layer, a pooling layer, and a fully
connected layer. ,e output layer uses the Softmax function
as the activation function and MATLAB software pro-
gramming to realize the construction of the network. ,e
Softmax function is a commonly used activation function in
CNN, expressed as follows:

Sj �
e

x
j


j
i�0 e

x
i

. (5)

However, the CNN model will become more and more
complex with the network depth and the number of feature
planes, the parameters in the network will increase greatly,
and the amount of calculation of the network model will also
increase. Hence, the real-time detection efficiency of the
network will become low. ,us, based on deep separable
convolution and channel shuffling, a lightweight CNN ar-
chitecture is designed. Deep separable convolution factorizes
the standard convolution method into deep convolution and
point-by-point convolution. Deep convolution convolutes
the input characteristic map channel by channel, and one
convolution kernel is responsible for one channel. Each
feature map obtained by deep convolution cannot contain all
the information of the input feature map. ,erefore, point-
by-point convolution is used to carry out multichannel
convolution again for the characteristic map output by deep
convolution, so that the information can be retained as
much as possible. ,rough deep separable convolution, the
number of parameters of the model can be reduced while
ensuring the smooth flow of information. ,e flow com-
parison of deep separable convolution and standard con-
volution is shown in Figure 12.
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A new basic module of CNN is constructed by replacing
1× 1 point-to-point convolution with group convolution
and channel shuffling and then combined with the deep
separable inversion residual convolution module, which is
named Magnet. ,e overall structure of MagnetNets is a
series of Magnet modules and some ordinary convolution
layers. MagnetNets start with an input size of a standard
volume layer, then stack with some Magnet modules, and
then average pooling without any parameters. In the output
of the last convolution layer, a fully connected layer is usually

used as the input, but the number of parameters in the fully
connected layer is very large, which may lead to overfitting
and reduce the expression effect of the model. ,erefore, the
global average pooling is used to replace the fully connected
layer, and a dropout layer is equipped to increase the net-
work generalization ability to avoid overfitting. Finally, the
output in the dropout layer is used as the input of the
Softmax classifier to classify and detect the pictures.

ImageNet is a recognition project of the computer vision
system, which is the largest database of image recognition in the
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Figure 12: A process comparison between DSC and standard convolution.
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Figure 13: Stress nephogram of failure mode. (a) FL164 overall stress nephogram, (b) weld rolling, (c) cushion block dent, and (d) bolt
tension bending.
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world. ,e paper trains and tests the network models of
MobileNets, ShuffleNet, Xception, MobileNetV2, and Mag-
netNets on the classified image data set of ImageNet. ,e
TensorFlow framework is used to train the model, Xavier is
used to initialize the parameters of the network model, and
AdamOptimize is used as the optimization algorithm of the
optimizer. Meantime, batch standardization is used after each
layer.,e batch size is 96 and the weight attenuation is 0.00004.
,e initial learning rate is set to 0.045, and the attenuation rate
of the learning rate is 0.98 per generation. During the ex-
periment, the data of internal defects of metal products are
collected by manual detection, and a total of 110 defect-free
images and 680 defect images are collected and processed by
digital image technology. 90% of the data is used for training
and 10% is used as test data to facilitate comparison and
analysis.,e data is input in randomorder, and the error in the
training process is set to be less than 0.01.

3. Results and Discussion

3.1. Comparative Analysis of Finite Element Analysis Results
and Test Results

3.1.1. Deformation Mechanism and Failure Mode. Figure 13
displays the stress nephogram of failure mode obtained by
simulation of the specimen.

Figure 13(a) reveals that the deformation mechanism
and failure of the finite element simulation of the FL164
specimen are basically the same as those of the test, and the
radial shrinkage failure occurs at the connection between the
stiffener and the circular tube. Figure 13(b) indicates that, in
the tensile process, besides the large deformation of alu-
minum alloy circular pipe, when the node is in failure, the
stiffener has a relative buckling, which is consistent with the
test results. Figure 13(c) demonstrates that when the flange is
disassembled for axial tension, there is no obvious defor-
mation or warpage of the flange plate, and the dent of the
cushion block is obvious. Figure 13(d) signifies that the top
of the high-strength bolt also has a diameter shrinkage
phenomenon.,e inner side of the bolt is under tension and
the outer side is under pressure, which is the same as the test
phenomenon.

3.1.2. Development Trend of Finite Element Stress Simulation.
When the test piece FL164 is subjected to the ultimate load,
firstly, the aluminum alloy round pipe shrinks, secondly, the
bolt slides, and thirdly, the heat-affected zone of the weld
breaks. Figure 14 presents the failure characteristics of the
test piece at this time.

Figure 14 demonstrates that the stress on the aluminum
alloy round pipe is relatively large, so the diameter shrinkage
occurs.,e corresponding diameter shrinkage phenomenon
also appeared at the uppermost part of the screw, while the
thread sliding phenomenon appears in the thread area at the
lower end of the bolt. ,e dent at the orifice on the cushion
block is obvious, and the phenomenon of stress concen-
tration appears. During the tensile process of the specimen,
the weld joint appears to tumble to a certain extent, and the

fracture occurs at the position of the welded heat-affected
zone.

,e specific stress analysis of the FL164 flange joint is
carried out, and Figures 15–17 demonstrate the stress de-
velopment process of the specimen. ,at is, firstly, the
aluminum alloy round pipe shrinks; secondly, the bolt slides;
thirdly, the heat-affected zone of the weld breaks. ,e trend
of stress development is basically consistent with the test.

Figure 15 indicates that when the load is close to the yield
load, the place where the aluminum alloy round pipe is
connected with the end of the stiffener begins to yield, the
middle and top parts of the aluminum alloy round pipe are
still in the elastic state, and the stress state of the screw
changes from the tensile force to the tensile bending state
due to the large internal stress.

Figure 16 indicates that when the aluminum alloy cir-
cular pipe enters the full section yield, the welding part of the
stiffener begins to yield, so it is subjected to a relatively large
stress, while the flange is still in an elastic state, and its safety
margin is relatively large.

Figure 17 implies that when the position of each node of
the flange fails, the overall yield of the aluminum alloy
circular pipe will be caused, and the welding part of the
stiffener will be subjected to great stress, but the flange is still
in an elastic state.

From the above analysis, the conclusion is that the
nonlinear finite element analysis can well analyze the stress
change process and failure state of the joint, which is highly
consistent with the tensile process of the test axis. ,erefore,
it can be proved that the finite element analysis method is
relatively reliable.

3.2. Load-Displacement Curve. Figure 18 demonstrates the
test load-displacement curves of two groups of specimens.

Figure 18 bespeaks that the test load-displacement curve
of the FL164 specimen is well consistent with the finite
element results. ,e finite element analysis method can
simulate the ultimate load and yield load of the joint.
However, in the beginning, the stiffness of the finite element
analysis result is larger than that of the test result. ,is is
mainly because the finite element models are carried out
under ideal conditions.

3.3. Comparison Results of Network Models. ,e experi-
mental results and the data compared with other network
models are shown in Figure 19.

Figure 19 shows that the accuracy of the designed
lightweight CNN is 94.1% and the size of the model is
2.9MB. ,e accuracy of MagnetNets is as high as that of
MobileNetV2 and other network models. And MagnetNets’
weight is lighter than others.

3.4. Defect Identification Test Results of CNN. Import the
prepared test data into the MagnetNets network model to
verify the training effect. ,e test results are shown in
Figure 20.
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(a) (b)

(c) (d)

Figure 14: Failure characteristics of the test piece. (a) Circular shrinkage fracture. (b) Bolt diameter reduction sliding wire. (c) Cushion
block hole dent. (d) Heat-affected zone fracture.
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Figure 15: Stress nephogram of initial yield. (a) Aluminum alloy round pipe. (b) Stiffener welds. (c) Bolt.
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Figure 16: Stress nephogram at partial “full section yield.” (a) Aluminum alloy round pipe. (b) Stiffener welds. (c) Bolt.
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Figure 17: Stress nephogram of specimen failure. (a) Aluminum alloy round pipe. (b) Stiffener welds. (c) Bolt.
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Figure 18: Load-displacement verification diagram.
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Figure 19: Comparison results of various network models.
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As Figure 20 reflects, the detection accuracy of the
MagnetNets network model is very high. MagnetNets net-
work model has great advantages in ultrasonic defect rec-
ognition. ,e six experiments reveal that the MagnetNets
network model shows stable performance. MagnetNets
network model has a very good effect on image feature
extraction and learning. With sufficient training, it can
achieve 100% recognition accuracy. ,e above experiments
conclude that the MagnetNets network model has an ex-
cellent performance in ultrasonic defect detection of
castings.

4. Discussion

Under the traditional research and design mode, paper and
3D CAD are the main product design tools. ,e virtual
model established by them is static, and the change of
physical objects cannot be reflected in the model in real time,
nor can it be communicated with the product life cycle data
such as raw materials, sales, market, and supply chain. In the
technical verification of new products, it is necessary to
produce the products and conduct repeated physical ex-
periments to obtain limited data. ,e traditional R&D de-
sign has the characteristics of a long cycle and high cost.

DT breaks through the limitations of physical condi-
tions, helps users understand the actual performance of
products, and iterates products and technologies with less
cost and faster speed. DTs technology supports three-di-
mensional modeling, realizes paperless parts design and
assembly design, and replaces the traditional way of
obtaining experimental data through physical experiments.

Virtual experiments are carried out by means of calculation,
simulation, analysis, and so on, to guide, simplify, reduce, or
even cancel physical experiments.

Users use structural, thermal, electromagnetic, fluid, and
control simulation software to simulate the operation of the
product and test, verify, and optimize the product. With the
upgrading of industrial products from mechanization to
multidisciplinary integration, informatization, and net-
working, the timeliness, systematicness, and comprehen-
siveness of experimental verification are facing great
challenges. ,e verification based on physical tests is limited
by the development cycle, cost, and environmental condi-
tions. ,e sample is limited and it is difficult to completely
cover the limit deviation combination state. As a new
technical approach, the virtual test has the advantages of the
short cycle and low cost, which can easily carry out the test
types that are difficult to be carried out by physical objects
such as limit condition test and fault test. In engineering
practice, according to the accuracy of the virtual test and the
perfection of system, give full play to the advantages of
physical test and virtual test, virtual and real integration, and
complimentary promotion and improve the comprehensive
testability of products.

5. Conclusion

So far, DTs have been successfully applied to different in-
dustries, including product design, production, prediction,
health management, and other fields. Based on the appli-
cation of DTs technology in industrial product management
and control, and taking the DTs in the design stage of
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Figure 20: CNN test results.
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industrial product management and control as the research
object, this paper connects Workench simulation platform
and SolidWorks software and applies it to the design of
aluminum alloy flange. ,rough the comparison of the
results of the test and simulation, the present work confirms
the role of DTs in industrial product management and
control. ,e results show that the nonlinear finite element
analysis results are well consistent with the experimental
results and contribute to the improvement of design R&D
efficiency and the shortening of the design cycle. Magnet-
Nets network model has an excellent performance in ul-
trasonic defect detection of castings. DTs break through the
limitation of physical conditions, help users understand the
actual performance of products, and iterate products and
technologies with less cost and faster speed.,e deficiency is
that, due to the limited time, the study is only conducted for
the DTs in the design stage of industrial product manage-
ment and control, but without the application of DTs in the
whole process of industrial product management and
control. ,erefore, more research will be carried out in this
aspect in the future. In addition, the defect is recognized by
learning ultrasonic image data, but more specific defects can
be detected through CNN, and the size of defects can be
identified by learning.
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