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Lithium-ion batteries are an important part of smartphones, and their performance has a great impact on the life of the phone. e
longevity of lithium-ion batteries is key to ensuring their reliability and extending their useful life.  is paper built a lithium
battery life predictionmodel and greymodel MDGM(1,1) based on data mining. en, experimental data were selected for testing,
and the prediction error reached 10.5% at the minimum. It showed that the prediction model had higher precision and could
provide help for the prediction and development of mobile phone battery life.

1. Introduction

With the advent of the era of “information explosion,” data
mining arises at a historic moment to deal with the challenge
of “knowledge shortage.” Data mining is a process of
extracting valuable information and knowledge from a large
amount of data. It has been widely used in society, economy,
production, life, and other aspects. As we know, data mining
is the massive historical data existing in databases, data
warehouses, and external source �les. However, some data
have a small sample amount or are disabled, or the overall
law is particularly complex, but the data in a certain time or
space has strong regularity. At present, there is no e�ective
data processing method, and the grey system theory can
solve these problems very well. Taking advantage of grey
system, it can be widely used in data mining.  e two
complementary advantages can make the discovered
knowledge more e�ective and reliable.

Because of its advantages of lightweight, low discharge,
and long life, lithium-ion battery is an energy storage device
for portable electronics (such as notebook computers,
digital cameras, tablet computers, mobile phones, and other
handheld electronic products) [1]. As the core component

of electronic products, in long-term use, due to various
factors, the performance and life of lithium batteries will be
a�ected, which may cause some troubles for users.  at is
why battery life has become a growing concern in recent
years [2].  e basic composition of the battery pack is a
single lithium battery.  erefore, the research of battery
pack management system technology usually includes the
monitoring of temperature, current and voltage of a single
battery, capacity prediction, and charge state prediction of a
single battery [3].

 e research signi�cance of this paper is mainly re�ected
in two aspects. Firstly, from the theoretical aspect, this paper
combined the relevant theoretical data of data mining and
grey system; at the same time, this paper also combines these
twomethods to establish the remaining life predictionmodel
of lithium battery. Secondly, from the practical point of view,
the lithium battery life prediction model constructed in this
paper based on grey data mining can predict the life of
lithium battery in advance and predict the battery life, which
can e�ectively predict the future working ability of electronic
products, timely �nd problems, and avoid unnecessary
troubles and losses.  is is very meaningful for the research
and maintenance of lithium batteries.
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2. Literature Review

2.1. Battery Life Prediction Technology

2.1.1. Virtual Sample Technology. Traditional statistics are
based on a sufficient sample number, but in reality, the
sample number is limited or very small, which cannot meet
the basic requirements of statistics.+erefore, a small sample
is a classic problem [4]. In the era of big data, people are
increasingly demanding for learningmethods of two types of
extreme sample data. +ese two types of sample data are
massive samples that need to quickly obtain decision-
making information due to big data and small samples that
cannot obtain more data for learning in order to achieve fast
response [5]. As the name implies, the problem of the small
sample can be understood as the lack of information, but the
key factors leading to the learning difficulty of the small
sample are not all in the aspect of sample size. If there are a
lot of data, but its distribution presents a discrete loose
structure and there are gaps between sample points, the
problem of incomplete and unbalanced samples will not be
able to obtain effective information [6]. +e problem of the
small sample is mainly caused by unreasonable experimental
design, high cost of obtaining sample data, or even the
inability to obtain more sample data. In addition, it may also
be due to the low probability of data occurrence, or although
there are much data, it is data duplication. +e problem of
the small sample can be further divided into data scarcity,
unbalanced data, and stability of feature selection of high-
dimensional small sample [7]. High-quality data is the basis
of effective decision-making. +erefore, to improve model-
based accuracy and operability, it is an important work to
expand the amount of effective data based on small sample
data information to meet the requirements of modeling data.

+e virtual sample is difficult to approximate the real
sample completely and accurately. If too few virtual samples
are generated, the additional information of unknown space
carried by virtual samples is insufficient, and the general-
ization ability of the final model will be limited. If too many
virtual samples are generated, on the one hand, the influence
of real samples will be weakened, and on the other hand,
errors introduced by virtual samples will deteriorate the
generalization ability of the final model [8]. +e more virtual
samples are generated, the more untrusted information is
brought in. +erefore, in order to maximize the general-
ization performance of the final model, there is an optimal
number of virtual samples.+e determination of the optimal
virtual sample number has become an open problem in the
research of the small sample problem [9].

2.1.2. Battery Life Prediction. +e capacity of a battery is an
important indicator of battery performance, and its lifespan
is an important indicator of its health. When the battery
capacity decreases to a certain critical point (typically 80% of
the rated capacity, but different battery types have different
thresholds), the battery is considered to be invalid [10].
Remaining service life refers to the remaining service life of a
battery after it has been used for a period of time [11–16]. For

example, the power lithium battery has a cycle life of 500
times; that is, it can last 500 times under normal charging
and discharging conditions. If it has been used 100 times, the
remaining service life is 400 times. Generally, at present, the
life prediction methods of lithium-ion batteries mainly in-
clude physical model and data-driven methods.

+e physical model method mainly studies the internal
structure of the lithium-ion battery and analyzes its physical
and chemical changes. +e formation of SEI film is con-
sidered to be the main cause of battery decay. +e formation
of SEI film consumes lithium ions inside the battery, and the
internal resistance between electrode and electrolyte in-
creases with the thickening of SEI film, which further leads
to the decline of battery capacity [7, 17–19]. +e method of
the physical model involves the internal molecular level of
the battery, which requires obtaining a large amount of
information about the material properties and failure
mechanism of lithium-ion batteries. However, internal
chemical reactions are difficult to measure; it is difficult to
predict the battery life through a physical model [12, 20].+e
data-driven approach eliminates the need to study the in-
ternal chemical reactions of the battery and avoids the
complexmodel of studying the interior of the battery, and on
the basis of the existing experimental data, a functional
model is obtained by using the method of data fitting
[21–23]. Commonly used data-driven methods include grey
model, BP neural network, SVM, correlation vector ma-
chine, ARMA model, and so on. +e research object of this
paper is the prediction of the remaining life of the lithium
battery based on data-driven [24]. +e capacity decay of
lithium-ion batteries reflects the aging of batteries. Capacity
refers to the amount of charge released in the complete
process of discharging from full charge to empty charge,
usually expressed in ampere-hour (Ah), as follows:

C � 􏽚
k+1

k
idt. (1)

When the current is constant, capacity C� It, where I
represents the battery discharge current and T represents the
discharge time.+e capacity of the battery decreases with the life
cycle of the battery. When the discharge capacity drops to 80%,
it is considered to be the end of the service life. For example,
when the battery power rating is 4Ah, the aging threshold is
3.2Ah.+is paper uses experimental data to predict the capacity
decay of the battery during charging and discharging cycles. [7].

2.2. Review of Lithium Battery Life Prediction. At present,
although there are many kinds of lithium battery life pre-
diction algorithms, according to the principle of modeling, it
is divided into two types: physical model and data-driven.
Each of these approaches is described below [14]. (1)
Physical model-based methods refer to the prediction of
remaining life (RUL) based on the physical properties of
lithium batteries (e.g., material properties and loading
conditions) and degradation mechanisms. (2) +e data-
driven RUL predictionmethod is to extract the characteristic
parameters that can reflect the battery health status from the
monitored variables such as voltage and current and build a

2 Computational Intelligence and Neuroscience



statistical model of the system to extrapolate the prediction of
RUL [25]. Because the data-driven method does not require
the establishment of a complex system physical model, it is
suitable for RUL prediction of complex and changeable
internal lithium battery systems. Data-driven forecasting
methods generally fall into two categories: artificial intelli-
gence methods and statistics-driven methods [26].

Professor Deng Julong first proposed the grey theory in
1982. +e theory is first applied in uncertain systems and
then widely used in other systems. Its advantage is that it
requires less data and has obvious advantages. +e pre-
diction methods based on grey theory include the metabolic
Markov residual grey model and metabolic grey model. By
selecting different models under different conditions, the
applicability of the models is improved, and the estimation
accuracy is also improved [27].

According to the principle of non-equilibrium ther-
modynamics, Virkar built a degradation mechanism model
of the lithium battery by analyzing the electrochemical re-
action inside the battery and added SEI membrane and
chemical potential into the process of predicting RUL. Gong
has proposed a method for predicting the residual life of
lithium batteries based on a gas generation model.

According to the analysis and research on the actual gas
generation mechanism of the battery, the types of chemical
reactions in the battery were determined, and the gas
generation equation was established. Based on these gas

equations, a relationship model between battery capacity
and gas production characteristics was established, and a
prediction model for the remaining life of lithium battery
was established finally. TPF is a probability density function
represented by random samples in the state space [28, 29].

To sum up, the fusion model-based method is still the
focus of future research. It not only improves the prediction
accuracy but also improves the robustness of model output.
However, its disadvantages are high algorithm complexity
and large computation. In addition, most of the research on
battery life prediction are still in the laboratory stage, so it is
still a long way to go.

3. Lithium Battery Life Prediction Model
Construction Based on Data Mining

3.1. Grey Data Mining System. +e grey data mining system
draws on the structure of the traditional data mining system
and makes full use of the grey system method to carry out
data mining. It is based on a database and data warehouse
and provides effective methods for data mining tools of data
warehouse [16]. Figure 1 shows the system architecture.

3.2. Establishment of Grey Model MDGM(1,1). Since it was
proposed by Deng Julong in 1982, the grey system has been
widely used in various forecasting fields. Metabolism

Evaluation model
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engine

Grey production data

data mart …… data mart

data warehouse

user interface

relational
database

Transaction
database …… External

database

Grey knowledge base

Grey Model Library

Grey square method
library 

ETL (Extract, transform, load)

Figure 1: Structure of the grey data mining system.
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discrete grey prediction MDGM(1,1) model is the core of
grey system theory. MDGM(1,1) quantifies the abstract
concept of the known information in the system first, then
processes the quantified concept through modeling, and
finally optimizes the model to predict the unknown data.
Grey prediction MDGM(1,1) model has long been con-
cerned and valued by people.

+e MDGM(1,1) model is formed by the first-order
differential equation with only one variable. First of all,
the original sequence is accumulated and generated to
present a certain rule; then the first-order linear differ-
ential equation model is established; and finally, the fitting
curve is obtained to predict the system, which is the
process of establishing MDGM(1,1) model. Details are as
follows:

Let X (0) be a nonnegative sequence:

X
(0)

� X
(0)

(1), X
(0)

(2), . . . , X
(0)

(n)􏼐 􏼑. (2)

First-order accumulation is

X
(1)

� X
(1)

(1), X
(1)

(2), . . . , X
(1)

(n)􏼐 􏼑. (3)

Adjacent to the mean-generating sequence

Z(1) � Z
(1)

(2), Z
(1)

(3), . . . Z
(1)

(n) (4)

if

􏽢a � [a, b]
T
. (5)

+e GM(1,1) model is

X
(0)

(k) + aZZ
(1)

(k) � b. (6)

+e least-square estimation parameter column satisfies

􏽢a � B
T
, B􏽨 􏽩

− 1
B

T
Y (7)

if the set is

X
(0)

(k) � β − aX
(0)

(1)􏼐 􏼑e
− a(k− 2)

. (8)

+e above equation is the basis for prediction in this
paper.

3.3. Accuracy Test of Grey Model MDGM(1,1). After calcu-
lation, the small error probability p is 0.983; the ratio of post-
test square difference C is 0.251; and the accuracy level is 1;
and it shows that the model can be used for prediction. +e
grey GM(1,1) model is used to predict the life of lithium-ion
batteries, as shown in Figure 2.

According to Figure 2, Battery18 reaches the failure
point after 100 cycles of charging and discharging, so its real
life is 100 cycles. When the starting point of prediction is 60
cycles, the life failure point predicted by the grey GM(1, 1)
model is 120 cycles. +e error is 20 cycles; the prediction
accuracy is ordinary; for the convenience of comparison, the
predicted results at T� 40, 60, and 80 cycles were put on the
same graph, as shown in Figure 3.

To sum up, GM(1,1) model in grey theory is used to
predict the life of the lithium-ion battery in this section. +e
experimental results show that the prediction effect of this
method is acceptable, but the accuracy needs to be improved.
As the capacity decay trajectory of the lithium-ion battery is
nonlinear and random, the predicted trajectory of the grey
model is close to a straight line, which can be regarded as the
prediction of the trend term in the capacity degradation
trajectory, but the random term is not predicted.
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Figure 2: Prediction results of lithium-ion battery life based on
grey model.
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Figure 3: Life prediction of lithium-ion battery based on grey
model (B18).

4 Computational Intelligence and Neuroscience



Considering the degradation of battery capacity can also be
regarded as a series of time series, the life prediction of the
lithium-ion battery can be further studied by time series
analysis.

As an important grey theory, the grey prediction method
is widely used in the engineering field. Sun Tao et al. applied
the grey system theory to the project cost and established the
grey model to realize the estimate of the project cost with
high precision. Xu hui et al. conducted a grey correlation
analysis on the measured data of the dam and established the
GM(1,1) model to predict the dam settlement on this basis.
+e results show that the method is effective. Li Peng and
others. Based on the improvement of the traditional GM(1,
1) model, the grey relational model of GM(1, N) is put
forward and applied to the capacity prediction of lead-acid
batteries. Gu Weijun and so on. In view of the small sample
of battery life data and the long test of battery life, the grey
GM(1, 1) model is used to predict the cycle times when the
battery reaches the specified life end value to estimate the
battery lifetime.

4. Test Results and Analysis

4.1. Battery Capacity Degradation Data Analysis.
Prediction is to estimate the future state of a product based
on its past state of change. Specifically, RUL prediction
mainly refers to the estimation of the remaining time from
the current time to the final failure according to the
monitored historical data of the product itself or similar
products when the product runs to moment i (time here
refers to the generalized time). Among them, historical data
can be status monitoring data, failure time, maintenance
time, or other event data. Given the status monitoring data
of a product up to the current moment T, the method based
on artificial intelligence is further subdivided into the sta-
tistical regression method and the similarity method.

Statistical data-driven RUL prediction methods can be
divided into direct monitoring data-based RUL prediction
method and indirect monitoring data-based RUL prediction
method from the perspective of state monitoring data type.
Direct state monitoring data is essentially the deterioration
data of products. However, the literature does not consider
the RUL prediction method combined with the historical
data of similar products. +is section summarizes the rel-
evant RUL prediction methods from the perspective of
degradation data, analyzes the advantages and disadvantages
of each method, and discusses some problems worthy of
study. +erefore, in this paper, the curve-grey model is used
to analyze and predict the capacity degradation data, and the
data are used to verify the model algorithm.

Using the grey mathematical model, a mathematical
model of the capacity decay of lithium-ion batteries under
constant current discharge, constant temperature, and
constant depth of discharge is established. B5, B6, and B18
batteries were selected as samples to verify the model and
algorithm. +e discharge currents of B5, B6, and B18 bat-
teries were all 2 A, and the three batteries carried out 168,
168, and 132 charge and discharge cycles, respectively, with
discharge voltages of 2.7 V, 2.5V, and 2.5V.

As can be seen from Figures 4–6, the capacity of a single
lithium-ion battery decreases gradually with the increase of
charge and discharge cycles. Among them, B5 and B6 show
an obvious linear decline trend, while B18 (after different
processing) shows an exponential degradation trend during
the first 10 charge and discharge cycles and then shows a
linear degradation trend.

4.2. Analysis of Test Methods. In order to verify the per-
formance of the mobile phone battery life prediction al-
gorithm and prove its effectiveness, experimental data of
different types of batteries under different experimental
conditions would be selected in this paper for experimental
analysis and evaluation of the grey data mining model
construction method.

(1) Firstly, using the measured data of four lithium-ion
batteries of NASA, the relationship between constant
discharge voltage and battery capacity before and
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Figure 4: Capacity degradation of the B5 lithium battery.
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after Box-Cox conversion is analyzed, and the re-
lationship between Box-Cox conversion parameters
is also studied. And, based on GM(1, 1), the effec-
tiveness and correctness of the method are verified
by comparison.

(2) Secondly, in order to verify the adaptability of the
method, the battery test data of the GM(1,1) model is
used to verify the adaptability of the method. In
order to fully verify the performance of the proposed
method throughout the experiment, the data of equal
discharge voltage difference at three time intervals
were used for experimental verification of each
battery.

4.3. Analysis of Test Results

4.3.1. Grey Model Prediction Process. +e following is the
process for predicting the remaining life of lithium-ion
batteries using the GM(1, 1) model.

Step 1. Original data of lithium-ion capacity degradation
assuming cyclic charging and discharge is C� {Ci, I� 1, 2,
. . ., N}, and the original data are, respectively, accumulated
once:

C
(1)
i (k) � 􏽘

k

i�1
Ci, i � 1, 2, . . . , k. (9)

Get a summation-generated sequence vector.

Step 2. Identify the unknown parameters in the model.
Calculate the background value of the GM(1,1) model as
follows:

Z(k) � 0.5 × C
(1)
K + C

(1)
K−1􏼐 􏼑. (10)

+e function expression of GM(1,1) is

dc
(1)
i

dt
+ aC

(1)
i � b. (11)

For the first-order grey model GM(1,1), the following
equation can be obtained:

BNa � YN. (12)

Step 3. Solve the GM(1,1) model.+e time response vector is

C
(1)
i � C

(1)
0 −

b

a
􏼠 􏼡exp(−at) +

b

a
. (13)

Step 4. Predict the remaining service life of the lithium-ion
battery through the established grey model.

+e capacity degradation model of the lithium-ion
battery can be expressed as follows:

􏽢CN+P � C1 −
􏽢bN

􏽢aN

exp −aN(N + P)( 􏼁􏼠 􏼡exp 􏽣−aN − 1( 􏼁. (14)

Also, the prediction accuracy of the proposed method
was evaluated according to the relative error of the
remaining service life prediction of lithium-ion batteries as
follows:

RUL error �
(RUL tuue − RUL prediction)

RUL true
. (15)

4.3.2. Prediction Effect of the Discrete Grey Model. +e
following is an introduction to the feasibility of using NASA
data to validate the grey model to predict lithium-ion battery
RULs. Select the capacity degradation data for B6 and B18.
+e training data of the first 70 times, and the first 80 times
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were selected, and the failure threshold was set to 80%.
Figures 7 and 8 show the battery prediction results.

+e feasibility of the algorithm using NASA data is
shown below. B6 and B18 battery capacity degradation data
are selected. +e first 70 and 80 times of training data are
selected, and the failure threshold is set to 80%. +e pre-
diction errors obtained are shown in Table 1.

5. Conclusion

Aiming at the life prediction of the lithium-ion battery in
smartphone, a life prediction method based on grey data
mining model is proposed, and the proposed method is
verified and evaluated. In this paper, data mining and grey
system theory are studied. Grey MDGM(1, 1) model is used
as the life prediction method of the lithium-ion battery.
Based on the above method, a grey data mining model is
proposed to predict the degradation trajectory of lithium-
ion batteries, which is nonlinear and random. +e grey
MDGM(1, 1) model has been used to describe the trend
items in the degradation data to further improve the pre-
diction accuracy. +e battery test data for NASA PCoE is
used to validate the model.

Due to the influence of time and equipment conditions,
the research on the life prediction of lithium-ion batteries of
smartphones in this paper is not sufficient. +ere are still the
following problems, which need to be further improved in
the future work:

(1) In this paper, the life prediction methods of lithium-
ion batteries are all about a single lithium-ion bat-
tery, while batteries in mobile phones are often in the
form of battery packs, so battery packs should be
considered in the future.

(2) +e data used in this paper are all obtained under the
experimental conditions of constant current and
constant voltage, while the actual working condi-
tions of lithium-ion batteries on mobile phones are
very complicated. Different charging and discharg-
ing mechanisms and different environments will
affect its capacity degradation process. +erefore,
capacity degradation data under different charging
and discharging mechanisms should be used to
verify the model in the future.

Data Availability

+e data set can be obtained from the corresponding author
upon request.
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