
Research Article
Parametric Neural Network-Based Model Free Adaptive Tracking
Control Method and Its Application to AFS/DYC System

Zhijun Fu ,1 Yan Lu,1 Fang Zhou ,1 Yaohua Guo ,2 Pengyan Guo,3 and Heyang Feng1

1Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry,
Zhengzhou 450002, China
2Research Center of Yutong Bus Co., Ltd., No. 66, Yuxing Road, Zhengzhou 450061, China
3Department of Mechanical Engineering, North China University of Water Resources and Electric Power, No. 36, Beihuan Road,
Zhengzhou 450045, China

Correspondence should be addressed to Fang Zhou; 2020021@zzuli.edu.cn

Received 20 September 2021; Revised 20 November 2021; Accepted 2 December 2021; Published 6 January 2022

Academic Editor: Maciej Lawrynczuk

Copyright © 2022 Zhijun Fu et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

+is paper deals with adaptive nonlinear identification and trajectory tracking problem for model free nonlinear systems via
parametric neural network (PNN). Firstly, a more effective PNN identifier is developed to obtain the unknown system dynamics,
where a parameter error driven updating law is synthesized to ensure good identification performance in terms of accuracy and
rapidity.+en, an adaptive tracking controller consisting of a feedback control term to compensate the identified nonlinearity and
a sliding model control term to deal with the modeling error is established. +e Lyapunov approach is synthesized to ensure the
convergence characteristics of the overall closed-loop system composed of the PNN identifier and the adaptive tracking controller.
Simulation results for an AFS/DYC system are presented to confirm the validity of the proposed approach.

1. Introduction

Nonlinearity and model uncertainty for practical nonlinear
systems present great challenge for the controller design.
Active chassis control system is a good instance of such kind
of system. Integrated AFS/DYC system has become a very
active field in advanced active chassis control system design
as summarized in [1, 2]. +e main control objective of the
AFS/DYC system is to track the desired yaw rate and sideslip
angle with the aim of achieving the satisfactory stability
performance under different driving maneuvers. However,
vehicle chassis system is an uncertain system in nature and
incorporated unknown dynamics and disturbances, which
bring great challenge for the controller design.

+e identification of unknown nonlinear dynamic sys-
tems is often a prerequisite for successful controller design.
Neural network, owing to their good generalization and
nonlinear approximation ability, is widely used to identify
model free nonlinear systems and exhibit higher perfor-
mance compared to other identification methods. +e

reported neural network identifiers may be classified into
two categories on the basis of the neural network structure
used, namely, static neural network [3] and dynamic neural
network [4, 5]. +e main drawback of the static neural
network is that the function approximation treatment makes
it easy to fall into local optimum. Dynamic neural network
method combines feedback information to provide an ef-
fective means to solve a wide range of identification prob-
lems. However, the structure of dynamic neural network
lacks a unified form. +e Hopfield network is a typical
dynamic neural network in which every processing unit is
connected to all other units [6]. A large number of neural
network structures have been developed from Hopfield
neural network, falling into two main categories, namely,
high order neural networks [7] and multilayer dynamic
neural network [8, 9]. Multiple nonlinear function in high
order neural networks is used to approximate nonlinear
dynamics, which brings the curse of dimensionality problem
with the increase of order. Multilayer dynamic neural
networks which contain additional hidden layers combined
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with a dynamic operator are not easy to design the online
updating law. In general, popular learning rule such as
backpropagation algorithm is used to design the online
weight updating laws of dynamic neural networks, and then
suitable candidate of Lyapunov function is proposed to
ensure the stability of the system [10, 11]. In order to solve
the locally minimal convergence problem caused by back-
propagation algorithms, a novel updating law of multilayer
dynamic neural networks is proposed in [12], where the
global asymptotic error stability is guaranteed by defining a
Lyapunov function candidate based on quadratic functions
of the weights and the estimation errors. In [13], a model-
based semi-Markov neural network is proposed. In [14, 15],
the reported neural adaptive control designs are limited to a
class of strict-feedback systems.

To get rid of model-based tracking controller design
[16, 17], indirect adaptive control scheme is a widely used
control strategy for model free nonlinear system [18, 19],
which is achieved by a neural identifier or neuro observer to
estimate the unknown system dynamics and an adaptive
control law to minimize the tracking error. However, two
issues are still needed to mention in this paper. Firstly, the
state identification error is usually used to design the
learning law for the existed neural identifier [20–22], which
may affect the accuracy and convergence speed of the entire
control loop owing to the inherent parameter drift problem.
Secondly, most of the existed indirect adaptive control
methods [23, 24] rely on the well-known linear separation
principal to design the identifier and controller separately,
which may affect the closed-loop stability when confronting
the uncertain system dynamics. In this paper, we propose a
new PNN-based indirect adaptive tracking control method
for model free nonlinear systems. +e notable contributions
of the study are listed as follows:

(1) A PNN identifier with a more parsimonious form is
derived by extracting the parameter matrix of cor-
relation weights multiplied by the correlation input
and output state. Unlike the commonly used back-
propagation learning law for neural network-based
identification method, a novel parameter error-
driven updating law is synthesized to ensure im-
proved performance in terms of steady-state error.

(2) Based on the identifier, we design the adaptive
tracking control policy in terms with two terms, i.e., a
feedback control term to compensate the identified
nonlinearity and a sliding model control term to deal
with the modeling error. +e asymptotic conver-
gence stability of the closed-loop system is proved by
properly designing a composite Lyapunov function
candidate.

(3) Online adaptation property of the proposed adaptive
tracking control method makes it very convenient
for operating in practical application.+e simulation
results of an AFS/DYC system demonstrate the
improved performance of the proposed method than
the conventional neural network-based adaptive
tracking control method.

+e remainder of this paper is organized as follows. In
Section 2, the PNN-based identification algorithm is given.
+e indirective adaptive tracking control policy is intro-
duced in Section 3. Simulation results of an AFS/DYC
system based on the nonlinear vehicle model are analyzed in
Section 4. Finally, the conclusions are drawn in Section 5.

2. Identification Algorithm

Considering the following nonlinear systems:

_x � f(x, u), (1)

where x ∈ Rn is the state variable, u ∈ Rp is the input vector,
and f(·) is the unknown continuous nonlinear smooth
function.

It is well known that dynamic neural network can ap-
proximate the general nonlinear system (1) to any degree
with the following form [25]:

_xi � − aixi + 
j

wijSj xj, uj , (2)

where xi is the state of the ith neuron, ai is the constant
which is usually assumed to be known in advance, wij is the
synaptic weight connecting the jth input to the ith neuron,
and the nonlinear mapping Sj constitutes the jth state xi and
input uj to the relational neuron.

A more efficient PNN model with the simplest archi-
tecture has been introduced, such that

_xi � − aixi + 
n

j�1
wijσ xj  + 

p

j�1
λijuj, (3)

where wij and λij are updated weights and σ(·) is the sigmoid
function which is defined as σ(·) � a/(1 + e− bx) − c, where a,
b, and c are designed constants. Figure 1 shows the block
diagram of the PNN model (3).

Remark 1. +e use of input affine neural network archi-
tecture (3) to approximate the nonautonomous systems (1)
is advantageous, since many important nonlinear control
schemes require input affine nonlinear models.

+e PNN is formed by a single layer of n units as in
equation (3). For the convenience of analysis, the vectorized
expression of (3) is obtained with the following form:

_x � − ax + wσ(x) + λu + ξ, (4)

where x ∈ Rn is the state vector, a ∈ Rn×n is the unknown
matrix for the linear part of PNN model, w ∈ Rn×n,
σ(x) � [σ(x1), . . . , σ(xn)]T ∈ Rn, λ ∈ Rn×m, u ∈ Rp is the
input vector, and ξ denotes modeling error and disturbances
and is assumed to be bounded ‖ξ‖≤ ξ.

Furthermore, we define the vector notations composed
of unknown parameters of parametric dynamic neural
network as θ � [a, w, λ]T and the regressor vector as
ψ � [x, σ(x), u]T, then the compact form of (4) becomes

_x � θTψ. (5)
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Remark 2. Several adaptive identifiers have been proposed
for system (6), where the adaptive laws are all designed by
minimizing the residual identifier error (i.e., error between
system state x and the identifier output x) based on least
square method or gradient method. However, the identifier
weight convergence was not guaranteed. As indicated in
[26], the convergence of the identifier weights is essential for
the convergence of the control. +is paper will present a
novel adaptive law to directly identify the unknown pa-
rameters of PNN with compact form in (5).

Next, we will design an improved weight updating law to
ensure the convergence of state identification error and
parameters error. +us, we define the filtered variables xf

and ψf of x and ψ as

l _xf + xf � x, xf(0) � 0,

l _ψf + ψf � ψ,ψf(0) � 0,

⎧⎨

⎩ (6)

where l is the designed filter constant.
+en, from (5) and (6), we can get

xf �
x − xf

l
� θTψf. (7)

Further, we define the filtered regressionmatrix E(t) and
F(t) vector as

_E1(t) � − ηE1(t) + ψf(t)ψf(t)
T

, E1(0) � 0,

_F1(t) � − ηF1(t) + F
T
f(t)

x(t) − xf(t) 

l
⎡⎣ ⎤⎦

T

, F1(0) � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

where η is the designed filter constant.
From (8), one can get

E1(t) �  e
− η(t− r)ψf(r)ψT

f(r)dr,

F1(t) �  e
− η(t− r)ψf(r)

x(r) − xf(r) 

l
⎡⎣ ⎤⎦

T

dr.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Definition 1 (see [26]). A vector or matrix function Φ is
persistently excited (PE) if there exist τ > 0, ε> 0, such that


t+τ
τ Φ(r)Φ(r)Tdr> εI, ∀t≥ 0. Since Φ(r)Φ(r)T is always

positive semidefinite, the PE condition requires that its
integral over any interval of time of length is a positive
definite matrix.

Remark 3. If the repressor vectorΦ is PE, thenΦf defined in
(6) is PE, becauseΦf is the filtered version ofΦ in terms of a
minimum strictly proper transfer function 1/(ks + 1) in (6)
as proved in [26]. Moreover, based on Definition 1, if Φf is
PE, the inequality 

t+τ
τ Φ

T
f(r)Φf(r)dr> εI is true for all

t> 0, ε> 0.+en, t+τ
τ e− l(t− r)ΦT

f(r)Φf(r)dr> εI holds for all
t> 0, ε> 0.

Considering the following identifier:

_x � θ
T
ψ + Ke, (10)

where e � x − x, θ � [a, w, λ]T and K> 0 is a designed
parameter.

From (5) and (11), we can get

_e � _x − _x � θTψ − θ
T
ψ − Ke + ξ � − Ke + θ

T
ψ + ξ, (11)

where Θ � Θ − Θ is the parameter identification error.
Finally, we denote another auxiliary vector as

M(t) � E(t) Θ − F(t), (12)

where Θ is theta. It is clear that M(t) can be calculated based
on equation (9).

Remark 4. From (8)–(10), we have
M(t) � E(t) Θ − F(t) � E(t) Θ − E(t)Θ � − E(t) Θ, as can
be seen that M(t) is composed of weights error Θ, which is
used to design the improved updating law in the next
analysis.

+en, by using the auxiliary vector M(t), one can have
the following improved updating law:

_θ � Γ[ψe − ρM], (13)

where Γ � ΓT > 0 and ρ> 0 is positive constant.

1 + exp (−bxi)
=

a
c

1

s + βi

Input
Vector

u1

x1

xn

up

Output of
DNN

λi1

λip

wil

win

σ (xi) −

Figure 1: Block structure of the parametric neural network.
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Theorem 1. Consider system (1) with the identifier (11) and
parameters adaptive law (13), then the convergent properties
of identification error as well as parameters error can be
obtained as follows:

(i) With the assumption that ξ � 0, we have e, θ ∈ L∞
and limt⟶∞e � 0

(ii) With the assumption that ξ is bounded, then we have
e, θ ∈ L∞

Proof. Choose a Lyapunov function as

LI � e
T
Pe +

1
Γ

tr θ
T
Pθ . (14)

□

Case i. If ξ � 0, then from (11)–(13) and _θ � −
_θ, one can get

the differential of (14) as

_LI � _e
T
Pe + e

T
P _e  +

2
Γ

tr
_θ

T

Pθ 

� θ
T
ψ − Ke 

T

Pe + e
T
P θ

T
ψ − Ke  +

2
Γ

tr
_θ

T

Pθ 

� 2e
T
Pθ

T
ψ − 2e

T
PKe − 2(ψe − ρM)Pθ

� − 2e
T
PKe + 2Pθ

T
PM

� − 2e
T
PKe + 2ρθ

T
P(E(t) Θ − F(t))

� − 2e
T
PKe + 2ρθ

T
P(E(t) Θ − E(t)Θ)

� − 2e
T
PKe − 2ρθ

T
PE(t)θ≤ 0.

(15)

From (15), we know that e, θ ∈ L∞. Furthermore, one
can infer from (11) that _e ∈ L∞. Based on the nonincreasing
property of the function V, the integral of V on both sides
from 0 to ∞ can be obtained:


∞

0
− 2e

T
PKe − 2ρθ

T
PE(t)θ  � Vx(0) − Vx(∞) <∞.

(16)

+erefore, e ∈ L2 can be obtained from (16). It can be
concluded that e ∈ L2 ∩L∞ and _Δx, _Δy ∈ L∞. It is thus
obtained from Barbalat’s lemma [27] that limt⟶∞e � 0.

Case ii. For bounded ξ, by designing the same Lyapunov
function as formula (14), one obtains

_LI � _e
T
Pe + e

T
P _e  +

2
Γ

tr
_θ

T

Pθ 

� θ
T
ψ − Ke + ξ 

T

Pe + e
T
P θ

T
ψ − Ke + ξ  +

2
Γ

tr
_θ

T

Pθ 

� 2e
T
Pθ

T
ψ − 2e

T
PKe − 2(ψe − ρM)Pθ + 2e

T
Pξ

� − 2e
T
PKe + 2ρθ

T
PM + 2e

T
Pξ

� − 2e
T
PKe + 2ρθ

T
P(E(t) Θ − F(t)) + 2e

T
Pξ

� − 2e
T
PKe + 2ρθ

T
P(E(t) Θ − E(t)Θ) + 2e

T
Pξ

� − 2e
T
PKe − 2ρθ

T
PE(t)θ + 2e

T
Pξ

≤ − 2e
T
PKe − 2ρθ

T
PE(t)θ + e

T
PΛ2Pe + ξTΛ− 1

2 ξ

≤ − μ1(‖e‖) − μ2(‖θ‖) + μ3(‖ξ‖),

(17)

where μ1, μ2, μ3 are positive constants andΛ1,Λ2 are positive
definite matrixes.

It can be seen from (17) that LI is input-to-state stability
(ISS) Lyapunov function, so by+eorem 1 in [27], we can get
the stability of the system such that if the model errors ξ is
bounded, then the updating law (3.8) can make the iden-
tification procedure stable, i.e., e, θ ∈ L∞.

3. Adaptive Tracking Control

It can be seen from Section 2 that the proposed PNN
identifier as depicted in +eorem 1 can be used to ap-
proximate the model free nonlinear system in equation (1),
such that

_x � − αx + wσ(x) + λu + ξ, (18)

where ξ represents the modeling error and disturbance.
Considering the following time-varying reference tra-

jectory, in the form of,

_xr � f xr, t( . (19)

+e goal of the adaptive tracking control is to make the
system state of equation (1) conform to the state of the
reference model in equation (19).

Hence, the error of trajectory tracking is described as

ec(t) � x − xr. (20)
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+en, from equations (18)–(20), the error dynamic
equation is obtained as

_ec � − αx + wσ(x) + λu + ξ − f. (21)

+e adaptive tracking control u consists of a feedback
control term uf and a sliding model control term us can be
expressed as

u � u1 + u2, (22)

where u1 is used to compensate the identified nonlinearity
and u2 is used to deal with the modeling error. We define u1
as follows:

u1 � λ− 1
axr − wσ(x) + f . (23)

+e control action u2 is designed by using the sliding
mode control theory, such that

u2 � λ− 1
− aec − Kcsgn ec(  , (24)

where Kc > 0 is a designed parameter.

Theorem 2. For model free nonlinear system (1), using the
identifier (10) with updating laws (13) and control policy (22),
then the stability property limt⟶∞ec � 0 holds.

Proof:. By considering the PNN identifier in Section 2 and
the adaptive tracking controller together as a whole process,
then we can design the composite Lyapunov function
candidate as

L � LI + Lc. (25)

In +eorem 1, we already prove LI ≤ 0 and the stability
properties (1) and (2). Now let us consider the Lyapunov
function candidate Lc for control purpose, such that

Lc � e
T
c ec. (26)

Substituting (23) into (21), we have

_ec � αec + λu2 + ξ. (27)

Using (24) and (27), we obtain the time derivative of (26)
as follows:

_Lc � 2e
T
c _ec � 2e

T
c αec + λu2 + ξ(  � 2e

T
c − Kcsgn ec(  + ξ( ≤ − 2 Kc − ‖ξ‖(  ec

����
����. (28)

If we choose Kc > ξ, then _Lc < 0. Hence, we have the
stability property limt⟶∞ec � 0 and _L � _LL + _Lc ≤ 0.

+e overall structure of the PNN identifier and adaptive
tracking controller is shown in Figure 2. □

4. A Case Research: Application to an AFS/DYC
Control System

A 7-DOF nonlinear vehicle model [28] (as shown in Fig-
ure 3) incorporates longitudinal and lateral tire forces cal-
culated from Dugoff tire model which is used to verify the

implementation of the proposed control algorithm. +is
model ignores heave, roll, and pitch motions but considers
the lateral and longitudinal load transfers. +e parameter
notations mentioned above are described in Table 1.

Assume that the required yaw moment can be realized
through the distribution of brake torques and steering angles
of both front wheels are considered identical, then motion
equations consisting of the external forces acting on the
vehicle body in the longitudinal, lateral axes and the torques
acting on the vertical axis can be written as

m _vx � Fx1 + Fx2( cos δf  + Fx3 + Fx4 − Fy1 + Fy2 sin δf  + mcvy,

m _vy � Fy3 + Fy4 + Fx1 + Fx2( sin δf  + Fy1 + Fy2 cos δf  − mcvx,

IZ _c � lf Fx1 + Fx2( sin δf  + lf Fx1 + Fx2( cos δf  − lr Fy1 + Fy2 

+
t

2lf Fx2 − Fx1( cos δf 
+

t

2 Fx4 − Fx3( 
+

t

2 Fy2 − Fy1 
.

(29)

Parametric Neural
Networks 

Model free nonlinear 
systems

Novel learning law

e

u x

x̂

Reference model

Control policy

x
r

e
c

−
+

−
+

Figure 2: Adaptive tacking control scheme.
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+e tire force components (Fxi and Fyi) in x and y
directions can be calculated from the following
transformation:

Fxi

Fyi

⎡⎣ ⎤⎦ �
cos δi − sin δi

sin δi cos δi

 
Fxwi

Fywi

⎡⎣ ⎤⎦, (i � 1, 2, 3, 4), (30)

where Fxwi and Fywi are tire longitudinal and lateral forces in
tire coordinate system, which are calculated fromDugoff tire
model as follows. Here, a front steering vehicle is considered,
i.e., δ1 � δ2 � δf, δ3 � δ4 � 0.

+e normal load for each wheel can be expressed as

Fz1 �
mglr

2 lf + lr 
−

maxh

2 lf + lr 
−

mayh

2t
,

Fz2 �
mglr

2 lf + lr 
−

maxh

2 lf + lr 
+

mayh

2t
,

Fz3 �
mglr

2 lf + lr 
+

maxh

2 lf + lr 
−

mayh

2t
,

Fz4 �
mglr

2 lf + lr 
+

maxh

2 lf + lr 
+

mayh

2t
.

(31)

Dugoff tire model is selected to calculate longitudinal tire
forces and lateral tire forces because it requires fewer co-
efficients and is relatively simple compared to the Magic
Formula model. Moreover, it allows the use of independent
values for tire cornering stiffness and longitudinal stiffness.
Dugoff tire model can be defined as

Fxwi � Cxi

σi

1 + σi

f(λ),

Fywi � Cyi

tan αi

1 + σi

f(λ),

(32)

where

λ �
μFzi 1 + σi( 

2 Cxiσi( 
2

+ Cyi tan αi 
2

 
1/2,

f(λ) �

(2 − λ)λ, (λ< 1),

1, (λ> 1).

⎧⎪⎨

⎪⎩

(33)

+e slip angle at each tire can be defined as

α1 � δf − tan− 1 vy + lfc

vx − 0.5tc
,

α2 � δf − tan− 1 vy + lfc

vx + 0.5tc
,

α3 � − tan− 1 vy − lfc

vx − 0.5tc
,

α4 � − tan− 1 vy − lfc

vx + 0.5tc
.

(34)

+e wheel slip ratio at each tire can be described as

σi �
Rwωwi − vxi

max Rwωwi, Vxi( 
. (35)

+e wheel rotation dynamics can be given as

Jwi _ωwi � Tdw i − Tbwi − RwFxi. (36)

According to [28], the desired reference model is based
on a 2-DOF single track vehicle model in steady-state
condition and is usually expressed as

_xr � Arxr + Erδf, (37)

where xr � βr cr 
T, βr denotes the sideslip angle, cr de-

notes the yaw rate, Ar �
− 1/τβ 0
0 − 1/τc

 , τr and τβ are the

designed time constants for yaw rate and sideslip angle,
respectively, δf represents the steering input of the driver,
Er � (1 − (mlf/2(lf + lr)lrCr)v

2
x/1 + (m/(lf + lr))(

(lf/2Cr) − (lr/2Cf))v2x)(lr/(lf + lr)) ((vx/lf + lr)/1+

(m/(lf + lr))((lf/2Cr) − (lr/2Cf))v2x)]T, and Cr Cf are the
cornering stiffness of the front and rear wheels.

v
y

v
x x

y

F
y3

F
y1 F

x1

F
x2

F
y2

F
x3

F
x4

F
y4

l
r

l
f

t



f


f

Figure 3: 7-DOF nonlinear vehicle model.

Table 1: Description of vehicle parameters.

Parameters Description
m Vehicle mass
Iz Yaw moment of inertia
lf, lr Distance from CG to front axle and rear axle
Cyi Tire lateral stiffness
Cxi Tire longitudinal stiffness
h CG height
vx, vy Vehicle longitudinal and lateral speed
ax, ay Vehicle longitudinal and lateral acceleration
Fyf, Fyr Combined front and rear tire lateral force
Fzi Normal force of ith wheel
g Gravity acceleration
Rw, Jw Wheel rolling radius, moment of inertia
ωwi Wheel angular speed
Tbwi Active brake torque
Tdwi Driving torque
t Wheel track width
μ Friction coefficient between tire and road
c Yaw rate about z axis
αi, σi +e ith wheel slip angle, slip ratio
δf Front wheel steering angle
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+e main objective of AFS/DYC control is to design a
proper controller to keep the vehicle stable on the desired
path, i.e., making the actual vehicle yaw rate and sideslip
angle obtained from (29) to follow the desired responses
obtained from (37). Here, the PNN identifier (10) with
updating laws (13) and control policy (22) are selected as the
AFS/DYC controller. In order to make a comparation with
the commonly used AFS/DYC controller as showed in [28],
we selected the same parameters as m� 1704 kg,
Cf � 63224N/rad, Cr � 84680N/rad, Iz � 3048 kg·m2,
lf � 1.135m, lr � 1.555m, and μ � 0.8. In addition, the sine
with dwell steer input, as shown in Figure 4, is used to verify
the improved performance of the proposed method. It
should be pointed out that the ideal sideslip angle for vehicle
stability control should be selected as small as possible, and it
is usually selected as zero. From Figures 5 and 6, one can
easily find that the proposed adaptive tracking control
method has better tracking performance with smaller

tracking error and faster convergence rate to the steady state
compared with the commonly used method as claimed in
[28]. +erefore, we concluded that model free property of
the proposed adaptive tracking control method provides a
more effective solution for the integrated AFS/DYC con-
troller design and can greatly enhance the vehicle handling
and stability performances.

To show the identification performance of the proposed
algorithm, the performance index root mean square (RMS)
for the states error has been adopted for the purpose of
comparison.

RMS �

�������


n

i�1

e
2
(i)

n




, (38)

where n is the number of the simulation steps and e(i) is the
difference between the state variables in model and system at
ith step.

+e RMS values of all state variables, as shown in Table 2,
demonstrate that the identification performance has been
improved compared to those in [28].

5. Conclusions

In this paper, a model free identification and adaptive
tracking control method based on a parametric neural
network (PNN) is proposed. +e main contributions of the
paper lie in the following aspects. First, the compact PNN
form is derived by extracting the parameter matrix of
correlation weight multiplied by the correlation input and
output state, which simplifies the training problem and leads
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Figure 5: Control result of sideslip angle.
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Figure 6: Control result of yaw rate.

Table 2: +e RMS values for tracking errors (10–4).

Sideslip angle Yaw rate
Proposed 2.885 3.963
Reference [28] 7.471 15.23
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to more efficient models. Second, the filtered parameters
error is introduced in the updating law, which can avoid the
parameter drift problem and ensure the accuracy and ra-
pidity of identification. +ird, an adaptive tracking con-
troller consists of a feedback control term to compensate the
identified nonlinearity and a sliding model control term to
deal with the modeling error is established. +e stability of
the overall closed-loop system is proved by designing a
composite Lyapunov candidate. Finally, the application to
AFS/DYC system is presented to verify the validity of the
proposed methods.
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