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�e detection and classi�cation of histopathological cell images is a hot topic in current research. Medical images are an important
research direction and are widely used in computer-aided diagnosis, biological research, and other �elds. A neural network model
based on deep learning is also common in medical image analysis and automatic detection and classi�cation of tissue and cell
images. Current medical cell detection methods generally do not consider that the yield is a�ected by other factors in the
topological region, which leads to inevitable errors in the accuracy and generalization of the algorithm; at the same time, the
current medical cell imaging methods are too simple to predict the classi�cation markers, which a�ect the accuracy of cell image
classi�cation. �is study introduces the concepts of two kinds of neural networks and then constructs a cell recognition model
based on the convolution neural network principle and staining principle. In the experimental part, we developed three groups of
experiments using the same equation as the experiment and tested the best cell recognition model proposed in this study.

1. Introduction

In this study, we propose a study to train neural network
simulators using biosphere �ux data collected by EURO-
FLUX project to provide spatial and temporal estimates of
European forest carbon �ux on the continental scale. �e
novelty of this method is that the neural network structure is
constrained and parameterized using tra�c data, and a
limited number of input driving variables are used [1]. In
this study, a hybrid intelligent system based on past �nancial
performance data is proposed, which combines a rough set
method with neural network to predict enterprise failure. By
comparing the traditional discriminant analysis and neural
network method with our hybrid method, the e�ectiveness
of this method is veri�ed [2]. �e arti�cial neural network
method is used to predict short-term load of large-scale
energy system. Di�erent neuron combinations were used to
test networks with one or two potential layers, and the
prediction errors of the results were compared. When the
neural network is divided into di�erent load patterns, it can
give a good load forecast [3]. �e improved criteria of WG

and MPA are established and veri�ed using the arti�cial
neural network and traditional methods. A multicenter
study was conducted on 240 WG patients and 78 MPA
patients. Appropriately trained neural networks and CT can
distinguish these diseases and perform better than LR [4].
�e support vector machine (SVM) and arti�cial neural
network (ANN) systems are applied to the drug/non-drug
classi�cation problem as an example of the binary decision-
making problem in the early virtual compound �ltering. �e
results show that compared with the arti�cial neural net-
work, the solution obtained by support vector machine
training has better robustness and smaller standard error [5].
In this study, a new method based on the arti�cial neural
network is proposed to identify MHCII binding cores and
binding a�nities simultaneously. A new training algorithm
is used for training, which allows the correction of deviations
in training data caused by redundant binding kernel rep-
resentations [6]. �is study introduces the implementation
of FANN, which is a fast arti�cial neural network library
written by ANSIC. �e results show that the speed of FAAN
library is obviously faster than other libraries on the system
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without floating-point processor, while the performance of
FANN library on the system with floating-point processor is
equivalent to other highly optimized libraries [7]. )e
purpose of this study was to determine whether circulating
tumor cells were present in the blood of patients with large
operable or locally advanced breast cancer before and after
neoadjuvant chemotherapy and before and after preoper-
ative neoadjuvant chemotherapy. After research, we con-
cluded that in patients receiving neoadjuvant chemotherapy,
CELLSEARCH system can detect circulating tumor cells in a
low truncation range of 1 cell. Detection of circulating tumor
cells is not associated with primary tumor response, but is an
independent prognostic factor for early recurrence [8]. )e
pathological TNM stage is the best factor to judge the
prognosis of non-small cell lung cancer. After isolating
NSCLC patients by the size of epithelial tumor cells, cyto-
logical analysis was used to evaluate the presence of CTC in
surgical patients [9]. In this study, a microbial electronic
manipulation and detection lab-on-a-chip based on a closed
dielectrophoresis cage combined with impedance sensing is
proposed. )is method is suitable for implementation in
integrated circuit technology, which can not only operate
and detect a single unit but also reduce the scale of the
system [10]. Circulating tumor cells have long been con-
sidered to reflect the invasiveness of tumors. )erefore,
many people have tried to develop analytical methods to
reliably detect and enumerate CTCs, but such analytical
methods have not been available until recently. )is article
reviews CTCs, especially the technical problems of its de-
tection, the clinical results obtained so far, and the future
prospects [11]. To determine the clinical application of
immunoglobulin heavy chain gene rearrangement identifi-
cation in multiple myeloma tumor cell detection, we in-
vestigated 36 consecutive newly diagnosed patients
intending to receive high-dose chemotherapy in a research
program. )ere is no consistent relationship between bone
marrow MRD status and clinical course, and patients with
negative PCR also have early recurrence [12]. Using yeast
cells as a model system, a piezoelectric lead zirconate tita-
nate-stainless steel cantilever beam was studied as a real-
time cell detector in water. Under the experimental con-
ditions, when the cell diffusion distance is less than the linear
size of the adsorption area, the resonance frequency shift rate
has a linear relationship with the cell concentration, and the
resonance frequency shift rate can be used to quantify the
cell concentration [13]. Although optical cell counting and
flow cytometry devices have been widely reported, there is
usually a lack of sensitive and effective nonoptical methods
to detect and quantify large surface area cells attached to
micro-devices. We describe an electrical method based on
measuring cell count changes in the conductivity of the
surrounding medium due to ions released by immobilized
cells on the inner surface of the microfluidic channel [14].
Background of the diagnostic value and prognostic signif-
icance of circulating tumor cell detection in bladder cancer
are still controversial. We conducted a meta-analysis to
consolidate the current evidence of using CTC detection
methods to diagnose bladder and other urothelial cancers
and the association between CTC-positive and advanced and

remote diseases. Conclusion of CTC evaluation can confirm
the diagnosis and differential diagnosis of bladder cancer
[15].

2. Artificial Neural Network

2.1. RBF Neural Network. RBF neural network belongs to a
kind of radial neural network. When there are enough nerve
cells in the hidden layer, it can be designed as any continuous
function infinitely. Local approximation, classification, and
pattern recognition are all very good, and the learning and
teaching time of the algorithm is very short. )e mapping
relation in RBF neural network is expressed as
f(x): Rn⟶ Ro, as shown as follows:

y � f(x) � 􏽘

c

i�1
ωiφ x − ci

����
����, σi􏼐 􏼑 � 􏽘

c

i�1
ωi exp −

x − ci

����
����
2

2σ2i
⎛⎝ ⎞⎠,

(1)

where C is the number of neurons in the potential layer of
the network, ci is the center of radial basis function of each
potential layer, the width is σi, and ωi is the ith activation
function and exit neuron. )e neural network of RBF must
be trained and learned to determine the radial basis center ci,
width σi, and weight ωi between the potential layer and the
output layer of neurons in each potential layer, to determine
the mapping relationship between inputs.

To ensure that each activation function is not peaceful or
too sharp, the activation function of latent neurons is
regarded as a fixed radial basis function, and the center ci of
latent radial basis function is randomly selected from
training. )e radial basis function is defined as follows:

φ x, ci( 􏼁 � exp −
k

dmax
x − ci

����
����
2

􏼠 􏼡, (2)

where K represents the number of neurons in the hidden
layer and dmax is the maximum distance between the two
centers, and this formula shows that the width of neurons in
the hidden layer is constant.

2.2. BP Neural Network. BP neural network is a multilayer
feedback neural network with inverse error transmission.
)e learning process can be divided into signal transmission
and error reverse transmission. A schematic diagram of BP
neural network reverse transmission algorithm is shown in
Figure 1.

From this, it can be deduced that the weight correction
values are shown as follows:

Δωji(n) � η × δj(n)yi(n), (3)

δj(n) � dj(n) − yj(n)􏼐 􏼑φj 􏽘

m

i�0
ωji(n)yi(n)⎛⎝ ⎞⎠, (4)

whereM represents all the inputs that affect neuron J, η is the
inverse error rate of learning, δj(n) is the local gradient,
yi(n) is the output of neuron I, and Ψ is the activation
function.
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3. Research on Cell Image Detection

3.1. Construction of Cell Image Detection Network Model

3.1.1. Principle of Convolution Neural Network. )e con-
volution neural network is based on the mathematical
mapping in this study. It can learn the same mapping ability
as this expression independently. It specializes in learning
that needs to be practiced in a specific space, so this training
can make it learn the mapping relationship between input
and output. )e process is shown as follows:

y � g x; w1, · · · , wL( 􏼁,

� gL ·; wL( 􏼁 ∘gL−1 ·; wL−1( 􏼁 ∘ · · · ∘g2 ·; w2( 􏼁 ∘g1 x; w1( 􏼁,

(5)

where y represents output vector, x represents input vector,
g represents CNN, gL represents layer 1 CNN, wL represents
layer 1 gL weight and bias vector, and ∘ represents con-
volution operation.

A convolution neural network is usually composed of the
following types (as shown in Figure 2).)e convolution layer
is used to separate important functions, the pooling layer is
used to reduce the number of parameters and excessive
matching, and the complete combination layer is usually
used for network output after all convolution operations.

Input Layer: )is layer is used to input data. In multi-
dimensional data processing, because the input data are usually
images, this study mainly introduces the input layer of objects
placed in images. First, the image information is converted into
function data and input into convolution neural network. )e
image structure is the embodiment of image information. In
analysis, the CNN input layer keeps its original data when
processing image information. Images are usually divided into
black andwhite images and color images.WhenCNN analyzes
different types of images, the inputs are different.

Convolution Layer: the convolution layer first detects
each feature of the image locally and then performs local
expansion processing at a higher level to obtain global in-
formation. )e core of convolution operation is a mathe-
matical operation, which usually represents discrete

convolution in convolution neural network. )e convolu-
tion formula is as follows:

x
l
i � f 􏽘
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where xl
i represents the i-level image of the i level, xl−1

i

represents the first to i-level images, ∘ is the convolution
operator, wl−1,l

i,j is the first to i-level images and l− 1, bl
j

represents the offset of the jth feature corresponding to the l
level, and F represents the activation function. )e most
common of these activation functions is the relay-type ac-
tivation function, whose principle is shown as follows:

Relu � max(0, x) �
x, x≥ 0,

0, x< 0.
􏼨 (7)

Pooling Layer: pooling layer is usually combined with
the convolution layer, which is mainly used to reduce
function scale, compare data, reduce the number of network
parameters, reduce overmatching, and improve the toler-
ance of fault model. Complete Combination Layer: after
processing several convolution layers and a pooling layer,
the convolution neural network will be combined with the
complete combination layer. Output Layer: the focus of the
output layer of convolution neural network is to produce the
desired results according to the situation. After calculation,
different probability values are obtained from input to
output.

3.1.2. Proposition and Construction of Cell Image Detection
Model. Assuming that the time domain remains constant,Ω
is defined as the state region of output Y, which is based on
the finite state of the model. Suppose that the spatial con-
strained regression model g is used to test the known and
has y � g(Ω; s(x)) form, where s(x) is an unknown pa-
rameter vector, and the result of the last layer of ordinary
CNN is shown as follows:

y � fL xL−1; wL( 􏼁, (8)

where xL−1 is the output of the network (L− 1) layer in the
neural network and wL is the weight of the last layer, which is
output under the mapping of fL. Based on the theoretical
analysis of space constraints in this study, we need to extend
the standard CNN to estimate s(x) so that the last two layers
(fL−1, fL) of the network are defined as follows:

s(x) � fL−1 xL−2; wL−1( 􏼁, (9)

y � fL(Ω; s(x)) � g(Ω; s(x)), (10)

where xL−2 is the output of the network (L− 2) layer and
Formula (9) is the parameter estimation layer. According to
the weight wL−1, printing the image to obtain a parameter
vector; Formula (10) is the spatial constraint layer, which
belongs to the parameter vector in the regression model.

At the beginning of kernel image recognition, image
plane x ∈ RH×W×D, height H, width W, and feature number

y0 (n)= +1

y1 (n)

y1 (n)

ym (n)

ωij (n)

ωj0 (n) = bj (n)

vj (n)φ (*) yj (n)–1

dj (n)

Neuron j

ej (n)

Figure 1: Schematic diagram of BP neural network reverse
algorithm.
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D are given, and the goal is to detect the center point X of
each kernel.

In this study, the Euclidean distance from the pixel to the
core, i.e., ‖Zj − Z0

m‖2, is obtained when the core is detected,
where Zj and Z0

m represent the coordinates of yj and the
center coordinates of the mth core, respectively. )e weight
is reduced, i.e., normalized, and the regularized formula is
shown as follows:

d �
1
2

Zj − Z
0
m

�����

�����
2

2
. (11)

Let Ω � 1, · · · , H′􏼈 􏼉∗ 1, · · · , w′􏼈 􏼉, and y is the spatial
region. )e j-th element is j � 1, . . . , |Ω|. Equation (12) is
defined as follows:
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where Zj and Z0
m represent the coordinates of yj and the

center coordinate of themth core ofD, respectively, andΩ is
a constant radius. It can be seen from the figure that the
probability graph defined by Equation (12) has a maximum
value near the center of each core Z0

m, and other places are

flat. Next, a prediction output 􏽢y generated from a space-
constrained layer of the network is determined. Based on the
known structure of the motion result probability graph
described in Equation (12), we define the predicted output as
Equation (13) of the Jth element.
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where 􏽢Z
0
m ∈ Ω represents the center of the formula es-

timate, hM ∈ [0, 1] represents the height of the mth
variable, and M represents the maximum number on 􏽢y.
Because of the redundancy provided by hM � 0 or
􏽢Z
0
m � 􏽢Z

0
m, m≠m′, 􏽢y defined in this way will occur to allow

the number of prediction cores to change from 0 to M. In
the experiment, D in Formula (12) and Formula (13) is set
to 4 pixels to provide sufficient support area for the
probability mask.

Parameters 􏽢Z
0
m � (um, vm) and hm are estimated in a

parameter estimation layer. XL−2 is made the output of the
(L − 2) layer of the network. um, vm, hm are defined as
follows:

um � H′ − 1( 􏼁∗ sigm WL−1,um
∗XL−2 + bum

􏼐 􏼑 + 1, (14)

vm � W′ − 1( 􏼁∗ sigm WL−1,vm
∗XL−2 + bvm

􏼐 􏼑 + 1, (15)

hm � sigm WL−1,hm
∗XL−2 + bhm

􏼐 􏼑. (16)

)e purpose of formulas (14) and (15) is to show that the
corresponding weights and deviations are output to the
previous layer, then normalized, and then combined with
the previous predictions to obtain a parameter estimate.

)e importance of Formula (16) is that it is useful for the
upper exit. After the corresponding weights and deviations
are given, normalization is carried out to obtain the

Convolution layer Pool layer Convolution layer Pool layer Fully connected layer

Output layer

Figure 2: Basic structure diagram of convolution neural network.
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estimated height of M variable, which fully integrates the
spatial area position data. When bum

, bvm
, bhm

and
WL−1,um

, WL−1,vm
, WL−1,hm

are vectors, the former represents
deviation, the latter represents weighting, and sigm(·)

represents the sigmoid function commonly used in con-
volution neural networks, which is often used to hide the
output of neurons, and its value range is (0, 1). It can specify
a real number between (0, 1); that is, it is used for nor-
malization. )e principle is shown as follows:

S(x) �
1

1 + e
x, (17)

where X represents the data after zero mean processing and
S(x) represents the data after normalization processing, and
the learning method should use a loss function, as shown as
follows:

l(y, 􏽢y) � 􏽘 yj + ε􏼐 􏼑H yj, 􏽢yj􏼐 􏼑, (18)

where ε is a small constant, which represents the ratio of
nonzero probability pixels to the total number of zero
probability pixels in the training input, and H(yj, 􏽢yj) is the
cross-entropy loss, which is specifically defined as follows:

H yj, 􏽢yj􏼐 􏼑 � − yjlog 􏽢yj􏼐 􏼑 − 1 − yj􏼐 􏼑log 1 − 􏽢yj􏼐 􏼑􏽨 􏽩. (19)

Among them, when the actual values are yj � 1 and
H(yj, 􏽢yj) � −log(􏽢yj), when the predicted value of 􏽢yj is
closer to 1, log(􏽢yj) is closer to the maximum value of 1, and
the minus sign indicates the minimum error value. When
the predicted value of 􏽢yj is closer to zero, log(􏽢yj) is closer to
the negative. An infinite addition and subtraction sign in-
dicates themaximum error value.When the actual values are
yj � 0 and H(yj, 􏽢yj) � −log(1 − 􏽢yj), when the predicted
value 􏽢yj is closer to zero, log(􏽢yj) is closer to the maximum
value 1, and the minus sign indicates the minimum error
value, while when the predicted value 􏽢yj is closer to 1,
log(􏽢yj) is closer to the negative infinite addition and sub-
traction sign, which represents the maximum error value.

)e detailed parameters of each convolution are shown
in Table 1.

In Table 1, you can see that the input is an input attribute
with a size of 27× 27, and the output attribute after the final
network frame is 11× 11. To extract and merge all function
information, the scroll window increment is always set to 1,
and the trigger function uses relay-type trigger function
evenly.

)e network model structure mentioned in this article is
shown in Figure 3.

F is the full interconnection layer, and these neurons in
the full interconnection layer represent medical image in-
formation without spatial information; S1 is a new pa-
rameter estimation layer, and these neurons in the
parameter estimation layer represent the estimated position
information; S2 is the spatial constraint layer, L is the total
number of layers in the network, and each neuron represents
the medical image information with state parameter
information.

3.2. Nuclear Image Preprocessing

3.2.1. Coloring Principle of Stain. )e color deconvolution
method is mainly based on the orthogonal transformation of
the original RGB image, and according to the Beer–Lambert
law, it is expressed as the relationship between the light
intensity of the histological cell image and the staining
matrix, as shown as follows:

IC � IO,C exp −Q∗CC( 􏼁, (20)

where IO,C is the intensity of incident light radiated from the
tissue cell image, IC is the intensity of light passing through
the tissue cell image, subscript C is the RGB three-channel
identifier, Q is the dye color matrix, and C is the dye ab-
sorbance. It can be seen from Equation (10) that the intensity
of transmitted light and dye content is relatively complex
nonlinear relations. In the RGB color model, the light in-
tensity of each pixel in the camera is IR, IG, and IB, re-
spectively. )e optical density (OD) expression of each pixel
is shown as follows:

ODC � − log10
IC

IO,C

􏼠 􏼡 � Q∗CC. (21)

It can be seen from Equation (21) that the optical density
of each channel has a linear relationship with the absorption
of light absorbent, so the optical density of each channel can
be used to distinguish the color rendering effect of several
dyes. )e color effect of each point can be quantified by a
3×1 RGB three-channel optical density matrix. Using
simple hematoxylin staining, the absorbance of R, G, and B
channels was 0.18, 0.20, and 0.18, respectively.)e size of the
color matrix Q is related to the type of point, and each
element of the matrix is proportional to the absorbance of
each channel. For the three dyes R, G, B, the three-channel
color system is defined as follows:

Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (22)

Each row represents a dot, and each column represents
the absorbance values of R, G, and B channels. In this data
set, only two dyes are used for staining, and the corre-
sponding chromosome systems of R, G, and B channels are
shown as follows:

Y11 Y12 Y13

Y21 Y22 Y23
􏼢 􏼣. (23)

In the dyeing experiment, one dye was used to obtain the
absorbance values of three RGB channels after dyeing with
each dye. )e dyeing formula for hematoxylin and eosin
multiple dyeing is as follows:

0.18 0.20 0.18

0.01 0.13 0.01
􏼢 􏼣. (24)

Computational Intelligence and Neuroscience 5



3.2.2. Color Deconvolution. To make the color effect of each
color in multicolor image stand out, RGB information must
be transformed orthogonally. )e purpose of orthogonal
transformation is to make the color effect of each color
independent of each other, to obtain the color effect of a dye.
)e transformed matrix must be normalized, and the
normalization process for each dye is shown as follows:

􏽢Y11 �
Y11�������������

Y
2
11 + Y

2
12 + Y

2
13

􏽱 , (25)

􏽢Y21 �
Y21�������������

Y
2
21 + Y

2
22 + Y

2
23

􏽱 . (26)

)e normalized optical density matrix A is shown as
follows:

􏽢Y11
􏽢Y12

􏽢Y13

􏽢Y21
􏽢Y22

􏽢Y23

⎡⎣ ⎤⎦. (27)

)e N× 2 matrix C is used to describe the color effect of
two dyes on a pixel, and then, the optical density matrix
Y�AC of the image collected from the pixel is obtained.
C � A− 1 Y, and the color convolution matrix is then a pixel
hint. Individual color effects can be determined according to
the optical density and color moment of the image. )e
inverse of matrix D � A− 1 is obtained.

)e color deconvolution matrix of the above H&E
coloring method is shown as follows:

1.88 −0.07 −0.60

−1.02 1.13 −0.48
􏼢 􏼣. (28)

Multiple color images are separated by color deconvo-
lution theory, and the separated images can be used for
density and texture analysis.

)e cell sample images were experimented according to
H&E staining mode, and the experimental results are shown
in Figures 4–6.

In the image of the isolated hematoxylin-stained com-
ponent, the nucleus is blue, while in the image of the eosin-
stained component, the cytoplasm and cytoplasm are pink.
After color inversion of the pathological picture of this
material, the separation result of nucleus and cytoplasm is
very good. As shown in the above figure, the color decon-
volution method can be used as an image preprocessing
method in this study.

4. Comparative Experiment and Analysis

4.1. Comparative Experiment and Analysis of Cell Detection.
In this section, we designed the same control group as the
experimental group, tested SCNN and SR-CNNSSAE
models, respectively, and tested the parameters according to
the detection performance of CRCStoPhenotypes data set.

)is section selects 100 cell images from the test data set
and stores the accuracy, recovery rate, and F1 scores of the
three experimental models when testing the images.
Tables 2–4 compare the differences in the three experimental
systems in three evaluation indexes in detail.

Table 2 shows that themaximum recovery rate of SCNN is
0.9076, which is 0.0546 and 0.2146 higher than SR-CNN and
SSAE, respectively, same but improved compared with 0.16
SSAE; on average, SCNN still leads SR-CNN and SSAE.
SCNN through the maximum recovery rate, minimum re-
covery rate, and average recovery rate of comparative analysis
shows that the detection accuracy has been greatly improved.
However, the mean square error of SCNN is larger than that
of SR-CNN and SSAE, which shows that the stability is not as
good as that of SR-CNN and SSAE, but the difference is very
small, only 0.01, which is within the range of acceptable area.

It can be seen from Table 3 that in terms of accuracy, the
highest accuracy of SCNN is 0.8883, and SR-CNN and SSAE
are 0.0503 and 0.2163, respectively; SCNN has a minimum

Table 1: Design of parameter table of nuclear detection model based on spatial information.

Number of layers Category Filter size Input/output dimensions
0 Input 27× 27×1
1 conv1 4× 4×1× 36 24× 24× 36
2 pooling1 2× 2 12×12× 36
3 conv2 3× 3× 36× 48 10×10× 48
4 pooling2 2× 2 5× 5× 48
5 Fully-connected1 5× 5× 48× 512 1× 512
6 Fully-connected2 1× 1× 512× 512 1× 512
7 sconv1 1× 1× 512× 3 1× 3
8 sconv2 11× 11

F
S1

S2

(L-2) th (L-1) th Lth

•
•
•
•

•

•

•

•

• • • ••
•

Figure 3: Structure of cell detection model.
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accuracy of 0.7002. In SR-CNN and SSAE, the minimum
values are 0.6801 and 0.5141, respectively; in terms of average
accuracy, SCNN and SR-CNN are basically the same, only
0.002 behind, which belongs to the normal statistical range
and is obviously ahead of SSAE. )e above three groups of
comparative data show that SCNN has an excellent per-
formance in accuracy. In terms of stability, the three ex-
perimental systems are basically the same, and they are all
relatively stable.

It can be seen from Table 4 that the maximum F1
of SCNN is 0.836947, which is 0.009 and 0.173 higher than
SR-CNN and SSAE, respectively. Based on SR-CNN, the

minimum F1 of SCNN is 0.70065. On the basis of SSAE, it
decreased by 0.009 and increased by 0.132. For average, F1 of
SCNN improved by 0.008 on SR-CNN but significantly
surpassed SSAE. )e above three sets of comparative data

Table 3: Quantitative table of detection and evaluation indexes.

SCNN SR-CNN SSAE
Maximum value 0.8823 0.8321 0.6662
Minimum value 0.7002 0.6801 0.5141
Mean value 0.7811 0.7829 0.6169
Mean square error 0.0285 0.0264 0.0264

Table 4: Quantitative table of detection and evaluation indexes.

SCNN SR-CNN SSAE
Maximum value 0.8369 0.8276 0.6638
Minimum value 0.7006 0.7102 0.5688
Mean value 0.8007 0.7929 0.6296
Mean square error 0.0159 0.0208 0.0194

Figure 4: Sample image of H&E staining.

Figure 5: Images of hematoxylin staining components.

Table 2: Quantitative table of detection and evaluation indexes.

SCNN SR-CNN SSAE
Maximum value 0.9076 0.8531 0.6932
Minimum value 0.7011 0.7011 0.5411
Mean value 0.8234 0.8039 0.6439
Mean square error 0.0363 0.0264 0.0264

Figure 6: Eosin staining component image.

Table 5: Experimental comparison results.

Method Precision Recall F1 score
SCNN 0.781 0.823 0.802
SR-CNN 0.782 0.804 0.793
SSAE 0.617 0.644 0.63
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show that SCNN performed very well at F1. In terms of
stability, the F1 score of SCNN in SR-CNN system is less
than 0.005 and that in SSAE system is 0.001, which shows
that this system is more stable.

)e above analysis compares the detection performance
differences in multiple cell images in detail from three in-
dexes. Table 5 analyzes and compares the total indexes of the
three experimental systems.

Table 5 shows that SCNN has better performance than
SR-CNN and SSAE in terms of recovery rate and F1 score.
Although it lags behind SR-CNN in accuracy, the difference
is very small, which indicates that the experimental per-
formance can be relied on.

Summarizing the above experimental results and
comparative analysis, this section shows that the SCNN
cell recognition model proposed in this study has better
detection accuracy and stronger generalization ability,
which shows that it is very important to add spatial in-
formation to the designed convolution neural network
model.

4.2. Comparative Experiment and Analysis of Cell
Classification. )is section contains three sets of compar-
ative experiments with the same experimental settings,
which are designed to test the classification ability of the
kernel classification model, the kernel classification model,
and the kernel classifcation model proposed in this paper for
the CRCHistoPhenotypes dataset. )e parameters of the
comparative test are the same as those of the classification
test in Chapter 3.

)e F1 scores in different core classifications are com-
pared, and the reference methods are CRImage method and
superpixel imaging method. )e exact F1 score is shown in
Figure 7.

As can be seen from Figure 7, the F1 score of the
classification method based on adjacent set prediction
proposed in this study is higher than that of the other two
methods in the four categories, and the curve is more stable,
indicating the best performance. See Table 6 for a detailed
comparison.

It can be seen from Table 6 that in terms of average F1,
this method is obviously ahead of CRImage method in the
super-pixel imaging method. )e above three groups of
comparative data show that the classification model based
on adjacent set prediction in this study performs very well
for F1 scores. In terms of stability, this method is 0.047
smaller than CRImage method, which shows that this model
is more stable. In the same experimental environment, we
combine SoftmaxCNN with a group of adjacent prediction
methods, use CRImage method and superpixel imaging
method to detect four different nuclei, and get the AUC
values of different nuclei. See Figure 8 for details.

Figure 8 analyzes and compares the present model, the
CRImage super-pixel imaging model, and the AUC metrics.
Comparing these three curves, we can see that the model in
this study has better AUC performance than the other two
methods in the classification of four types of kernels. Table 7
compares the differences in AUC statistical data of the three
experimental schemes in detail.

As can be seen from Table 7, the AUC of prediction-
based adjacent set classification model for four different core
types is 0.059 and 0.217 higher than that of super-pixel
imaging method and CRImage method, respectively, the
minimum value is 0.099 and 0.295 higher, and the average
value is higher, more than 0.071 and 0.2435. )e perfor-
mance of this model is better, and the mean square error is
less than 0.0208 and 0.0346, which shows that the model in
this study is more stable in classifying cell images. After
comparing the F1 fraction and AUC values obtained from

Table 6: Quantitative table of F1 fraction of different nuclear
classifications by three methods.

Softmax
CNN+ASP

Super-pixel
descriptor CRImage

Maximum
value 0.875 0.817 0.672

Minimum value 0.538 0.395 0.156
Mean value 0.7342 0.625 0.427
Mean square
error 0.1692 0.177 0.216
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Figure 7: F1 scores were obtained by classifying different types of
nuclei by three methods.
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Figure 8: AUC values of four types of nuclear classification by
three methods.
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different types of nuclei, the weighted integration of F1
fraction and AUC values was carried out and a detailed
comparison was made. )e specific numerical equations are
shown in Table 8.

Table 8 shows that the combination of SoftmaxCNN and
AdjacentSetPrediction is used to classify the kernel used in
this study, which is nearly 1 percentage point higher than the
F1 score of the other two kernel classification methods,
which is more. It shows the superiority of the proposed
model in nuclear classification of cell histology image
classification based on adjacent set prediction. )e multi-
class AUC is at least 0.6 percentage points higher than that of
SuperpixelDescripto method and 2 percentage points higher
than that of CRImage method. )e combination of Soft-
maxCNN and adjacent force prediction is more than 90% in
multiclass. )e comparison results of AUC values show that
the proposed method has better classification ability and
stability in nuclear classification.

Based on the above experimental results and compar-
ative analysis, this section demonstrates that the proposed
nuclear classification model based on adjacent set prediction
has better classification ability and stronger stability and
proves that convolution neural network combined with
adjacent set prediction model is effective.

5. Concluding Remarks

In this study, we propose a method to detect nuclei by
combining spatial data.)is method aims at detecting nuclei
in histological cell images and constructing a spatial model
of cell image detection, to solve the problem of missing
topological input in the current model. Aiming at the
problem of how to classify the nuclei in the enlarged image
of human cells, a prediction mechanism based on adjacent
sets is proposed, and a large classification model of human
cell images is constructed by combining the convolution
neural network system of linear regression. In recent years,
the deep learning method is widely used, which provides a

theoretical basis for human cell image detection and clas-
sification combined with neural network model.
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