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Physiological status plays an important role in clinical diagnosis. However, the temporal physiological data change dynamically
with time, and the amount of data is large; furthermore, obtaining a complete history of data has become difcult. We propose a
hybrid intelligent scheme for physiological status prediction, which can be efectively utilized to predict the physiological status of
patients and provide a reference for clinical diagnosis. Our proposed scheme initially extracted the attribute information of
nonlinear dynamic changes in physiological signals. Te maximum discriminant feature subset was selected by employing
conditional relevance mutual information feature selection. An optimal subset of features was fed into the particle swarm
optimization–support vector machine classifer to perform classifcation. For the prediction task, the proposed hybrid intelligent
scheme was tested on the Sleep Heart Health Study dataset for sleep status prediction. Experimental results demonstrate that our
proposed intelligent scheme outperforms the conventional machine learning classifcation methods.

1. Introduction

In recent years, physiological status has played an important
role in guiding clinical decision making [1, 2]. Medical
decisionmakers (i.e., physicians) judge whether a patient has
a disease or not usually through clinical physiological re-
cordings [3–5]. Hence, studying physiological status-pre-
dicting methods and assisted clinical diagnosis is of practical
importance. Te output of physiological signals is compli-
cated because it includes multivariate real-timemonitor data
and information from diferent physiological signals, which
is huge. For this type of dynamic system, a physician using
multivariate real-time physiological monitoring signals from
a patient faces a great challenge to make a decision quickly
and accurately. However, analyzing the previous history of
physiological data trends to predict the future status of a
patient has been accepted in many studies due to the dif-
fculty in obtaining complete historical data to develop a
fusion diagnosis model for predicting the physiological
status of a patient [1, 6, 7]. In this study, we consider the

trend in the history of physiological temporal data and the
signal distribution situation to predict the future physio-
logical status of the patient, so as to assist the physician in
capturing the patient’s body condition and pathological
features, and make a rational diagnosis.

Sleep physiological status signal prediction is taken as an
example. As can be observed in Figure 1(a), we frst collect the
physiological status data of patients by using the sensors, and
then we rationally and efectively analyze the dynamic
changes in physiological status and make predictions.
Figure 1(b) indicates the history of physiological status signals
of SaO2, PR, EEG (sec), and their labeled categories (e.g.,W, 2,
and 3 represent the diferent sleep statuses, respectively).
Figure 1(c) shows the temporal unlabeled status of physio-
logical data. Tus, a physician using labeled physiological
status history cases faces a major challenge to predict unla-
beled categories accurately and quickly. Te most important
thing is that the clinical history of physiological status data is
huge, and the output of physiological signals shows certain
nonlinear and nonstationary characteristics [8].
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On this basis, many linear and stationary analysis
methods show some limitations in dealing with physio-
logical output signals, whereas nonlinear analysis methods
have special advantages in extracting nonlinear temporal
features hidden in the physiological signals [4]. Te appli-
cation of a nonlinear method to analyze physiological signals
is helpful in identifying the potential health mechanism [9].
In this regard, our work introduced a refned composite
multiscale entropy (RCMSE) method to analyze the multiple
time scale data [10]. Te proposed method can overcome the
drawbacks of MSE, efectively refect the dynamic changes in
the time series data, and quantify the regularity of the
diferent time scales. However, the coarse granulation fea-
tures obtained by RCMSE have high dimensionality with
information redundancy, which decreases the prediction
accuracy and make the process time consuming. In this
regard, we introduce a novel feature selection method called
conditional relevance mutual information feature selection
(CR-MIFS), which fully considers the dynamic changes in
the selected feature with the category and overcomes the
defciency of mutual information feature selection (MIFS).
We introduce a smart adaptive particle swarm optimization-
support vector machine (SAPSO-SVM) method for physi-
ological status prediction. To the best of our knowledge,
SVM has been proven to be one of the most efective
methods in addressing binary classifcation problems due to
its strong generalization performance and classifcation
precision [11–13], and the SAPSO algorithm can well op-
timize the parameters of the SVM classifer. Our proposed
hybrid intelligent prediction scheme combines the advan-
tages of these methods as described above so as to enhance
the performance of physiological status prediction and assist
clinical physicians in making correct and efective decisions.

Te main contributions of our work to the feld of
physiological status prediction can be summarized as follows:

(1) We extract the coarse granulation attributes of the
physiological status information based on RCMSE,
which can overcome the drawbacks of MSE, accu-
rately estimate the complexity of the time series in
diferent scales, and efectively refect the dynamic
changes in real-time physiological status among
diferent time scales.

(2) We introduce a novel CR-MIFS approach for coarse
granulation feature selection, which can reduce the
dimension of input data, improve the efciency of

predictive performance, and decrease the compu-
tational complexity to a certain extent.

(3) We construct a hybrid intelligent physiological status
prediction scheme that combines RCMSE for coarse
granulation attribute extraction, CR-MIFS for fea-
ture selection, and SAPSO-SVM for classifcation.
Empirical analysis verifes that our hybrid intelligent
prediction scheme exhibits superior performance
over other classifcation methods and can be accu-
rately and efectively utilized for predicting the
physiological status of patients.

Te rest of this article is organized as follows: Section 2
presents a literature review on physiological status predic-
tion. Section 3 presents the research objectives of this study.
Section 4 proposes the framework of our hybrid intelligent
prediction scheme. Section 5 describes the empirical study of
our proposed scheme, and Section 6 introduces the dis-
cussion of the hybrid scheme. Section 7 summarizes the
conclusions of this research are summarized.

2. Related Work

2.1. Physiological Status Analysis. In this section, we discuss
some existing methods utilized for physiological status
analysis. In 2016, Rahhal et al. [2] introduced a novel deep
learning approach for electrocardiogram (ECG) signal
analysis, which appropriately uses data envelopment anal-
ysis to represent the sparse features of raw ECG and in-
troduces a deep neural network (DNN) classifer to select the
most valuable ECG beats. Te empirical results indicate that
the proposed method is robust and computationally ef-
cient. Dennison et al. [3] analyzed the dynamic changes in
HMD and used it to predict cybersickness. Te empirical
results suggest that the changes in physiological measures
when using an HMD to navigate a VE can be used to es-
timate cybersickness severity. Singh et al. [7] utilized tem-
poral data in electronic health records (EHRs) to improve
the management of chronic diseases. Te empirical results
show that incorporating temporal information in a patient’s
medical history can lead to better prediction of loss of kidney
function. Nicolaou and Georgiou [4] introduced permuta-
tion entropy (PE) and SVM to detect an epileptic electro-
encephalogram (EEG). PE is utilized as the input feature,
and SVM is applied to the segments of normal and epileptic
EEG activities. Te average sensitivity is 94.38%, and the
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Figure 1: Physiological status prediction based on supervised learning. (a). Collecting the physiological status information (b). Physiological
status with labeled category (c). Unlabeled category.
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average specifcity is 93.23%. Yu et al. [1] constructed a novel
temporal classifcation framework for physiological status
prediction. Te numerical experiment verifes the efec-
tiveness and robustness of the classifcation model. Chen
et al. [14] adopted multimodal feature analysis and kernel
classifers to detect the physiological signals of driving stress.
Te empirical analysis reveals that diferent levels of driving
stress can be characterized by a specifc set of physiological
measures. Zhang et al. [6] utilized the physiological signals
and reaction time to recognize diferent stress states. Tey
adopted heterogeneous data for stress recognition.Te SVM
classifer shows good recognition performance. Chen et al.
[15] proposed a system for drowsiness detection using
physiological signals, which can extract evident information
beyond raw signals and extract and fuse nonlinear features
from EEG subbands. Te empirical results reveal that the
proposed method achieves high detection accuracy and
extremely fast computation speed. Chen et al. [16] presented
a novel method for ECG beat classifcation based on a
combination of projected and dynamic features and adopted
SVM to cluster heartbeats into one of 15 or 5 classes by using
the two types of features. Te empirical analysis verifes that
our proposed method obtains a better performance. Elhaj
et al. [17] investigated the representation ability of linear and
nonlinear features and combined them to improve the
classifcation of ECG data, which are utilized to detect ar-
rhythmias or heart abnormalities.Te empirical results show
that the classifcation accuracy reaches 98.91%. Ullah et al.
[18] proposed a system that is an ensemble of pyramidal 1D
convolutional neural network (P-1D-CNN) models for
epilepsy detection, achieving 99.1± 0.9% detection accuracy.

2.2.UnbalancedData. In this section, we discuss some existing
methods utilized for unbalanced physiological status analysis.

Te physiological status analysis research outlined here
has ignored two critical issues. Te frst issue is that the
collected physiological signal has some nonlinear and
nonstationary characteristics, and introducing an efective
feature selection method to refect the dynamic changes in
the physiological signal has become important. Te second
issue is that the extracted physiological feature has high
dimensionality, which increases computing complexity and
decreases prediction performance. As shown in Table 1,
most articles adopt the method of expanding unbalanced
data sets for the classifcation tasks based on unbalanced
data, which may lead to partial data distortion in the ex-
panded data sets, thereby afecting the results. Excessive data
result in a waste of time. On this basis, we construct a hybrid
intelligent scheme for a physiological status prediction that
can efectively extract the real-time changes in the infor-
mation of physiological signals, reduce the dimensionality of
the input attribute, increase the computing efciency, and
make physiological status predictions for patients.

3. Research Objectives

Te aim of this study is to examine the performance of the
proposed hybrid intelligent classifcation algorithm in

predicting physiological status and to develop an efcient
analysis framework for clinical physiological status predic-
tion. Te research objectives of this study are as follows:

(1) Examine the performance of CR-MIFS for feature
selection. For this research objective, we compared
our proposed feature selection method with the IG,
mRMR, NMIFS, and MIFS-U methods and then
evaluated the average classifcation accuracies of
diferent feature selection methods under the dif-
ferent classifcation methods.

(2) Investigate the performance of the SAPSO-SVM
classifcation method on physiological status
prediction.

(3) Design an efective hybrid physiological status pre-
dictive scheme that integrates RCMSE for coarse
granulation feature extraction, CR-MIFS for feature
selection, and SAPSO-SVM for classifcation. To
verify the superior performance of our proposed
method, we employ other conventional machine
learning methods (CNN, SleepContextNet,
XGBoost, K-NN, SVM, and SNet) for comparison
and investigate their performance.

4. Framework of Intelligent Scheme for
Physiological Status Prediction

Te framework of our proposed hybrid intelligent prediction
scheme includes four steps, as outlined in Figure 2. In the
frst step, we obtain the original physiological signals from
the output of the sensors. In the second module, we pre-
process the original signal utilizing the RCMSE method,
which can overcome the drawbacks of MSE and can ef-
fectively extract the nonlinear dynamic changes in the
physiological status [10]. Te RCMSE values with certain
time scales are the extracted features, which refect the
complex information of temporal physiological data for
diferent time scales and have the characteristics of high
dimensionality and coarse granulation.

Although the extracted coarse granulation attribute from
multiple time scales can provide abundant information for
predicting physiological status, the calculation process is
complex and requires excessive computer resources. In the
third module, we reconstruct the feature space and select the
optimal feature subset, which has the characteristics of a
minimum number of attributes and maximum discrimi-
nation ability. Te outstanding advantage of this feature
selection is that it can reduce the dimension of the feature
space, improve the physiological status-predicting efciency,
and reduce computer resources.

In the fourth module, we obtain the optimal feature
subset and feed it into the SVM hybrid classifer to obtain the
physiological status prediction. In our work, we adopt the
radial basis function (RBF) kernel, which has been widely
utilized in SVM classifcation [24]. To the best of our
knowledge, the penalty parameters C and kernel function
parameters g of the RBF kernel have some random char-
acteristics [25], which have a great infuence on SVM
classifcation performance. In this regard, we introduce
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Figure 2: Framework of the proposed hybrid intelligent prediction scheme.

Table 1: Relate work of unbalanced data.

Author Title Method Shortcoming

Riskyana
et al. [19]

Generative adversarial networks for
unbalanced fetal heart rate signal

classifcation

Tey utilized time series generative adversarial
networks (TSGAN) to solve data imbalance in
the fetal heart rate (FHR) signal and generate

more data and better classifcation
performance.

Data enhancement is used to process
unbalanced data, resulting in huge

data volume and increased
computing burden

Xinyu Luo
et al. [20]

Multi-classifcation of arrhythmias
using an HCRNet on imbalanced

ECG datasets

Tey developed a new, more robust network
model named hybrid convolutional recurrent
neural network (HCRNet) for the time-series

signal of ECG.

Tis work needs a large amount of
data and the time cost of the training
phase and the model’s training by
using 10-fold cross-validation is very

time-consuming and makes a
demand for use of high-tech

computers.

Georgios
et al. [21]

Automated atrial fbrillation
detection using a hybrid CNN-

LSTM network on imbalanced ECG
datasets

Tey propose a novel hybrid neural model
utilizing focal loss, an improved version of
cross-entropy loss, to deal with training data
imbalance. ECG features initially extracted via
a convolutional neural network (CNN) are
input to a long short-term memory (LSTM)
model for temporal dynamics memorization
and thus, more accurate classifcation into the

four ECG rhythm types

the proposed network was tested only
on four beat types, classes AFL and J
represent only an extremely small

percentage of the total dataset and the
model’s training by using 10-fold

cross validation is very time
consuming and makes a demand for

use of high-tech computers.

Tianyu et al.
[22]

A hybrid machine learning
approach to cerebral stroke

prediction based on an imbalanced
medical dataset

Firstly, random forest regression is adopted to
impute missing values before classifcation.
Secondly, an automated hyperparameter
optimization(AutoHPO) based on a deep
neural network(DNN) is applied to stroke

prediction on an imbalanced dataset.

Data enhancement is used to process
unbalanced data, resulting in huge

data volume and increased
computing burden

Chaofan
et al. [23]

Classifcation of imbalanced
electrocardiosignal data using
convolutional neural network

An improved data augmentation method
based on variational auto-encoder (VAE) and

auxiliary classifer generative adversarial
network (ACGAN) is implemented to address
the difculties resulting from the imbalanced
dataset. Based on the augmented dataset,
convolutional neural network (CNN)

classifers are employed to automatically
recognize arrhythmias using two-dimensional

ECG images.

Te main disadvantage of this study
is the time cost of training deep

models. Te VAE and ACGAN need
to be trained separately, which will
cost a lot of time and computation.
Also, due to the complicated nature

of deep models, the proposed
algorithm needs sophisticated

hardware to realize the arrhythmia
detection function.
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SAPSO to optimize the kernel function parameters and
construct a hybrid intelligent prediction scheme to assist the
physician in capturing the patient’s body condition quickly
and accurately. Te detailed steps of our proposed hybrid
intelligent prediction scheme are presented in Figure 2.

4.1. Dataset. Our experimental analysis was conducted on
the international standard database Physiobank (Goldberger
et al. [26]), which is frequently used as the benchmark
dataset for the studies of physiological signal analysis papers.
Te experimental data are derived from the Sleep Heart
Health Study (SHHS, Physionet). Te SHHS is a prospective
cohort study designed to investigate the relationship be-
tween sleep disordered breathing and cardiovascular disease.
Te Data come from 6441 individuals who were enrolled
between November 1, 1995, and January 31, 1998. Each
sample in this dataset includes 11 attributes: ah1: EEG, ah2:
electrooculogram, ah3: electromyogram, ah4: ECG, ah5:
nasal airfow, ah6: respiratory efort signals, ah7: periodic
measurements of oxygen saturation (SaO2), ah8: periodic
measurements of heart rate, ah9: annotations of sleep stages,
ah10: respiratory events, and ah11: EEG arousals. In this
research, we select three typical features, namely, oxygen
saturation (SaO2), heart rate (PR), and electrocardiogram
(EEG), as the input features, which are often considered the
“golden standard” in the identifcation of sleep status
[4,15,27,28]. Heart rate is abbreviated as PR with 1Hz
sampling, and the EEG sampling rate is 125Hz. Each subject
has 120∗7500 cases in 1 h, the time interval between each
case is 0.004 s, and the annotations between each case is
0.5min. On this basis, each subject includes 7500 cases, and
120 cases are found. We set the duration of the time window
to 1 h, from [21 : 30] to [22 : 30]. Te details of the SHHS
dataset are presented in Table 2, and the input data are
shown in Table 3. We show 10 cases of the input samples in
Table 3. Te standard deviation of input data is shown in
Table 4.

4.2. Data Preprocessing and Feature Extraction. In this work,
we introduce RCMSE for feature extraction, which is an
efective method to describe the complexity and irregularity
of the time series and can accurately refect the dynamic
changes in the time series [10]. We introduce the RCMSE
method for physiological signal feature extraction, which
can accurately refect the abnormal fuctuations of physio-
logical signals at a certain moment, reasonably refect the
slight change at diferent time scales, and has overcome the
drawbacks of MSE [29]. Te RCMSE algorithm includes the
following three steps:

(1) For the time series of x1, x2, . . . , xN􏼈 􏼉 and the scale
factor of τ, the coarse-grained time series can be
described as follows:

y
(τ)
k,j �

1
τ

􏽘

jτ+k−1

i�(j−1)τ+k
xi, 1≤ j≤

N

τ
, 1≤ k≤ τ. (1)

(2) For the scale factor of τ, the number of matched
vector pairs nm+1

k,τ and nm
k,τ is computed, where nm

k,τ
represents the total number of m-dimensional
matched vector pairs and is computed from the k th
coarse-grained time series at a scale factor τ.

(3) RCMSE is then defned as follows:

RCMSE(x, τ, m, r) � −In
􏽐

τ
k�1 n

m+1
k,τ

􏽐
τ
k�1 n

m
k,τ

􏼠 􏼡. (2)

RCMSE can qualify the average uncertainty and evaluate
the complexity of the physiological attribute, where x rep-
resents the time series x1, x2, . . . , xN􏼈 􏼉, m represents the
dimension, τ represents the scale factor, and r represents the
vector capacity. Large RCMSE values indicate that the in-
formation and complexity of the temporal time series data
are great and the fnal results are small. By contrast, a small
RCMSE value indicates that the temporal data are greatly
ordered and the fnal results are great [1].

4.3. Reconstructed Feature Space and Feature Selection.
Te physiological status includes multivariate dimensional
data, and each dimension of the feature includes diferent
time scales; thus, we should reconstruct the feature space and
establish a convenient feature retrieval method. For the time
scale of e1, e2, e3, . . . , en􏼈 􏼉 and the feature space of F

� f
p1
1 , f

p1
2 , . . . , f

p1
e1−1, f

p1
e1 , f

p2
1 , f

p2
2 , . . . , f

p2
e2−1, f

p2
e2 , . . . , f

pm

1 ,􏽮

f
pm

2 , . . . , f
pm
en

}, where P � p1, p2, . . . , pm􏼈 􏼉 is the coarse
granulation attributes, which have the same scale of multiple
attributes and the same attribute of diferent scales, the
reconstructed feature space based on these features is F �

ei | i � 1, 2, . . . , n􏼈 􏼉, where ei is the new feature index, and
any two elements in the feature space can be expressed as
fei
∈ F, fej

∈ F, where ei and ej are their index of the el-
ement, and i≠ j. Suppose we have physiological status la-
beled datasetD, which comprises ε samples with pm features,
that is, D � (x(p)

i , y(p)
i )􏽮 􏽯, where x(p)

i � (x(p)
1 , . . . , x(p)

N )T is
the N-dimensional reconstructed feature vector of the pth
sample, and y(p)

i is the pth sample’s class label. We can
transform the complex real-time physiological status of
multiscale input features into a simple decision table with
the reconstructed feature vector of its corresponding cate-
gory through the reconstructed multiscale feature space.
However, the feature vectors obtained by the RCMSE
method for feature extraction have high dimensionality with
information redundancy, which decreases the prediction
accuracy and makes the process time-consuming. In this
regard, feature selection has become necessary, which can
reduce the dimension of the reconstructed feature space,
decrease the calculation complexity, and improve the clas-
sifcation efciency. Mutual information (MI) has been
widely utilized for feature selection, which can quantify the
information between diferent attributes and is a good in-
dicator of the correlation between multiscale features
[30–32]. In Shannon’s information theory [19], the recon-
structed coarse granulation feature is regarded as the input,
and the information entropy of the reconstructed feature
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f
pj

τ�i (where f
pj

τ�i is the value of i th time scale under the pj th
feature) can be defned as follows:

H f
pj

i􏼐 􏼑 � − 􏽘
fi∈S

p f
pi

i􏼐 􏼑logp f
pj

i􏼐 􏼑. (3)

For two multiscale features of f
pj

i and f
pj

k , the joint
entropy of f

pj

i and f
pj

k is defned as follows:

H f
pj

i , f
pj

k􏼐 􏼑 � − 􏽘

f
pj

i
∈S1

􏽘

f
pj

k
∈S2

p f
pj

i , f
pj

k􏼐 􏼑logp f
pj

i , f
pj

k􏼐 􏼑.

(4)

During the process of feature selection, some of the
features are determined and others are not. We defne
conditional entropy as the measurement of attribute
uncertainty.

H f
pj

i

􏼌􏼌􏼌􏼌􏼌 f
pj

k􏼒 􏼓 � − 􏽘

f
pj

i
∈S1

􏽘

f
pj

k
∈S2

p f
pj

i , f
pj

k􏼐 􏼑logp f
pj

i

􏼌􏼌􏼌􏼌􏼌 f
pj

k􏼒 􏼓.

(5)

where p(f
pj

i | f
pj

k ) is the posterior probability of attribute
f

pj

k given attribute f
pj

i . Te conditional entropy indicates
the amount of uncertainty left in attribute f

pj

k if attribute f
pj

i

is introduced. Te relationship between joint entropy and
conditional entropy can be defned as follows:

H f
pj

i , f
pj

k􏼐 􏼑 � H f
pj

i , f
pj

k􏼐 􏼑 + H f
pj

i

􏼌􏼌􏼌􏼌􏼌 f
pj

k􏼒 􏼓. (6)

TeMI between two attributes can be defned as follows:

I f
pj

i , f
pj

k􏼐 􏼑 � 􏽘

f
pj

i
∈S1

􏽘

f
pj

k
∈S2

p f
pj

i , f
pj

k􏼐 􏼑log
p f

pj

i , f
pj

k􏼐 􏼑

p f
pj

i􏼐 􏼑 · p f
pj

k􏼐 􏼑
. (7)

MI can be expressed in the form of entropy as follows:

I f
pj

i , f
pj

k􏼐 􏼑 � H f
pj

i􏼐 􏼑 + H f
pj

k􏼐 􏼑 − H f
pj

i , f
pj

k􏼐 􏼑, (8)

max 􏽘

f
Pm
i
∈ S

I f
Pm

i ; C􏼐 􏼑 relevance−

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β 􏽘

f
pm
i
∈ S

􏽘

f
pz
k
∈ S

I f
pj

i , f
pj

k􏼐 􏼑 redundancy

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (9)

Table 4: Standard deviation.

Features
SaO2 PR (BPM) EEG (uV)

1 min Max 7500 1 min Max 7500 1 min Max 7500
Standard deviation 1.229 18.964 1.183 1.213 5.26 13.139 5.741 5.228 17.031 31.429 33.266 20.016

Table 2: Details of the SHHS dataset.

Characteristics Attribute Tasks Subjects Instance of each subject Number of attributes
Temporal multivariate Integer Classifcation 5804 120∗7500 11

Table 3: Ten cases of the input samples.

Cases Slices (min)
Features

LabelSaO2 (%) PR (BPM) EEG (uV)
1 min Max 7500 1 min Max 7500 1 min Max 7500

X1 0.00 96.011 94.013 97.01 94.013 67.265 67.265 82.238 78.242 −3.922 −77.451 98.039 18,627 C1
X2 0.50 94.013 94.013 96.011 95.012 78.242 39.316 78.242 50.305 19.608 −114.706 108.824 7.843 C1
X19 9.00 95.012 94.013 95.012 94.013 66.266 64.268 66.266 64.268 12.745 −39.216 65.686 −6.863 C2
X20 9.50 94.013 94.013 94.013 94.013 64.268 64.268 67.265 65.267 −11.765 −90.196 99.02 −4.902 C1
X22 10.5 95.012 95.012 98.009 98.009 71.261 62.282 71.261 65.267 −3.922 −32.353 44.118 −3.922 C1
X56 27.5 96.011 95.012 96.011 95.012 70.262 63.268 70.262 63.268 13.725 −44.118 36.275 −18.627 C2
X60 30.5 95.012 94.013 96.011 96.011 60.284 58.285 65.267 58.285 13.725 −48.039 67.647 −13.725 C2
X65 32 95.012 95.012 95.012 95.012 59.284 57.286 60.284 59.284 36.275 −120.588 124.51 18.627 C2
X101 50 96.011 95.012 96.011 95.012 63.268 61.283 66.266 66.266 10.784 −80.392 78.431 -32.353 C1
X120 59.5 98.009 96.011 98.009 96.011 65.267 63.268 67.265 63.268 16.667 −43.137 46.078 2.941 C1
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Information entropy has been utilized to solve the
problem of quantifying information. Te higher the value of
information entropy, the greater the randomness of the time
series. MI has been widely utilized for feature selection
because it can efectively quantify the correlation of the
attribute and is insensitive to noise or outlier data [33]. If the
value of MI between two attributes is large, then the cor-
relation of the attributes is closely related. If MI is zero, then
the two multiscale attributes are completely unrelated.
Previous studies proposed many types of MI feature se-
lection algorithms, such as mRMR [34], MIFS [35], MECY-
FS [30], MIFS-U [36], and NMIFS [37]. However, these
methods have some drawbacks. Te frst drawback is that
they combine feature relevance and redundancy measures
for feature selection, utilize a parameter to control the trade-

of between feature relevance and redundancy, which is
uncertainty, and infuence the optimal feature subset, as
shown in formula (9). Te second drawback is that they only
consider the candidate feature relevancy and class, and ig-
nore the selected feature when calculating feature relevance.
However, the relevancy between the candidate feature and
class is dynamically changed with the addition of the selected
feature [32, 38]. In this regard, we fully consider the con-
ditional feature relevance and uncertainty parameter and
adopt a novel feature selection method called CR-MIFS,
which considers the dynamic information of the selected
feature with the class. In accordance with the mRMR criteria
[34], set β is equal to the inverse of the number of selected
features.
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, (10)

where f
pm

i is the candidate feature, and f
pz

k is the selected
feature. S′ is the candidate feature set, and S represents the
selected feature set. In (10), which ignores the relevance of
the selected feature and class, the relevance dynamically

changes with the addition of the selected feature. Terefore,
we employ the CR-MIFS method, as shown in the following
equation:
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, (11)

where we consider the selected feature and calculate the
mutual information of the candidate feature and class when
given the selected feature. Te pseudocode of CR-MIFS is
presented in Algorithm 1.

In Algorithm 1, F is the reconstructed coarse granulation
features, including diferent time scales and physiological
attributes. Te category label C refects the diferent phys-
iological statuses corresponding to diferent coarse granu-
lation attributes. Maxs is a variable that stores the variable of
the feature of maximal conditional relevance and minimal
redundancy. f

pj

i is the selected feature.

4.4. Physiological Status Prediction by the SAPSO-SVM
Algorithm. An intelligent pattern classifcation method is
required to automatically fulfll the physiological status
predictions after obtaining the features to represent the
primary physiological information of dynamically changed
physiological signals. In this work, we introduce SVM for
classifcation performance measurement. To the best of our
knowledge, SVM utilizes convex quadratic programming,

which provides only the global minimum. Tus, it avoids
being trapped in local minima [25, 39]. We utilize the
LIBSVM package, which supports two-class and multiclass
classifcation [40]. However, some improvements to SVM
are still required when we perform the classifcation tasks.
Te penalty parameter C and the kernel function parameter
g have some random characteristics, which remarkably
infuence the classifcation accuracy. Figure 3 describes the
classifcation accuracy result for the SVM classifer with RBF
kernel in the SHHS dataset (Physionet). In our empirical
study, we perform a fvefold cross-validation on the 70%–
20% training–testing partition of the dataset and set the
variation range of parameter C from 2̂(−10) to 2̂(10). Te
variation range of parameter g is 2̂(−10) to 2̂(10), and the step
of average classifcation accuracy is 0.2.

In this empirical study, we investigate the classifcation
performance of the SVM classifer under the diferent pa-
rameter settings. Te traditional searching approaches, such as
the gradient descent method [41] and Tabu search method
[42], are vulnerable to falling into the local optimum and
cannot output the global optimal solution.Terefore, we select
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the particle swarm optimization (PSO) algorithm [43], which is
based on the simulation of the social behavior of organisms.
PSO has certain outstanding merits, such as a simple com-
putational process, easy implementation, less parameters, and
fast convergence. PSO-SVM has a better performance than
other methods [44], such as genetic algorithm, information
gain, and relief algorithm. However, the PSO algorithm can
easily fall into the local optimum and undergo premature
convergence in the global search process. Te efect of random
oscillation is reduced during the later stage of convergence [45].
Motivated by this defciency, we introduce a simulated
annealing (SA) algorithm to modify PSO [46] by taking the
parameters C and g of the RBF kernel function as the position
of particles. When PSO completes updating the position of
particles and calculating the new ftness function, the new
ftness function is taken as the objective function of SA, and the
diference between the ftness value of particles in the new
position and the ftness value of the historical position is
calculated. If the diference meets the judgment criteria, then
the position and speed of current particles are accepted;
otherwise, they are accepted with probability exp (−Δf/T).
Te annealing temperature is adjusted, the cycle standard is
determined whether it is achieved, and the best location of the
particles is outputted.Te hybrid algorithm can jump out from
the local optimum region and dynamically adjust the annealing
temperature. With the decrease in temperature, the particles
are in a low-energy state and converge to a global optimal
solution. Te specifc steps of the SAPSO-SVM algorithm are
shown in Figure 2.

5. Experimental Analysis

A comprehensive numerical experiment was conducted
on the MATLAB 2016a platform to examine the predictive
performance of the proposed intelligent prediction
scheme on physiological status prediction. Te perfor-
mance parameters of the executing host are Windows 10
with an Intel (R) Core(TM) i5-1135g7 CPU at 2.40 GHz,
X64, and 8 GB (RAM).

5.1. Evaluation Measure. Te average classifcation accuracy
(ACC), F1-score, and kappa coefcient are utilized as the
evaluationmeasures to evaluate the predictive performance of
our proposedmethod. ACC is a widely utilizedmeasure in the
performance evaluation of classifcation algorithms and is the
ratio of true positives and true negatives to the total number of
instances. Te ACC calculation formula is given as follows:

ACC �
TN + TP

TP + FP + FN + TN
, (12)

where TP is the number of cases correctly classifed to sleep
status category C1; FP is the number of cases belonging to sleep
status category C2 misclassifed to category C1; TN is the
number of cases correctly classifed to sleep status category C2;
FN is the number of cases belonging to sleep status category C1
misclassifed to category C2.Te evaluation methods are based
on the confusion matrix, as shown in Table 5.

F1-score is an index used to measure the accuracy of the
dichotomous (or multitask dichotomous) model in statistics.
Te calculation formula is given as follows:

F1 �
2 × pre × rec
pre + rec

, (13)

where pre denotes the precision, and rec represents the recall
rate.

Kappa coefcient is an indicator for the consistency test.
Te calculation formula is given as follows:

Kappa �
ACC − pc

1 − pc

, (14)

where pc is the proportion of agreements expected by
chance.

5.2. Experimental Procedure

5.2.1. Data Preprocessing and Feature Extraction. Te SHHS
dataset includes 120 subjects, and we set the time series of
{X1, X2, X3, . . ., X120}, where each subject includes 7500
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cases, and the time slice is set to 0.5min. For example, given
that the time stamp at 0.5min was 7501, the temporal data
of X2 are {7501 : 15,000, X2}. Table 3 shows 10 cases of the
input data. Each case includes the 3D input feature {SaO2,
PR, EEG} and the annotations of the physiological status,
and each feature is demonstrated by the frst observation,
the last on (7500th), and the minimum and maximum
values. Te decision state of each row in the table is
identifed as follows: C1, which represents the sleep status
of being awake or waiting to sleep; C2, which depicts the
various stages of sleeping. As shown in Table 3, the real-
time physiological status of the patient can be refected by
the input features. In this work, we select SaO2 (%), PR
(BPM), and EEG (uV) as our input features. Te history of
the physiological status of the output signals has some
nonlinear characteristics, and the physiological status in-
formation of the patients must be extracted. Terefore, we
adopt the RCMSE algorithm to extract the physiological
output signal, which can refect the dynamic changes in the
physiological status and accurately obtain the complex
information of the time series.

Te feature extraction results are shown in Figures 4–6.
Te temporal features of SaO2, RP, and EEG of the 10 cases
in the SHHS dataset are shown. We calculated the RCMSE
values from a scale of 1 to 50, and the SampEn was calculated
with m � 2 and r � 0.2 × σ, where σ denotes the standard
deviation of the original time series. Here, we set the base of
the logarithm to two, so the unit of the entropy is a bit. From
Figures 4–5, the value of the RCMSE curve ascends gradually
with the increase in the number of time scales. As shown in
the results presented in Figure 6, the results of the RCMSE
curve change quickly when the time scales are smaller than 5,
whereas the RCMSE becomes gentle when the time scale is

greater than 5. To the best of our knowledge, the larger the
value of the RCMSE, the less we believe in the fnal results
[1].Terefore, the more complex the time series data, the less
we believe in the fnal results with the increase in the time
scale.

5.2.2. Reconstructed Feature Space and Feature Selection.
In this empirical study, we select the time scale of
τ � 1, 2, 3, 5; we then obtain a reconstructed feature space of
F � F1, F2, F3, F5􏼈 􏼉, as shown in Table 6. We obtain diferent
reconstructed feature subsets that belong to diferent
physiological attributes in accordance with the recon-
structed feature space. As shown in Table 6, feature subsets
{f1, f2, f3, f4}, {f5, f6, f7, f8}, and {f9, f10, f11, f12} represent
the reconstructed physiological features of SaO2(%),
PR(BPM), and EEG(uV), respectively. We introduce the
RCMSEmethod to extract the coarse-grained information of
the physiological signal, and the results are presented in
Table 7. Here, we only presented 10 cases of information
values (bit) of the SHHS samples.

When we select SaO2, PR, and EEG as the input 3D
features, we obtain 4095 (24× 24× 24−1) types of feature
space combinations, although some of the reconstructed
multiscale feature space may not represent the complete
information of the original feature set. In this regard, we
adopt the CR-MIFS method for feature selection, which can
select the optimal feature subset with the same discrimi-
nation ability as the original feature set and can fully con-
sider the relevance between the candidate feature and class
when given the selected feature. Te classifcation perfor-
mance of our proposed feature selection is compared with
IG, mRMR, NMIFS, and MIFS-U on the SHHS dataset.

Input: A training sample D with entirely reconstructed features F � f
p1
e1 , f

p2
e2 , f

p3
e3 , . . . , f

pn
en

􏽮 􏽯

and category labels C; user-specifc threshold K.
Output: the selected feature subset S.

(1) S⟵∅;
(2) k⟵ 0;
(3) For i � 1 to n do
(4) Calculate the I(f

pm
ei

;C);
(5) End for
(6) While k<K do
(7) If k �� 0 then
(8) Selected the feature f

pm
ei

with the largest I(f
Pm
ei

; c);
(9) k � k + 1;
(10) S � S∪ f

pm
ei

􏽮 􏽯;
(11) F � F − f

pm
ei

􏽮 􏽯;
(12) End if
(13) For each candidate feature f

pj

i ∈ F do
(14) Calculate the maximum CR-MIFS value in accordance with (11)
(15) End for
(16) Select the feature f

pj

i with the largest Maxs(i);
(17) S � S∪ f

pj

i􏽮 􏽯;
(18) F � F − f

pj

i􏽮 􏽯;
(19) k � k + 1;
(20) End while

ALGORITHM 1: CR-MIFS
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Table 8 shows the order of selected features for the IG,
NIMIFS, mRMR, MIFS-U, and CR-MIFS methods. To
evaluate the performance of the classifcation accuracy
against the number of features, we introduce three diferent
classifers: SVM with RBF kernel, Näıve-Bayes (NB), and
three-nearest Neighbors (3NN), which are used to evaluate
the classifcation accuracies in the SHHS dataset. As shown
in Figure 7, the number of feature n on the X-axis represents
the frst selected feature by diferent classifers, and the Y-
axis represents the average accuracy for the frst selected n
features. We set the number of multiscale selected features
from 1 to 12 and employ fvefold cross-validation to obtain
the highest classifcation accuracy through diferent classi-
fers. We calculate the average classifcation accuracies in
accordance with the three highest accuracies, as described in
Figure 7.

Figure 7 indicates the average classifcation accuracy
achieved with SVM (RBF), NB, and 3NN based on diferent
feature selection algorithms. As observed in Figure 7, the
classifcation accuracy curve ascends gradually with an in-
crease in the number of the selected features when we select
the frst eight features. Te average classifcation accuracy is
88.91% with the CR-MIFS algorithm. During this process,
we obtain the optimal feature subset F� {f2, f1, f3, f4, f5, f6,
f9, f12}. Te CR-MIFS method outperforms the IG, NMIFS,
mRMR, and MIFS-U methods in the SHHS dataset.

5.2.3. Physiological Status Prediction. We compare our
proposed scheme with fve conventional machine learning
classifcation methods (CNN, SleepContextNet, XGBoost,
K-NN and SVM, SNet) to verify its performance. We quote
the results in previous papers and adopt accuracy, F1-score,
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and kappa coefcient as the evaluation standard of the
model. Table 9 shows the comparison results of accuracy, F1-
score, and kappa coefcient of the diferent classifcation
methods in the PhysioNet dataset. In [47], Arnaud et al.
utilized CNN to predict fve sleep stages, and the accuracy,
F1-score, and kappa coefcient are 87%, 0.78, and 0.81,
respectively. In [48], Caihong et al. designed a sleep staging
network named SleepContextNet for sleep stage sequence.
Te accuracy, F1-score, and kappa coefcient are 86.4%, 0.8,
and 0.81, respectively. In [49], Cong et al. proposed a

classifcation model with the XGBoost algorithm and tested
it using fvefold cross-validation on three diferent databases.
In the tasks of 4-class and 5-class sleep staging, the proposed
method achieved an accuracy of 87.5% and 85.8% in the
SHHS database, respectively, and the kappa coefcient is
0.79 and 0.81, respectively. In [50], Seda et al. utilized Alex-
Net and VGG-16 for feature extraction, K-NN, and SVM for
classifcation, and the accuracy and F1-score are 92.78% and
0.93, respectively. In [51], Kuo et al. proposed SNet, which
achieves the highest accuracy in single CNN for EEG

Table 7: Ten cases of information values (bit) of the SHHS samples.

Cases
Reconstructed multiscale feature

LabelSaO2 (%) PR (BPM) EEG (uV)
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

X1 0.00093 0.00187 0.00280 0.00467 0.00435 0.00871 0.0131 0.0219 0.8533 1.2302 1.5895 1.8297 C1
X2 0.00102 0.00205 0.00308 0.00513 0.00515 0.01034 0.0115 0.0261 1.1602 1.2659 1.7055 1.9507 C1
X19 0 0 0.00019 0.00091 0.00086 0.00017 0.00026 0.00043 1.1168 1.3571 1.8146 2.2747 C2
X20 0 0 0 0 0.00222 0.00445 0.00669 0.01119 0.8437 1.0966 1.6145 2.1759 C1
X22 0.00017 0.00031 0.00043 0.00086 0.00479 0.0116 0.0177 0.0258 0.7982 1.0874 1.5239 2.1786 C1
X56 0.00024 0.00033 0.00054 0.00095 0.00258 0.00356 0.00455 0.00582 0.8321 1.1454 1.6789 2.3651 C2
X60 0.00096 0.00134 0.00245 0.00453 0.00189 0.00694 0.00781 0.00932 0.6809 1.0134 1.5706 2.0671 C2
X62 0 0 0 0 0.00094 0.00189 0.00284 0.00475 0.8087 0.9838 1.3175 1.8352 C2
X101 0.00172 0.00311 0.00544 0.0132 0.00255 0.00479 0.00682 0.0137 1.5772 2.0543 2.8914 2.6789 C1
X120 0.00293 0.00588 0.00886 0.01477 0.00383 0.00768 0.0115 0.0193 1.6334 2.1621 2.6054 2.7989 C1
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Figure 6: RCMSE of the temporal feature EEG.

Table 5: Confusion matrix.

Predicted category C1 Predicted category C2
Actual category C1 TP FN
Actual category C2 FP TN

Table 6: Reconstructed feature space.

Sets F1 (τ � 1) F2 (τ � 2) F3 (τ � 3) F5 (τ � 5)

F f1, f5, f9􏼈 􏼉 f2, f6, f10􏼈 􏼉 f3, f7, f11􏼈 􏼉 f4, f8, f12􏼈 􏼉
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spectrogram classifcation, and the accuracy, F1-score, and
kappa coefcient are 93.80%, 0.79, and 0.86, respectively.
Te accuracy, F1-score, and kappa coefcient of our method
are 97.15%, 0.94, and 0.88, respectively, which are higher
than those of other methods.

5.2.4. Results. We selected SaO2, PR, and ECG as input
features.We extracted the dynamic features using the RCMSE
method, utilized the CR-MIFS method for feature selection,
and applied the SAPSO-SVM classifer for physiological state
classifcation. In the experiment, the accuracy, F1-score, and
kappa coefcient of our method reached 97.15%, 0.94, and
0.88, respectively. To obtain the fnal classifcation results, we
use fve conventional machine learning classifcationmethods
(CNN, SleepContextNet, XGBoost, K-NN and SVM, SNet) as
comparison methods, and the results are presented in Table 9.
In accordance with Table 9, the best (highest) results obtained
by diferent methods verify the excellent performance of our
proposedmethod. To elaborate further, we design three issues
in our empirical study.

Te frst design issue of our study is to investigate the
performance of our proposed CR-MIFS method for feature
selection. In this regard, we set IG, NMIFS, mRMR, and
MIFS-U as the comparison methods and obtain the clas-
sifcation results of diferent feature selection methods based
on SVM, NB, and 3NN classifers, as shown in the results in
Figure 7.

Te second design issue of our study is to verify the
superiority of the SAPSO algorithm in optimizing the pa-
rameters of the SVM classifer.

Te third design issue of our empirical study is to il-
lustrate the superior predictive performance of our proposed
scheme. To this end, fve traditional machine learning
classifcation methods are considered, and we design a set of
comparative experiments, where their results are shown in
Table 9. Te proposed physiological status prediction
scheme yields the highest predictive performance compared
with other methods.

 . Discussion

In this section, we provide a discussion of the performance
of our proposed hybrid intelligent prediction scheme. As
mentioned previously, our proposed hybrid intelligent
scheme includes diferent data processing steps.

Te frst step is coarse granulation feature extraction.We
employ the RCMSEmethod to extract the coarse granulation
time series data, which overcomes the defciencies of the
MSE method and can efectively refect dynamic changes in
physiological status accurately. In our empirical study, we
introduce the SHHS dataset as a benchmark dataset, and the
RCMSE results are shown in Figures. 4–6. From the trend of
these curves, the value of RCMSE ascends gradually with the
increase in the time scale, and the more complex the time
series data, the less we believe in our fnal results. On this
basis, we select τ � 1, 2, 3, 5 as four time scales in our em-
pirical analysis and reconstruct our feature space, as shown
in Table 7. We select the physiological features of SaO2 (%),
PR (BPM), and EEG(uV) as the input 3D features to obtain
4095 types of feature combinations, although some of the
reconstructed feature space may not represent the complete
information of the original feature set. In the next step, we
employ the CR-MIFS method for feature selection, and we
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Table 8: Diferent ranking results of feature selection algorithms.

Algorithm Order of selected feature
IG f3, f1, f2, f4, f5, f8, f9, f11, f12, f6, f7, f10
NMIFS f2, f5, f3, f1, f6, f8, f4, f9, f10, f11, f12, f7
mRMR f2, f3, f1, f8, f9, f10, f4, f5, f6, f12, f11, f7
MIFS-U f2, f3, f1, f4, f5, f8, f9, f12, f6, f7, f11, f10
CR-MIFS f2, f1, f3, f4, f5, f6, f9, f12, f7, f11, f8, f10
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compare it with IG, mRMR, NMIFS, and MIFS-U in the
SHHS dataset to evaluate its performance. Te results are
presented in Figure 7. Te results show that our CR-MIFS
method outperforms the other feature selection methods
because it achieves 88.91% classifcation accuracy. Te last
step is to rationally predict the physiological status. In our
empirical analysis, we employ SVM for physiological status
prediction. To the best of our knowledge, the penalty pa-
rameter C and the kernel function parameter g have a re-
markable infuence on the classifcation accuracy whenever
we apply SVM for classifcation (as shown in Figure 3).
Motivated by this defciency, we introduce the SAPSO
method to optimize the SVM parameters.

Regarding the hybrid scheme to be utilized in physiological
status prediction, we select fve conventional machine learning
classifcation methods (CNN, SleepContextNet, XGBoost,
K-NN, SVM, and SNet) as the comparison methods, and the
results are presented in Table 9. Te results indicate that our
proposed scheme has a superior performance to other con-
ventional classifcation methods, and its prediction accuracy,
F1 score, and kappa coefcient are 97.15%, 0.94, and 0.88,
respectively. Our research has a number of practical impli-
cations. Te extraction of coarse-grained features and the se-
lection of compact attribute space in our work have become
critical issues in developing an intelligent scheme, which is of
great importance in physiological status prediction. Our
proposed intelligent scheme can be utilized as a decision
support tool to assist disease diagnosis in clinics.

7. Conclusions

Tis work proposes a hybrid intelligent prediction scheme,
which fuses the RCMSE method for coarse granulation
feature extraction, the CR-MIFS method for feature selec-
tion, and SAPSO-SVM for physiological status prediction.
Te performance of our proposed scheme is tested in the
SHHS dataset and compared with fve conventional machine
learning classifcation methods, namely, CNN, SleepCon-
textNet, XGBoost, K-NN, SVM, and SNet. Te empirical
results verify that our designed hybrid intelligent scheme
shows outstanding performance in physiological status
prediction.Temain objective of this work is to combine the
advantages of these methods so as to enhance the perfor-
mance of our physiological status prediction and assist
clinical physicians in making correct and efective decisions.
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