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Background and Objective. !e new coronavirus disease (known as COVID-19) was first identified in Wuhan and quickly spread
worldwide, wreaking havoc on the economy and people’s everyday lives. As the number of COVID-19 cases is rapidly increasing, a
reliable detection technique is needed to identify affected individuals and care for them in the early stages of COVID-19 and
reduce the virus’s transmission. !e most accessible method for COVID-19 identification is Reverse Transcriptase-Polymerase
Chain Reaction (RT-PCR); however, it is time-consuming and has false-negative results. !ese limitations encouraged us to
propose a novel framework based on deep learning that can aid radiologists in diagnosing COVID-19 cases from chest X-ray
images.Methods. In this paper, a pretrained network, DenseNet169, was employed to extract features from X-ray images. Features
were chosen by a feature selection method, i.e., analysis of variance (ANOVA), to reduce computations and time complexity while
overcoming the curse of dimensionality to improve accuracy. Finally, selected features were classified by the eXtreme Gradient
Boosting (XGBoost). !e ChestX-ray8 dataset was employed to train and evaluate the proposed method. Results and Conclusion.
!e proposed method reached 98.72% accuracy for two-class classification (COVID-19, No-findings) and 92% accuracy for
multiclass classification (COVID-19, No-findings, and Pneumonia). !e proposed method’s precision, recall, and specificity rates
on two-class classification were 99.21%, 93.33%, and 100%, respectively. Also, the proposed method achieved 94.07% precision,
88.46% recall, and 100% specificity for multiclass classification. !e experimental results show that the proposed framework
outperforms other methods and can be helpful for radiologists in the diagnosis of COVID-19 cases.

1. Introduction

!enewCoronavirus disease, also known as COVID-19, was
initially discovered in Wuhan, China, in December 2019 [1].
COVID-19 is the name of the disease, and SARS-CoV-2 is
the name of the virus. !is novel infection spread from
Wuhan to a large portion of China in less than 30 days [2].
On 11 March 2021, the World Health Organization (WHO)
declared the outbreak a pandemic [3, 4]. Since 19 November
2020, the COVID-19 pandemic has had a detrimental effect
on the world, with approximately 219,456,675 confirmed
cases and 4,547,782 deaths reported till 27 September 2021;
in addition, nearly 7.7 million workers have lost their jobs in

America [5]. !e global recession and closure of schools and
institutions worldwide have significantly impacted mental
and physical health [3].!emajority of Coronaviruses infect
animals; however, due to their zoonotic nature, they can
infect humans [6]. As a result, it can potentially infect
human airway cells, leading to pneumonia, severe respira-
tory infections, renal failure, and even death. Fever, cough,
sore throat, headache, weariness, muscle soreness, and
shortness of breath are common COVID-19 symptoms [7].

Vivid screening of infected individuals allows them to be
isolated and treated and is a crucial and essential step in
combating COVID-19 [1]. Reverse Transcriptase-Polymer-
ase Chain Reaction (RT-PCR) testing, which can identify

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 4694567, 11 pages
https://doi.org/10.1155/2022/4694567

mailto:h.nasiri@aut.ac.ir
https://orcid.org/0000-0002-9279-6063
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4694567


SARS-CoV-2 RNA from respiratory material, is the most
common technique for detecting COVID-19 patients [8]. It
requires specialized materials and equipment that are not
readily available; because of the large number of false-
negative results, it takes at least 12 hours, which is incon-
venient considering that positive COVID-19 patients should
be identified and followed up on as soon as possible
[4, 9, 10]. Chest CT scan is another option for detecting the
disease, which is more accurate than RT-PCR; For instance,
75% of negative RT-PCR samples had positive results on
chest CT scans [11]. CT scans have several drawbacks, in-
cluding image collection time, related cost, and CT equip-
ment availability [12]. When compared to CT scans, X-ray
images are less expensive and more easily available [13]. As a
result, the focus of the research is only on the use of X-ray
imaging as a screening tool for COVID-19 patients.

Researchers discovered that COVID-19 patients’ lungs
contain visual markings such as ground-glass opaci-
ties—hazy darker areas that may distinguish COVID-19-
infected individuals from noninfected patients [14, 15].
However, due to the limitations of experts, time constraints,
and the irreversible consequences of misdiagnosis [6], it is
crucial to discover a different approach to get faster and
more reliable outcomes. !e technological advancements
facilitate the process of diagnosing the diseases; in other
words, the widespread use of Artificial Intelligence (AI) [16],
mainly its areas such as machine learning and deep learning,
is extremely constructive, and researchers have made sig-
nificant use of AI and deep learning in various medical areas
[4, 17]. Convolutional neural network (CNN) architecture is
one of the most prominent deep learning techniques in the
medical imaging field, with outstanding results [18].

Pretrained neural networks are used in this paper, which
is one of the most recent techniques. Using easily accessible
pretrained models, the proposed method extracts features
from X-ray images. We utilize one of the feature selection
methods in the second phase to acquire an appropriate
number of features for classification. Finally, we use the
eXtreme Gradient Boosting (XGBoost) classifier to classify
the specified features. A preprint of this paper has previously
been published [19]. !e major contributions of this paper
are summarized as follows:

(1) We used an easily accessible pretrained model,
DenseNet169 for feature extraction, and XGBoost
for classification as a brand-new approach.

(2) Using a feature selection approach, i.e., analysis of
variance (ANOVA), improves prediction perfor-
mance and obtains an adequate number of features
for classification and reduces complexity.

(3) Effectiveness of the proposed method is evaluated
using the ChestX-ray8 dataset. !e experimental
results show that the proposed method effectively
classifies COVID-19 cases, and the classification
accuracy is considerably increased.

!e rest of the paper is organized as follows. Section 2
describes related works. In Section 3, used materials and
methods will be presented. In Section 4, the experimental

results are reported and analyzed. Finally, Section 5 will
present a summary of the findings and conclusions.

2. Related Works

Researchers worldwide are now fighting against COVID-19;
using radiological imaging and deep learning has made
significant progress in this approach. Wang et al. [8] de-
veloped COVID-Net, a deep model for COVID-19 detection
that categorized normal, non-COVID-19 pneumonia, and
COVID-19 classes with 92.4 percent accuracy. Apostolo-
poulos and Mpesiena [20] applied transfer learning and
employed COVID-19, healthy, and pneumonia X-ray im-
ages to develop their model. Ozturk et al. [6] proposed using
the DarkNet model to build a deep network. !is model
contains 17 convolution layers and utilizes the Leaky ReLU
activation function. !e mentioned model was 98.08% ac-
curate for binary classes, and for multiclass cases, it was
87.02% accurate. Nasiri and Hasani [21] employed Dense-
Net169 to extract features from X-ray images and used
XGBoost for classification; they gained 98.24% and 89.70%
in binary and multiclass classification, respectively.

Qaid et al. [22] applied deep and transfer learning ap-
proaches to build reliable, general, and robust models for
identifying COVID-19. Abdulkareem and Mpesiena [23]
proposed a model to detect COVID-19 cases in smart
hospitals utilizing machine learning and the Internet of
!ings. Chen and Rezaei [24] proposed a method for
extracting 18 different features from X-ray images. !e
minimal features are chosen using a metaheuristic algorithm
called the Archimedes optimization to reduce the approach’s
complexity. Khorami et al. [25] proposed a method for
extracting a combination of gray-level co-occurrence matrix
(GLCM) and Discrete Wavelet Transform (DWT) features
from X-ray images, followed by classification of the images
using an improved CNN model, based on the Red Fox
Optimization algorithm. Waheed et al. [26] developed an
Auxiliary Classifier Generative Adversarial Network
(ACGAN)-based model called CovidGAN to create syn-
thetic X-ray images and improve the accuracy of COVID-19
classification.

Sethy et al. [27] devised an in-depth feature combined
support vector machine (SVM) based method for detecting
coronavirus-infected individuals using X-ray images. SVM
is examined for COVID-19 identification utilizing the deep
features of 13 different CNN models. Fareed Ahmad et al.
[28] utilized X-ray images for training deep CNN models
like MobileNet, ResNet50, and InceptionV3 with a variety of
options, including starting from scratch, fine-tuning with
learned weights of all layers, and fine-tuning with learned
weights and augmentation. Abbas et al. [29] verified a deep
CNN termed Decompose, Transfer, and Compose (DeTraC)
for COVID-19 chest X-ray image classification. Wang et al.
[30] presented the Parallel Channel Attention Feature Fu-
sion Module (PCAF) and a new convolutional neural net-
work MCFF-Net based on PCAF. !e network uses three
classifiers to boost recognition efficiency: 1-FC, GAP-FC,
and Conv1-GAP. Ucar and Korkmaz [31] developed the
SqueezeNet that goes toward its light network design, is
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optimized for the COVID-19 detection with the Bayesian
optimization additive.

Additionally, Kang et al. [32] presented a transfer
learning model that handles a dataset of COVID-19-infected
patients’ CT images. !ey achieved a test accuracy of 79.3%.
Khan et al. [1] represented CoroNet, a deep CNN model for
automatic diagnosing of COVID-19 from chest X-ray im-
ages. !e proposed model is built on the Xception archi-
tecture. Narin et al. [33] proposed five models for diagnosing
people with pneumonia and coronavirus using X-ray
images.

Similarly, He et al. [34] created a deep learning method
to categorize COVID-19. !ey scanned 746 CT images, 349
of which were of infected patients and 397 of healthy people.
!e Self-Trans technique is proposed in this approach,
which combines contrastive self-supervised learning with
transfer learning to gain unbiased and robust feature rep-
resentations while avoiding overfitting, resulting in a 94%
accuracy rate. Xu et al. [35] applied deep learning techniques
to create an early screening model to discriminate COVID-
19 from influenza-A viral pneumonia and healthy cases
using chest CT scans. Hemdan et al. [36] used 50 validated
chest X-ray images and 25 confirmed positive COVID-19
cases and developed the COVIDX-Net, which incorporates
seven distinct architectures of deep convolutional neural
network models, such as VGG19 as well as the second
version of Google MobileNet. Minaee et al. [37] used
publicly available datasets to build a dataset of 5000 chest
X-rays. A board-certified radiologist discovered images that
showed the existence of the COVID-19 virus. Four prom-
inent convolutional neural networks were trained to detect
COVID-19 disease using transfer learning.

3. Materials and Methods

!e proposed method employs the DenseNet169 deep
neural network, the ANOVA feature selection method, and
the XGBoost algorithm, which will be discussed in the
following section.

3.1.DenseNet169. ACNN’s overall architecture is composed
of two core parts: a feature extractor and a classifier.
Convolution and pooling layers are the two essential layers
of CNN architecture. Each node in the convolution layer
extracts features from the input images by performing a
convolution operation on the input nodes. !e max-pooling
layer abstracts the features by averaging or calculating the
maximum value of input nodes [38, 39]. DenseNet is a highly
supervised network containing a 5-layer dense block with a
k� 4 rate of growth and the standard ResNet structure. Each
layer’s output in a DenseNet dense block includes the output
of all previous layers, incorporating both low-level and high-
level features of the input image, making it suitable for object
detection [40]. !e ILSVRC 2012 classification dataset used
for training DenseNet contains 1,000 classes and 1.2 million
images. !e dataset images were cropped with the size of
224 × 224 before using as input for DenseNet. DenseNet
presented a new connectivity pattern that introduced direct

connections from any layer to all the following layers to
further improve information flow across layers [41]. In
DenseNet, the l th layer takes all feature maps
x0, x1, x2, . . . , xl−1 from the preceding layers as input, which
is described by

x1 � H1 x0, x1, x2, . . . , xl−1 ( , (1)

where Hl(·) is a singular tensor and [x0, x1, x2, . . . , xl−1] is
the concatenated features from l − 1 layers. To preserve the
feature-map size constant, each side of the inputs is zero-
padded by one pixel for convolutional layers with kernel size
3 × 3. DenseNet employed 1 × 1 convolution and 2 × 2 av-
erage pooling as transition layers between adjoining dense
blocks. A global average pooling is conducted at the end of
the last dense block, and then a Softmax classifier is con-
nected. In the three dense blocks, the feature-map sizes are
32 × 32, 16 × 16, and 8 × 8, respectively. On five distinct
competitive benchmarks, this innovative architecture reached
state-of-the-art accuracy for recognizing the objects [38, 41].

3.2. Analysis of Variance Feature Selection. New issues de-
velop as a result of the creation of large datasets. Conse-
quently, reliable and unique feature selection approaches are
required [42]. Feature selection can assist with data visu-
alization and understanding and minimize measurement
and storage needs, training and utilization times, and
overcoming the curse of dimensionality to enhance pre-
diction performance [42, 43]. ANOVA is a well-known
statistical approach for comparing several independent
means [44]. !e ANOVA approach ranks features by cal-
culating the ratio of variances between and within groups
[45].

!e ratio indicates how strongly the λ th feature is linked
to the group variables. !e following equation is used to
calculate the ratio F value of λ th g-gap dipeptide in two
benchmark datasets:

F(λ) �
s
2
B(λ)

s
2
W(λ)

, (2)

where s2B(λ) and s2W(λ) are the sample variance between
groups (also known as Mean Square Between, MSB) and
within groups (also known as Mean Square Within, MSW),
respectively, and can be calculated as
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!e degrees of freedom for MSB and MSW are dfB �

K − 1 and dfW � N − K, respectively. !e number of
groups and the total number of samples are represented byK

and N, respectively.!e frequency of the λ th feature in the j
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th sample in the i th group is denoted by fij(λ). !e number
of samples in the i th group is denoted by ni [46].

3.3. Extreme Gradient Boosting (XGBoost). Chen and
Guestrin proposed an efficient and scalable variation of the
Gradient Boosting algorithm called XGBoost. XGBoost has
been widely employed by data scientists recently, and it had
desirable results in a wide range of machine learning
competitions [47, 48]. In certain ways, XGBoost differs from
Gradient Boosted Decision Trees (GBDT). First of all, the
GBDT algorithm only employs a first-order Taylor expan-
sion, whereas XGBoost augments the loss function with a
second-order Taylor expansion. Secondly, the objective
function uses normalization to prevent overfitting and re-
duce the method’s complexity [49–51]. !ird, XGBoost is
extremely adaptable, allowing users to create their own
optimization objectives and evaluation criteria. Neverthe-
less, by establishing class weight and using Area Under the
Curve (AUC) as an assessment criterion, the XGBoost
classifier can handle unbalanced training data efficiently. In
summary, XGBoost is a scalable and flexible tree structure
improvement model that can manage sparse data, enhance
algorithm speed, and minimize computing time and
memory for large-scale data [52].

Formally, the XGBoost algorithm can be described as
follows.

Given a training dataset of n samples T � (x1, y1),

(x2, y2), . . . , (xn, yn)} xi ∈ Rm yi ∈ R, the objective function
can be defined by

obj(θ) � 
n

i

l yi, yi(  + 
T

t�1
Ω ft( , (5)

where l(yi, yi) measures the difference between the target yi

and the prediction yi and ft denotes the prediction score of t

th tree [53].Ω(ft) represents the regularization term, which
control the model’s complexity to avoid overfitting [50]. !e
estimated loss function can be computed based on Taylor
expansion of the objective function:

L
(t)≃

k

i�1
l yi, y

(t− 1)
  + gift xi(  +

1
2
hif

2
t xi(   +Ω ft( ,

(6)

where gi � z
y

(t−1) l(yi, y(t− 1)) denotes each sample’s first
derivative and hi � z2

y
(t− 1) l(yi, y(t− 1)) denotes each sample’s

second derivative. !e first and second derivatives of each
sample are all that the loss function requires [54].

3.4. ProposedMethod. In this study, preprocessing methods
were employed on the dataset, including label encoder for
classes and normalization on images. As a result, less re-
dundant data are given as the input to the network. Deeply
influenced by the brain’s structure, deep learning as a
subfield of machine learning has emerged. In medical image
processing, as in many other areas, deep learning approaches
have demonstrated excellent results in past years [33].
ImageNet is a dataset of millions of images organized into

1000 categories when it comes to image processing.!e next
step was to apply several pretrained models that were trained
based on this dataset. DenseNet169 had the best perfor-
mance among those models, so it was selected as the feature
extractor in the proposed method. !e X-ray dataset images
were scaled at a fixed size of 224 × 224 pixels, the Dense-
Net169 input size.

!e final layer of the DenseNet169 network, which was
used to predict ImageNet dataset labels, was eliminated.
Global average pooling, a pooling method designed to
substitute fully connected layers in classical CNNs, was
added in the final layer of the network. One of the benefits of
global average pooling is that there are no parameters to
adjust in this layer; therefore, no training is needed. Ad-
ditionally, because global average pooling sums up the di-
mensional information, it is more robust to spatial
translations of the input [55]. !e X-ray images were given
to the network to extract features from DenseNet169, and
1664 features were extracted as a result.

When a learning model is given many features and few
samples, it is likely to overfit, causing its performance to
degrade. Among researchers, feature selection is a widely
used strategy for reducing dimensionality [56]. In order to
reduce the classification time and increase the classifier
performance, the ANOVA feature selection method was
employed to reduce the number of features. !us, the range
of 50 to 500 features was applied to select the best number of
features for classification (using validation set). Finally, the
selected features were given to the XGBoost to detect
COVID-19. Figure 1 shows the general framework of the
proposed method.

4. Results and Discussion

Several performance metrics such as precision, recall,
specificity, and F1-Score, as well as accuracy, were utilized to
evaluate several deep learning models with the proposed
methodology because accuracy alone cannot evaluate a
model’s usefulness [57]. Accuracy is the ratio of the number
of correctly predicted samples to the total number of
samples. !e following equation can be used to calculate
accuracy:

accuracy �
TP + TN
Total

, (7)

where TP and TN denote the number of true positives and
true negatives, respectively.

Precision is the proportion of predicted true-positive
values to the total number of predicted true-positive and
false-positive values. A model with a low precision is prone
to a high false-positive rate. Precision can be calculated using
the following equation:

precision �
TP

FP + TP
, (8)

where FP denotes the number of false positives.
!e number of true positives divided by the sum of true

positives and false negatives is known as recall or sensitivity.
When there is a large cost associated with false negatives, the
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model statistic used to pick the optimal model is recall.
Recall can be computed using the following equation:

recall �
TP

TP + FN
, (9)

where FN denotes the number of false negatives.
Specificity is the proportion of predicted true negatives to

the summation of predicted true negatives and false positives.
Specificity can be determined using the following equation:

specificity �
TN

TN + FP
. (10)

F1-score combines precision and recall. As a result, both
false positives and false negatives are included while cal-
culating this score. It is not as simple as accuracy for
comparison. However, F1-score is generally more valuable
than accuracy, particularly if the problem is an imbalanced
classification problem.!e following equation can be used to
calculate the F1-score:

F1 − score �
2 × recall × precision
recall + precision

. (11)

In this study, the dataset that Ozturk et al. [6] collected
has been employed, gathered from two distinct sources,
and includes COVID-19, No-findings, and Pneumonia, as
shown in Figure 2. !e first class of dataset contained 43
women, and 82 men confirmed they were infected with
COVID-19. !e average age of 26 COVID-19 confirmed
individuals is about 55 years old, according to the age
information supplied. !e remaining two classes were
chosen randomly from the Wang et al. [58] ChestX-ray8
dataset, including 500 No-findings and 500 Pneumonia
images.

Two distinct perspectives were conducted to identify and
classify COVID-19. First, the proposed technique was val-
idated in order to classify two classes labeled COVID-19 and
No-findings. Second, the proposed approach was used to
classify three different groups: COVID-19, No-findings, and
Pneumonia. In the first aspect, the two-class problem, the
proposed method effectiveness is measured using the 5-fold
cross-validation. A total of 80% of the dataset was used for
training and 20% for testing. Following the extraction of
features by DenseNet169, ANOVA selected 67 features from
1664 as an optimal number for classification, resulting in

Feature Vector

Pneumonia

CP

56
64

56 256
12828 28 512

14 256 14 1280
7 640 7 1664

XGBoost

D: Dense Block
CP : Conv + Pooling
T: Transition Layer

ANOVAD1 T1 D2 T2 D3 T3 D4

No-Findings

Covid-19

224 × 224× 3

No-Findings

Covid-19

Figure 1: !e architecture of the proposed model.

(a) (b) (c)

Figure 2: Representation of chests X-ray in COVID-19 patients (a), No-findings (b), and patients with Pneumonia (c).
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about 96% of features being reduced, and the XGBoost
classification process was significantly sped up.

!e 5-fold cross-validation had an average accuracy of
98.72%, and the confusion matrix was computed for each
fold and overlapped, as shown in Figure 3. !e confusion
matrix entries acquired in all folds are used to generate the
overlapping confusion matrix. It shows that the proposed
architecture correctly identified COVID-19 and No-findings
with 100% and 98.43% accuracy, respectively. In other
words, the proposed method performs better at detecting
true-positive samples.

!e achieved precision, recall, specificity, and F1-score
values were 99.21%, 93.33%, 100%, and 97.87%, respectively.
Table 1 represents the comparison of the proposed method
with Ozturk et al. [6] and Nasiri and Hasani [21] in terms of
accuracy, precision, recall, specificity, and F1-score values for
each fold and the average of all folds, which Nasiri and
Hasani [21] had better results than Ozturk et al. [6] and the
proposed method outperforms them all except recall. !e
good performance of the proposed method can be attributed

to the superiority of the XGBoost, which has a good gen-
eralization and less overfitting. As a result, the proposed
method outperforms other methods in terms of test accu-
racy. Furthermore, using ANOVA helps the proposed
method select the most distinctive features from the feature
space and better separate COVID-19, No-findings, and
Pneumonia classes, leading to higher classification accuracy.

In the multiclass problem, 80% of the X-ray images
dataset was used for training, and the remaining 20% was
employed as the test set. ANOVA was used to select 275
features out of 1664 as the ideal number for classification.
Consequently, almost 84% of features were decreased, and
XGBoost classification process was substantially ramped up,
and performance improved. !e accuracy on the test set was
92%. !e confusion matrix is illustrated in Figure 4. Like
two-class problem, this confusion matrix indicates that the
proposed method had a better result in finding COVID-19
than No-findings and Pneumonia. Precision, recall, speci-
ficity, and F1-score values of 94.07%, 88.46%, 100%, and
92.42% were reached, respectively. Regarding accuracy,
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Figure 3: Confusion matrix for the two-class problem.
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precision, recall, specificity, and F1-score values of the test
set, Table 2 compares the proposed approach to Ozturk et al.
[6] and Nasiri and Hasani [21].

!e proposed method was applied to nine pretrained
networks for both binary andmulticlass problems. As shown
in Table 3, the average of 5-fold cross-validation accuracy
was employed to compare approaches in binary class
problem, whereas the best fold accuracy was used to

compare approaches on the multiclass problem. Dense-
Net169 outperforms other pretrained networks in both
binary and multiclass problems. Additionally, the gradient-
based class activation mapping (Grad-CAM) [59] was used
to represent the decision area on a heatmap. Figure 5 il-
lustrates the heatmaps for three COVID-19 cases, con-
firming that the proposed method extracted correct features
for detection of COVID-19, and the model is mostly con-
centrated on the lung area. Radiologists might use these
heatmaps to evaluate the chest area more accurately.

!e proposed method was compared to relevant works
in Table 4. Gunraj et al. [8] applied 16,756 X-ray chest images
from diverse sources to develop COVID-Net and achieved a
92.40% accuracy rate on the multiclass classification prob-
lem. Sethy et al. [27] reached 95.38% accuracy using
ResNet50 and SVM, which was evaluated by 50 X-ray im-
ages. Wang et al. [30] proposed M-Inception for 195
COVID-19 infected patients and 258 healthy cases, and as a
result, they achieved an 82.90% accuracy rate. Hemdan et al.
[36] trained and evaluated COVIDX-Net using 25 con-
firmed COVID-19 and 25 noninfected cases X-ray images,
achieving a 90.00% accuracy rate.

Narin et al. [33] used 50 public source COVID-19 chest
X-ray images and 50 normal images from another source to
test three alternative CNN models, obtaining a 98.00%
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Figure 4: Confusion matrix for the multiclass problem.

Table 2: Comparison of the proposed method with other methods
in multiclass problem.

Methods
Performance metrics (%)

Recall Specificity Precision F1-score Accuracy
Proposed
method 88.46 100 94.07 92.42 92.00

Ozturk et al. 88.17 93.66 90.97 89.44 89.33
Nasiri and
Hasani 95.20 100 92.50 91.20 89.70

Table 3: Comparison of different deep neural networks.

DNN Binary class accuracy
(%)

Multiclass accuracy
(%)

DenseNet169 98.72 92.00
InceptionV3 92.96 82.22
NASNetLarge 94.88 84.00
ResNet152 94.71 77.33
VGG16 97.43 88.88
VGG19 97.28 88.88
Xception 95.68 80.88
EfficientNetB0 97.92 88.88
InceptionResNetV2 94.88 83.11

Table 1: Comparison of the proposed method with other methods in two-class problem.

Performance metrics (%) Methods 1-fold 2-fold 3-fold 4-fold 5-fold Average

Recall
Proposed method 94.73 90.47 92.00 96.96 92.59 93.33

Ozturk et al. 100 96.42 90.47 93.75 93.18 95.13
Nasiri and Hasani 95.20 95.40 96.70 81.40 91.40 92.08

Specificity
Proposed method 100 100 100 100 100 100

Ozturk et al. 100 96.42 90.47 93.75 93.18 95.30
Nasiri and Hasani 100 100 100 89.90 100 99.78

Precision
Proposed method 99.53 99.05 99.01 99.46 99.00 99.21

Ozturk et al. 100 94.52 98.14 98.57 98.58 98.03
Nasiri and Hasani 99.50 99.50 99.40 95.30 99.02 98.54

F1-score
Proposed method 98.41 97.02 97.42 98.96 97.57 97.87

Ozturk et al. 100 95.52 93.79 95.93 95.62 96.51
Nasiri and Hasani 98.50 98.50 98.20 92.50 97.30 97.00

Accuracy
Proposed method 99.20 98.40 98.40 99.20 98.40 98.72

Ozturk et al. 100 97.60 96.80 97.60 97.60 98.08
Nasiri and Hasani 99.20 99.20 99.20 95.20 98.40 98.24

Computational Intelligence and Neuroscience 7



Figure 5: !e heatmap of three confirmed COVID-19 X-ray images.

Table 4: Comparison of the proposed method with other DNN based methods.

Study Type of
images Number of cases Method used Accuracy

(%) Drawbacks

Wang et al. [8] Chest X-
ray

358 COVID-19
(+)

COVID-Net 92.40

Use of an unbalanced dataset

8066 COVID-19
(−) High computational complexity due to

training of deep neural network5538
Pneumonia

Sethy et al.
[27]

Chest X-
ray

25 COVID-19
(+) ResNet50 + SVM 95.38 Use of a dataset with a limited number of

samples25 COVID-19
(−)

Hemdan et al.
[36]

Chest X-
ray

25 COVID-19
(+) COVIDX-Net 90.00 Use of a dataset with a limited number of

samples25 COVID-19
(−)

Narin et al.
[33]

Chest X-
ray

50 COVID-19
(+) Deep CNN

98.00 Use of a dataset with a limited number of
samples50 COVID-19

(−) ResNet50

Ying et al. [60] Chest CT
777 COVID-19

(+) DRE-Net 86.00 Low accuracy
708 healthy

Wang et al.
[30] Chest CT

195 COVID-19
(+) M-Inception 82.90 Low accuracy258 COVID-19
(−)

Zheng et al.
[61] Chest CT

313 COVID-19
(+) UNet + 3D deep network 90.80 High computational complexity due to

training of deep neural network229 COVID-19
(−)

Xu et al. [35] Chest CT

219 COVID-19
(+)

ResNet + location attention 86.70

Low accuracy

224 viral
pneumonia High computational complexity due to

training of deep neural network175 healthy
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accuracy rate. Song et al. [60] employed 777 confirmed
COVID-19 patients and 708 normal cases CT images
to develop their deep model based on the pretrained
network model, ResNet50, which reached an 86.0%
accuracy rate.

Zheng et al. [61] gained 90.80% accuracy employing
CT images of 313 positive COVID-19 and 229 normal
cases to develop their model. Xu et al. [35] applied
ResNet on the dataset of 219 confirmed COVID-19 and
224 Pneumonia and 175 normal CT images, scoring
86.70% performance. Ozturk et al. [6] used 125 positive
COVID-19, 500 No-findings, and 500 Pneumonia X-ray
images to develop their model, resulting in 98.08% for
two-class and 87.02% multiclass accuracy rate. !e
dataset that Ozturk et al. [6] gathered from various
sources was used in this paper. For the two-class and
multiclass classification problems, 98.72% and 92.00%
accuracy rates were obtained, respectively, in this paper.
Table 4 shows that the proposed approach outperforms
most of the existing deep learning-based models in terms
of accuracy. However, it should be emphasized that the
findings in Table 4 were derived from different datasets
and different experimental setups. !is study’s limita-
tions and drawbacks include using a limited number
of COVID-19 X-ray images (i.e., 125 samples)
and sensitivity of the proposed method’s performance
to the number of features selected by ANOVA so that
the number of features should be selected by trial and
error.

5. Conclusion

Early diagnosis of COVID-19 is a crucial step to prevent
mortality and transmission of the virus. RT-PCR is the most
accessible tool to identify COVID-19, but finding other
alternatives for this problem is essential due to false-negative
outcomes and time limitations. Chest CT and X-ray images

are suitable substitutes for RT-PCR, but because of the lack
of CT hardware, X-ray images are a superior tool for di-
agnosing COVID-19. AI and machine learning-based
methods play a crucial role in the quicker detection of
COVID-19. In this study, a pretrained model, DenseNet169,
was utilized to extract features from X-ray images, and
ANOVA was employed to select features to decrease clas-
sification time and improve performance. Finally, se-
lected features were classified using XGBoost. !e
ChestX-ray8 dataset was used to evaluate the proposed
method. !e proposed method reached 98.72% accuracy
for the two-class problem and 92% accuracy for the
multiclass problem. !e proposed method’s precision,
recall, and specificity rates on the two-class problem were
99.21%, 93.33%, and 100%, respectively. Also, for the
multiclass problem, the proposed method achieved
94.07% precision, 88.46% recall, and 100% specificity.
!e experimental results show that the proposed method
outperforms other state-of-the-art methods, and radi-
ologists might use it to detect COVID-19 cases more
accurately.

Data Availability

Publicly available ChestX-ray8 dataset was used in this
study. !e source code of the proposed method required to
reproduce the predictions and results is available at https://
github.com/seyyedalialavi2000/COVID-19-detection.
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Table 4: Continued.

Study Type of
images Number of cases Method used Accuracy

(%) Drawbacks

Ozturk et al.
[6]

Chest X-
ray

125 COVID-19
(+)

DarkCovidNet

98.08 Use of a limited number of COVID-19
samples500 No-

Findings
125 COVID-19

(+)
87.02 High computational complexity due to

training of deep neural network500 No-
Findings

500 Pneumonia

Proposed
method

Chest X-
ray

125 COVID-19
(+)

DenseNet169+
ANOVA+XGBoost

98.72 Sensitivity to the number of features selected
by the ANOVA500 No-

Findings
125 COVID-19

(+)
92.00 Use of a limited number of COVID-19

samples500 No-
Findings

500 Pneumonia
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