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DNA copy number variation (CNV) is the type of DNA variation which is associated with various human diseases. CNV ranges in
size from 1 kilobase to several megabases on a chromosome. Most of the computational research for cancer classi�cation is
traditional machine learning based, which relies on handcrafted extraction and selection of features. To the best of our knowledge,
the deep learning-based research also uses the step of feature extraction and selection. To understand the di�erence between
multiple human cancers, we developed three end-to-end deep learning models, i.e., DNN (fully connected), CNN (convolution
neural network), and RNN (recurrent neural network), to classify six cancer types using the CNV data of 24,174 genes. �e
strength of an end-to-end deep learning model lies in representation learning (automatic feature extraction). �e purpose of
proposingmore than onemodel is to �nd which architecture among them performs better for CNV data. Our best model achieved
92% accuracy with an ROC of 0.99, and we compared the performances of our proposed models with state-of-the-art techniques.
Our models have outperformed the state-of-the-art techniques in terms of accuracy, precision, and ROC. In the future, we aim to
work on other types of cancers as well.

1. Introduction

�e change in the DNA refers to the term genetic variation
which makes us all unique. �ere are di�erent forms of
genetic variation, and most of them are well understood. It
can involve changes in the DNA nucleotide or chromosome
structure [1, 2]. Human genome is well-o� in structural
variation where copy number variation (CNV) is the most
communal type which is the change in the number of copies
in a speci�c area of the genome [3]. In the 1000 Genome
Project data, CNV is known as copy number polymorphism
(CNP) [4]. CNVs are DNA regions ranging in size from 1k
bases to several megabases [5]. CNV is normally due to
insertion, deletion, and/or duplication of the chemical bases
(nucleotides). Some CNVs appear �rst time in the parent’s

germ cell called de novo, while others are inherited [6].
Usually, the cell has two copies of each gene; CNV occurs
when a part of a gene is deleted or duplicated [7].

Copy number variations a�ect transcription in humans
[8] and have been related to di�erent diseases such as cancer,
autism, and schizophrenia [9–11]. All over the world, the
most common risk that impends human health is cancer [12].
Cancer is a class of disease which results in irregular growth
of cells and is one of the leading causes of human death. �e
mortality rate of humans due to cancer is about 14.6% each
year [13]. Phenotypic variation may also be due to CNVs
[6, 14]. �e data obtained from CNVs can also be used to
classify tumors intomalignant and benign [15, 16]. A number
of research articles agree that somatic CNVs are mostly
associated with the progression of various cancers [17–20].
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Machine learning practitioners have proposed a lot of
techniques to identify one or multiple types of cancer(s)
using various types of genomic data, each with different
weaknesses and strengths. During the health checkup, the
colonoscopy screening is broadly known for the evaluation
of colorectal cancer (CRC) risk, but due to its discomfort and
complexity, more reliable and comfortable methods were
necessary for the CRC screening. A comprehensive study is
presented by Ding et al. [21] about machine learning ap-
plications in CNV-based cancer prediction.

Dealing with high-dimensional and heterogeneous data
remains a key challenge in healthcare [22]. Traditional
methods of machine learning firstly need to perform feature
extraction and selection to obtain more useful features from
the data and then build prediction models on them. 'e
advancement in deep learning technologies provides effec-
tive approaches to obtain end-to-end learning models. Deep
learning is a fashionable toolbox and has become popular for
big data [23, 24] especially in the field of genomics due to its
performance in prediction problems. It is used for many
processes such as predicting DNA sequence conversation,
identifying enhancers and promoters, and detecting genetic
variation from DNA sequencing. 'e advancement and
fruitful applications of deep learning in different fields of
genomics reveal that it can be used for cancer classification
from CNV data [22, 25–27].

Different computational models for the cancer classifi-
cation based on copy number variation data are available.
'e most recently developed model achieves an accuracy up
to 85%. 'e copy number variation data are high dimen-
sional in nature and difficult to handle by the classical
machine learning techniques. In this study, we implemented
deep learning models that successfully used 24,174 genes of
CNV levels to classify six types of cancers: breast adeno-
carcinoma (BRCA), urothelial bladder carcinoma (BLCA),
colon and rectal carcinoma (COAD/READ), glioblastoma
multiforme (GBM), kidney renal clear cell carcinoma
(KIRC), and head and neck squamous cell (HNSC). 'e
highest obtained average training accuracy is 96%, while
testing accuracy is 92%. We have proposed three different
deep learning architectures, and all of these models have
outperformed state-of-the-art techniques in terms of ac-
curacy, ROC, and precision, while two of our networks have
outperformed the state-of-the-art models in terms of recall
(see Table 1). So, the contribution of this work is not only to
improve the performance (accuracy) of the cancer classifier
using an end-to-end model but also to find out which ar-
chitecture among DNN (deep fully connected neural net-
work), CNN, and RNN is suitable for CNV data. According
to our finding, DNN performs better than the rest of the two.

We have discussed the literature review in Section 2,
while Section 3 covers the explanation of the dataset and
architectures of our models. Section 4 deals with the training
process of our models along with obtained results and our
findings. Finally, we have concluded our work in Section 5.

2. Related Work

Xu et al. [28] have identified the chromosomal alterations in
plasma for early detection of CRC. 'ey analyzed the CNVs
in cfDNA (cell-free DNA) by using the regular z score, and
the SVM classifier was trained for identification of colon and
rectal cancers. 'e patients with early two stages (I and II)
were detected. Brody et al. [29] used blood samples of 8,821
different patients. For feature extraction, they have extracted
germline DNA copy number variation data by a single
laboratory with an SNP 6.0 array. 'e gradient boosting
algorithm is used to predict breast, ovarian, brain, and colon
cancers. Ricatto et al. [30] used a discretizer for feature
extraction and a fuzzy rule-based predictor for tumor
classification.

In women, breast cancer is the most common type of
cancer, which has further subtypes [31]. Pan et al. [32]
carried out feature extraction and selection using MCFS
(Monte Carlo feature selection). IFS (incremental feature
selection) is used to better represent the core CNVs in
different subtypes of breast cancer, and then, the dag-
stacking model is integrated to detect multiple types of
breast cancer. Islam et al. [33] focused on the prediction of
molecular subtypes of breast cancer. 'ey performed the
experiments to identify binary classes, i.e., estrogen receptor
(ER+ and ER−) andmultiple classes, i.e., PAM50 (luminal A,
luminal B, Her2 enriched, and basal-like). Afterwards, they
performed the chi-square test to select the topmost signif-
icant genes. For classification, DCNN (deep convolution
neural network) was used. Lu et al. [34] also focused on the
classification of breast cancer.'e authors have introduced a
module-based network integrated with genomic data to
identify important driver genes in BRCA subtypes. CNV
analysis was performed by Li et al. [35] on tumor devel-
opment.'e use case was breast cancer, where they collected
data from the TCGA-BRCA project. 'ey searched OMIM
(Online Mendelian Inheritance in Man) for most relevant
CNVs. 'ey have chosen six candidate genes: ErbB2, AKT2,
KRAS, PIK3CA, PTEN, and CCNDI. Furthermore, they
have constructed two types of distance-based oncogenetic
trees to find which of the above candidate genes play a
significant role in the development of breast cancer. 'eir
findings showed that ErB2 has early alteration, while AKT2,
KRAS, PIK3CA, PTEN, and CCNDI have late alterations in
human breast cancer. Alshibli et al. [36] have proposed deep
convolution-based neural networks for CNV data to classify
six types of cancer. 'ey have lent the famous computer
vision architectures, i.e., ResNet16 and VGG16. 'eir av-
erage accuracy is 86%. 'ey reported that their proposed
model has the lowest performance for UCEC (uterine corpus
endometrial carcinoma).

To understand the association of CNVs with various
types of human cancer, Zhang et al. [37] collected CNV data
of different cancer classes consisting of 24,174 genes as
features. 'e feature selection was carried out using minimal
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redundancy maximal relevance (mRmR) and incremental
feature selection (IFS), which resulted in the selection of 200
genes. 'e dagging model is used for the classification phase
of multiple types of cancer. Fekry et al. [38] also worked on
these CNV levels of 24,174 genes to classify a set of human
cancer types named as breast adenocarcinoma (BRCA),
urothelial carcinoma (BLCA), colon and rectal carcinoma
(COAD/READ), glioblastoma multiforme (GBM), kidney
renal clear cell carcinoma (KIRC), and head and neck
squamous cell (HNSC). 'ey selected 16,381 important
genes of CNV levels using the filter method (i.e., information
gain). For classification, they used seven different classifiers:
support vector machine, j48, neural network, random forest,
logistic regression, dagging, and bagging.'e authors in [39]
have contributed to cancer classification using the self-
normalizing neural network. 'ey have used Monte Carlo
feature selection and incremental feature selection (IFS).
'ey have worked on multiple cancer types and obtained
79% accuracy.

Most recently, researchers are using CNV data along with
other modalities such as clinical and/or gene expression data to
improve the performance metrics of their models. A contri-
bution is made by researchers in [40] using multimodality data
to classify subtypes of breast cancer with the help of the SVM
(support vector machine) and RF (random forest). A deep
learningmodel usingmulti-modality data is used to predict the
subtype of breast cancer in [41, 42]. Another deep learning
model along with multimodalities of data is used in [43] to
predict Alzheimer’s disease. 'e researchers in [44] have
trained their deep learningmodel onmultimodalities to predict
therapeutic targets in breast cancer. A comprehensive com-
parison of multimodalities is presented in [45].

3. Materials and Methods

3.1. Dataset. For experimentation, we have selected the same
dataset used by [38] in order to be compatible in result
comparison.'e said dataset is composed of six cancer types
containing DNA CNVs of 24,174 genes (features/dimen-
sions) for 2916 samples; therefore, the shape of the dataset is
X2916×24174 if X is the input dataset. 'is dataset was taken
from the cBioPortal for Cancer Genomics database http://
cbio.mskcc.org/cancergenomics/pancan_tcga/.'e database
contains 11 different types of cancer, and each cancer type has
its own samples. 'e CNV levels were regularized into five
distinct values in the database with −2 for homozygous de-
letion, −1 for heterozygous deletion, 0 for diploid, 1 for low-
level gain, and 2 for high-level gain. In this research, we used
six different types of cancer, which are listed in Table 2, with
names and the number of samples in each class (cancer type).

3.2. Our Proposed Models

3.2.1. DNN (Deep Fully Connected Neural Network). An
artificial neural network (ANN) is a powerful computational
tool that mimics the human brain working behavior [46]. A
neural network (NN) consists of a set of neurons arranged in
layers such as the input, hidden, and output layer. A single
neuron takes an input vector, calculates the weighted sum,
and applies the activation function to decide whether it
should fire or not. In the fully connected neural network,
every neuron of the previous layer is connected to all
neurons of the next layer.

For a network of L number of layers, the lth layer is
specified by the associated weight matrix W[l] ∈ Rn[l−1]×n[l]

,
where n[l− 1] and n[l] represent the number of neurons in
previous and current layers, respectively. 'e weighted
summation of the lth layer is given by

Z
[l]

� W
T
A

[l− 1]
+ b

[l]
, (1)

where b ∈ Rn[l]×1 is the bias vector and A[l− 1] ∈ R[l− 1]×1 is
the activation map of the previous layer.

To speed up the network convergence [47], we have used
the batch normalization that scales the Z[l] in a specified range.
Algorithm 1 explains the batch normalization in detail.

In Algorithm 1, the parameters c and β maintain the
expressive power of the network, while ϵ is a small positive
constant added for computational stability [48]. During the
forward pass, an activation map A[l] is estimated for each
layer, l � 1, 2, . . . L, to know which neuron should be fired:

A
[l]

� g Z
[l]

 , (2)

where g is the activation function. Here, we have used the
rectified linear unit (ReLU) as an activation function for all
hidden layers:

Table 1: 'e average performances of different models along with the state of the art.

S. no Models Train Acc Val Acc (%) ROC area Precision Recall
1 DNN3 95% 91 0.99 0.88 0.87
2 DNN5 96% 92 0.99 0.89 0.88
3 LSTM 95% 91 0.98 0.89 0.85
4 1D-CNN 88% 90 0.98 0.88 0.85
5 Sana Fekry et al. [38] — 85.9 0.965 0.852 0.862

Table 2: 'e distribution of samples with respect to each cancer
type in our dataset.

Sr. Cancer type No of
samples

0 BRCA (breast carcinoma) 847
1 BLCA (bladder urothelial) 135

2 COAD/READ (colon and rectal
adenocarcinoma) 575

3 GBM (glioblastoma multiforme) 563
4 KIRC (kidney renal cell carcinoma) 306
5 HNSC (head and neck squamous cell) 490
Total 2916
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A
[l]

� ReLU Z
[l]

  � max 0, Z
[l]

 . (3)

'e ReLU expedites the training and avoids the van-
ishing gradient [49]. 'e last layer in the network is called
the output layer (classification layer), which gives the
probability of occurrence of different classes. Let there are K

classes, and then, the probability of the dominant class is
given by the softmax function:

y � argmax
k

e
z

[L]
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⎪⎩

⎫⎪⎬

⎪⎭
, (4)

where z
[L]
k is the weighted sum of the kth unit of output layer

L. In our case, the data contain six classes; thus, we set K � 6.
In the deep fully connected neural network (DNN)

category, we have implemented the networks from shallow
to deep by increasing hidden layers one by one. Further-
more, the number of neurons is reduced with a factor of ∼ 2
from beginning to end, to achieve dimensionality reduction.
We started with a network of three hidden layers as shown in
Figure 1 and continued up to seven layers. Aforementioned,
we have used ReLU as an activation function in hidden
layers with batch normalization and softmax at the output
layer. To overcome the issue of overfitting, we have used
dropout layers as well. For more details about the dropout
layer, read the work of Srivastava et al. [50]. Note that, each
input vector X contain 24,174 features, while the activation
map, A[L− 1], of the last hidden layer contains 150 features,
which shows dimensionality reduction. For training, the
Adam optimization algorithm along with categorical
crossentropy as a loss function is used.

3.2.2. 1D Convolutional Neural Network. We have also used
the 1D1 D convolutional neural network (1D − CNN) for
cancer classification. Normally, the CNN contains two parts:
(1) convolutional layers that are responsible for feature
extraction [51, 52] and(2) the fully connected layer that is
responsible for classification. Our proposed 1D − CNN
contains two convolutional layers followed by one fully
connected layer. Every convolution layer is followed by a
stack of max pooling, batch normalization, and dropout
layers. Figure 2 presents the detailed architecture of the
proposed model.

Note that, the first convolutional layer contains 20 filters,
each of size 5, and the ReLU as an activation function.
Similarly, the second convolutional layer consists of a stack

of 10 filters, each of size 5, and the ReLU as an activation
function. For the activation function in the output layer, we
have used softmax (See equation (4)).

3.2.3. LSTM (Long Short-TermMemory). LSTM is one of the
popular flavors of the RNN (recurrent neural network) with
three special gates, i.e., the input/update, forget, and output
gate, as shown in Figure 3.'e key gate is the forget gate that
is used to keep long-term dependency intake. It is the long-
term dependency preservation that makes LSTM suitable for
sequential data analysis [53].

In our proposed model, we have used 24 LSTM units,
ReLU as an activation function followed by a batch nor-
malization layer and then the output layer.

4. Results and Discussion

'e dataset was split into training and testing with 80% and
20%, respectively, to examine the performance of our pro-
posed models. 'e methodology that we have adopted is
shown in Figure 4. 'e testing and validation dataset are the
same; that is why, validation and testing metrics are the same.
'e representation learning implicitly exists in the model (s).
'e worth of representation learning using deep learning has
been proved in the literature. Asmentioned in Section 3.2, we
have implemented three different neural network architec-
tures, to explore their strengths and weaknesses. We have
started from the shallow neural network to the deep NN
(deep fully connected NN), to LSTM to the 1D-CNN.

We have trained ourmodels up to 200 epochs and plotted
the results to check the training status, that is, to find whether
the model is underfitted, overfitted, or properly trained.

'e obtained training vs. validation accuracies of each
model are shown in Figure 5. Given the results in Figure 5
our shallow NN (DNN3) and 1D-CNN require more epochs
for training, while the remaining deep architectures require
less epochs to reach the point where the model starts
overfitting. 'e sign of overfitting is that when the training
accuracy improves, while the validation accuracy starts to
decline or remains the same.'e possible reason behind this
behavior is that the deep architecture normally extracts
complex but well representative features.

A classwise ROC is shown in Figure 6. 'e highest ROC,
i.e., 1.0 is achieved by all networks for the COAD/READ
class, while the average maximum ROC is 0.99 achieved by
NN3 (deep fully connected neural network with 3 layers) and
DNN5 (NN with 5 layers) as shown in Table 1.

Input: Z[l], β, c

μ[l]
Z � 1/m 

m
i�1 z

[l]
i //computing mean of Z[l]σ[l]

Z �

����������������������

ε + (1/m) 
m
i�1 (z

[l]
i − μ[l])2



//computing standard deviation of Z[l]

Z
[l]

� Z[l] − μ[l]
Z /σ[l]

Z

Z
[l]

� cZ
[l]

+ β //scaling and shifting Z
[l]

Return (Z
[l]

)

ALGORITHM 1: Batch normalization.
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In order to test the performance of our networks for each
class (cancer type), we have presented the computed results
in Table 3. According to the obtained results, the GBM class
is the most complex (difficult) one for our networks, while
COAD is the easiest one. 'e same results can be verified
from the confusion matrices given in Tables 4–5.

'e average performance measures (in terms of accu-
racy, precision, recall, and ROC) of all networks are shown
in the first four rows of Table 1. 'e obtained results show

that our DNN architecture has outperformed the rest of our
models.

We have compared our computed results with the state-
of-the-art models. As mentioned in Table 1, our all networks
have outperformed all of our competitors in most of the
performance metrics. We have reported only the best results
of Sana et al. [38]. 'eir maximum accuracy is 85% with an
ROC area of 0.96, whereas our proposed models achieved
the accuracy over 92% with an ROC of 0.99.

Input Layer hidden layer 1 hidden layer 2 hidden layer 3 output layer

a1

a2

a1

a2

a1

a2

a1

a2

a6a150a300a500x24174

Single layer calculation

Z[l] = WT A[l-1] + b

Batch normalization takes place
here on “Z”

A[l] = g(Z[l])

a[l-1] a[l]
z[l] BN a[l]

x1

x2

Figure 1: 'e architecture of the fully connected model with three hidden layers.
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Figure 2: 1D convolution-based architecture.
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Since Zhang et al. [37] have worked similarly, but their
research deals with some different types of cancers, e.g.,
UCEC (uterine corpus endometrial carcinoma); therefore,
the comparison is not compatible, but they have achieved
75.1% accuracy.

In the light of the analysis made on the obtained
results, we conclude that due to the small size of the
current dataset, very deep neural networks are not
beneficial to use as most of our models are converged with
the small number of hidden layers. Moreover, the fully
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Training CNV
Data

Back propagation during
traininging

Unseen CNV
Data

Convolution layer 2 Flatten layer
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Figure 4: Our methodology.
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Figure 3: LSTM architecture.
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connected neural network performed better than other
flavors such as CNN and RNN for copy number variation
(CNV) data (see Table 1). We also found that adding
additional layers to a fully connected neural network

(DNN) has a small impact on results. Our obtained re-
sults also verify that end-to-end deep learning models are
better in representation learning than handcrafted fea-
ture extraction (see Table 1)
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Figure 5: Classification of accuracy of different models: (a) DNN3, (b) DNN5, (c) LSTM, and (d) 1D-CNN.
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Table 3: 'e classwise performances of all networks.

Models GBM (3) KIRC(4) HNSC(5) COAD/READ(2) BLCA(1) BRCA(0)
NN
TP rate 0.68 0.96 0.82 0.98 0.83 0.93
ROC area 0.97 0.99 0.97 1.00 0.98 0.99
Precision 0.77 0.90 0.92 0.93 0.81 0.97
F-measure 0.72 0.93 0.87 0.96 0.82 0.95
Recall 0.68 0.96 0.82 0.98 0.83 0.93
FP rate 0.00 0.01 0.04 0.01 0.02 0.00
DNN
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Figure 6: ROC of different models on various cancer types: (a) DNN5, (b) LSTM, and (c) 1D-CNN.
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5. Conclusion and Future Directions

Copy number variations are related to different human
diseases, such as cancer, autism, and schizophrenia. In
this paper, we classified six different types of cancers by
using copy number variation data. We have proposed
three different neural network architectures to make the
classification process end-to-end. Moreover, we have
effectively used the data-hungry nature of the deep neural
network and we have not used the feature engineering
(handcrafted feature extraction) step as used by most of
the researchers to save computational time. Our achieved
testing accuracies are 91%, 92%, 90%, and 91% by using
CNV levels of 24,174 genes. Our work testifies that the
CNVs of these genes play a crucial role in classifying
human cancers. In the future, we aim to work on the other
types of cancer as well.
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Table 3: Continued.

Models GBM (3) KIRC(4) HNSC(5) COAD/READ(2) BLCA(1) BRCA(0)
TP rate 0.72 0.96 0.85 0.98 0.85 0.94
ROC area 0.97 0.98 0.99 1.00 0.98 0.99
Precision 0.75 0.93 0.94 0.94 0.85 0.93
F-measure 0.73 0.94 0.89 0.96 0.85 0.94
Recall 0.72 0.96 0.85 0.98 0.85 0.94
FP rate 0.01 0.02 0.01 0.01 0.01 0.01
LSTM
TP rate 0.52 0.95 0.85 0.98 0.88 0.92
ROC area 0.96 0.99 0.98 1.00 0.97 1.00
Precision 0.87 0.91 0.93 0.92 0.79 0.95
F-measure 0.65 0.93 0.88 0.95 0.83 0.94
Recall 0.68 0.94 0.84 0.96 0.79 0.91
FP rate 0.52 0.95 0.85 0.98 0.88 0.92
1D-CNN
TP rate 0.64 0.93 0.92 0.96 0.77 0.91
ROC area 0.97 0.99 0.97 1.00 0.97 0.99
Precision 0.84 0.93 0.81 0.93 0.86 0.94
F-measure 0.73 0.93 0.86 0.94 0.82 0.92
Recall 0.64 0.93 0.92 0.96 0.77 0.91
FP rate 0.00 0.02 0.04 0.01 0.01 0.01

Table 4: Confusion matrix for training data.

BRCA(0) BLCA(1) COAD/READ(2) GBM (3) KIRC(4) HNSC(5)
BRCA(0) 109 0 1 0 0 0
BLCA(1) 0 673 6 0 0 0
COAD/READ(2) 0 1 470 0 0 0
GBM (3) 0 0 2 446 0 0
KIRC(4) 0 0 7 0 233 0
HNSC(5) 0 0 3 0 0 381

Table 5: 'e confusion matrix for testing data.

BRCA(0) BLCA(1) COAD/READ(2) GBM (3) KIRC(4) HNSC(5)
BRCA(0) 15 1 2 2 3 2
BLCA(1) 0 158 3 3 2 2
COAD/READ(2) 0 3 94 1 4 2
GBM (3) 0 0 1 113 1 0
KIRC(4) 1 5 1 0 55 4
HNSC(5) 1 0 3 1 1 100
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