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�e prediction model with the sinter drum strength as the evaluation index was established based on the index data and historical
sintering data generated during the sintering process. �e regression prediction model in the algorithm of machine learning was
applied to the prediction of the strength of the sinter drum. After verifying the feasibility of drum strength prediction, di�erent
data preprocessingmethods were used to preprocess the data. Ten regression prediction algorithms such as linear regression, ridge
regression, regression tree, support vector regression, and nearest neighbor regression were used for predicting the sinter drum
strength to obtain preliminary prediction results. By comparing the prediction results, the most suitable combinations of data
preprocessing algorithms and prediction algorithms for sinter drum strength prediction is obtained. �e prediction results show
that, for the drum strength of the sinter, using the function data standardization algorithm for data preprocessing has the best
e�ect.�en, using gradient boosting regression, random forest regression, and extra tree regression prediction algorithms resulted
in higher prediction accuracy. On this basis, the regression prediction model algorithm parameters are optimized and improved.
�e parameters of the regression prediction algorithm that are most suitable for the prediction of sinter drum strength
are obtained.

1. Introduction

A series of complex physical and chemical changes will occur
during the blast furnace smelting process. During this
process, the composition and quality of the sinter will di-
rectly a�ect the quality, output, and energy consumption of
the �nal smelted product [1]. High-quality sinter is the
guarantee for the smooth progress of blast furnace smelting
and provides material guarantee for all links in the iron-
making process. �e stability of the sinter quality index and
the timely adjustment of the process during the sintering
process play an important role in reducing smelting costs

and promoting energy saving and emission reduction. Sinter
is the main raw material for blast furnace ironmaking, and
its quality determines the economic bene�ts of the sinter
plant to a large extent and directly a�ects the production
process of blast furnace smelting [2]. �e quality indicators
of sinter include two aspects: chemical composition and
physical and mechanical properties. �e chemical compo-
sition includes drum strength and reducibility, and the
physical and mechanical properties include wear resistance
index and soft melting property [3]. �e sintering process is
a dynamic system with long process �ow, many in�uencing
factors and complex mechanism [4]. In the actual sintering
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work, the traditional sinter drum strength testing is usually
to sample and test the finished ore at regular intervals and
adjust the sintering process parameters according to the test
results. ,is method cannot perform real-time detection,
resulting in untimely feedback of results and inaccurate and
untimely adjustment of process parameters in the sintering
process. Traditional roasting, parameter setting, propor-
tioning, and other schemes often use linear regulation mode,
which often leads to problems such as poor compressive
strength [5]. ,erefore, the traditional method has more
room for improvement, and it is very necessary to predict
the quality of sinter in real time.

,rough the in-depth study of the formation process of
sinter, this paper explores the influencing factors of sinter
drum strength and the feasibility of prediction. ,en the
prediction model of sinter drum strength is established.
Different algorithms are used to predict and learn the sinter
drum strength. After comparison, the most suitable pre-
diction model for sinter drum strength data is obtained, and
finally, the model is optimized. ,e second section of the
article makes an in-depth study on the influencing factors of
sinter drum strength. Starting from the interpretation of
sinter drum strength, it studies the influence of the liquid
generated in the formation of sinter on the drum strength.
,e material change law affects the formation of liquid
phase, as well as the formation of calcium ferrite in the
sintering process and its influence on sinter drum strength.
It is concluded that the sinter drum strength is predictable.
In the third section, the prediction model of sinter drum
strength is established, and a variety of data preprocessing
algorithms and prediction algorithms used in the model are
briefly analyzed. In the fourth section, the data pre-
processing algorithm and prediction algorithm, which are
most suitable for the sinter drum strength prediction model,
are obtained by training the prediction models with different
algorithm combinations. ,e fifth section optimizes the
prediction model by adjusting the model parameters on the
basis of the best prediction model in the fourth section. ,e
sixth section summarizes and prospects the prediction and
algorithm comparison of sinter drum strength.

2. Prediction Mechanism of Sinter
Drum Strength

In order to realize the prediction of sinter quality, such as
drum strength, many scholars have studied the metallurgical
properties of sintered ore through experiments and other
metallurgical technical means. Liheng Zhang et al. [6] mixed
ordinary magnetite and high-chromium vanadium-titanium
magnetite (HCVTM) and studied the influence of TiO2
content on the properties of HCVTM sinter by sintering cup
test. Liang Du [7] found out the quantitative relationship
between mineralogicial characteristics and metallurgical
properties of sinters by analyzing the influence of import ore
on its mineralogicial structure. Xiuli Han et al. [8] quan-
titatively studied the microstructure of two kinds of high
basicity sinters made of magnetite through a polarization
microscope and combined with metallurgical performance
testing, discussed the influence of the sinter microstructure

on its metallurgical properties. Na Yao [9] used mineral
phase microscope, XRD, SEM, EDS, and other testing
methods to analyze samples and studied the equilibrium
phase composition of sinters with different aluminum
content and their influence on the metallurgical properties
of sinters. Zhengming Yi et al. [10] found in the response
surface method optimization study of sinter drum strength
that alkalinity and fuel ratio can significantly improve the
porosity of sinter, and reducing the porosity of sinter can
improve the drum strength of sinter. At the same time, the
content of coke and its sintering behavior have a great in-
fluence on the final drum strength. Bin Zhang’s [11] research
found that with the increase of coke content, the chromium
content will decrease and the sinter strength will increase,
and in order to obtain higher drum strength and yield, the
coke content should be kept within a certain range. ,e
quality prediction of sinter requires a variety of computer-
based model algorithms, such as regression prediction
models in machine learning. Research on these algorithms is
the basis for sinter quality prediction.

In recent years, some scholars have also applied intel-
ligent algorithms to basic research on the influence of
sintering ore-forming behavior. K Kinnunen et al. [12] used
neural networks to analyze data from sintering plant and
studied important sintering quality indicators such as op-
timization of productivity and reduction degradation index
(RDI). Wang Ai-min [13] combines the gray theory to
weaken the volatility of data series and the advantages of
neural network processing nonlinear adaptive information.
Using the gray neural network model, the alkalinity of sinter
can be accurately predicted using only a small sample. W
Chen et al. [14] established a prediction system for sintering
chemical composition FeO and sintering yield based on
back-propagation (BP) neural network and obtained a high
accuracy rate. ,rough data visualization, Yang et al. [15]
studied the relationship between the various components
and the compressive strength of the pellet microstructure
and provided new research ideas for improving the com-
pressive strength and metallurgical properties of the pellets.
However, it is necessary to analyze the sintering process and
the calculation of drum strength in detail, and for drum
strength prediction data set to use different data pre-
processing algorithms and prediction algorithms for algo-
rithms matching.

To realize the prediction of sinter drum strength, it is
necessary to find the relevant factors that have a great impact
on sinter drum strength and select the key data for model
prediction. ,erefore, it is very necessary to study the for-
mation process of sinter and its influencing factors. ,e ore-
forming mechanism of sintering includes three processes:
solid-phase reaction, liquid-phase formation, and conden-
sation crystallization. ,ese three processes play an im-
portant role in the mineral structure and composition of the
final finished ore. Among them, the liquid-phase formation
amount of sinter, the liquid phase adhesion index, and the
formation amount of needle columnar calcium ferrite are
directly related to the final product quality of sinter. ,e
experimental results of JianfangWang [16] show that a small
amount of Al2O3 in sinter is conducive to the formation of
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acicular calcium ferrite and when the ratio of Al2O3/SiO2 is
in the appropriate range (0.35–0.40), the quality of sinter will
be effectively improved. ,e four-factor three-level or-
thogonal experiment designed by Zimin Liu [17] gave the
order of the factors affecting the bonding strength: R2>w
(SiO2)>w (Al2O3)>w (MgO). ,e research results of Jian
Kang [18] show that the drum strength of sinter decreases
with the increase of the fluidity index of the liquid phase and
has a greater impact on the drum strength, while under the
same experimental conditions, yield and sintering speed are
positively related to drum strength. ,e cohesiveness index
of the liquid phase and the behavior during sintering will
directly affect the final sinter quality, and in the early stage of
sintering, the formation of the liquid phase is affected by
other factors: Nan Yang and Xingmin Guo [19] showed that
the increase of MgO in the sintering raw material will lead to
a decrease in the amount of liquid phase formation in the
initial process of sintering heating, that is, the formation of
liquid phase is inhibited, resulting in a decrease in the
amount of liquid phase.,e relevant results are shown in the
experiments of Zhengjie Wang and Min Gan [20]. As a
result, calcium ferrite changes from plate shape to phase
needle column shape, which will effectively improve the
sinter drum strength and other indicators. ,erefore, based
on the factors affecting the drum strength of sintered ore
summarized and analyzed earlier, we start from the elements
and find the relevant compounds of the corresponding el-
ements in the sintering process. ,e influence of calcium
acid content, the relationship between the influencing fac-
tors of the drum strength was drawn.,e schematic diagram
is shown in Figure 1.

2.1. Definition of Drum Strength

T �
m1

m0
× 100%. (1)

In formula (1), m0 is the weight of the drum sample, in
kg, and m1 is the weight of +6.3mm particle size fraction
behind the drum, in kg. ,e error requirement is weight of
drum sample m0 and total screening weight after drum
(m1 + m2 + m3). ,is error cannot be greater than 1.0%,
namely:

m0 − m1 + m2 + m3( 

m0
× 100%≥ 1.0%. (2)

When the calculated difference is greater than 1.0%, the
drum sample shall be redone, and the allowable difference
of drum index is T � |T1 − T2|≤ 1.4%. If the allowable
difference of drum index exceeds the allowable error value,
parallel samples shall be made. If the T of supplementary
samples meets the aforementioned provisions, a report
shall be issued based on the average value of parallel
samples.

2.2. Liquid Phase Action Mechanism and Adhesion Index.
,e product obtained by the gradual cooling of the liquid
phase in the sintering process is the mineral composition of

the sinter and the basis of the consolidation of the sinter.
,erefore, the chemical composition, properties, and
quantity of the generated liquid phase directly affect the final
reducibility and strength of the sinter. ,e strength of sinter
mainly depends on the mineral composition and micro-
structure. When the liquid phase begins to solidify, the
microstructure of sinter begins to form. Owing to the wide
temperature range formed by the crystallization process of
liquid phase and the recrystallization of solid state, the final
mineral composition of sinter is formed in this temperature
range [21]. ,e liquid phase will gradually flow and fill the
solid gap of sinter. When the contact area between the liquid
phase and the ore core is small, its binding force will be
reduced, and there is a large gap between the ore cores,
resulting in the reduction of sinter strength [22].

,e role of liquid phase in sintering process can be
summarized as follows:

(1) ,e unmelted solid ore particles in the sintering
process are bonded to each other into blocks and
wet their surface. After cooling, the ore particles
will be tensioned under the action of surface ten-
sion, reducing the gap between solid particles.
,erefore, the sinter will have a certain strength
after cooling.

(2) Owing to the fluidity of liquid phase, viscous and
plastic flow heat transfer will be carried out to make
the temperature and composition of high-tempera-
ture melting zone uniform. After liquid phase re-
action, the chemical composition of sinter will be
more uniform.

(3) In the sintering process, the liquid phase will pre-
cipitate new minerals that are not in the sintering
raw materials, which is conducive to improving the
strength and reducibility of sinter.

,e fluidity of liquid phase can be expressed by viscosity.
Its viscosity is the internal friction force when the unit
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Figure 1: Schematic diagram of drum strength prediction.
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velocity difference occurs between two adjacent liquid layers
at a unit distance per unit area η. ,e unit is Pa∙s, the
viscosity depends on the activation energy of moving par-
ticles, and the liquid phase adhesion decreases with the
increase of temperature [23]. For homogeneous slag, the
effect of temperature on viscosity is as follows:

η � B0e
Eη/RT

. (3)

In formula (3), B0 and R are constants; T is the tem-
perature, in K; Eη is called viscous flow activation energy,
which is the activation energy required for a particle to move
from one equilibrium position to another. It is related to the
structure of composite anion groups in slag.

In addition, the strength of sinter is also related to the
internal stress of crystalline minerals formed during sin-
tering and cooling. ,ere are three factors for the generation
of internal stress in the condensation process of liquid phase
in sintering production [24]:

(1) ,ermal stress due to the temperature difference
between the surface and center of sintered lump ore.

(2) ,e stress between minerals caused by different
thermal expansion or contraction coefficients of
minerals.

(3) ,e volume expansion caused by polycrystalline
transformation of the same mineral produces cor-
responding stress.

2.3. Inhibition Mechanism of MgO on Initial Liquid Phase
Formation. MgO is one of the components of sinter feed
material, but many studies show that the increase of MgO
content will reduce the strength of sinter. First, most CaO
react to form CaO–Fe2O3 during sintering, which is bene-
ficial to the sintering reaction. However, due to the low
diffusion rate of MgO, most MgO cannot react with Fe2O3
and still maintain the mineral state, which is not conducive
to the improvement of drum strength [25].

Second, MgO can inhibit the formation of liquid phase.
,ere are two kinds of inhibition: one is that MgO reacts
with Fe2O3 to produce magnesium containing magnetite,
and the other is that the addition of MgO leads to the
decomposition of CaFe2O4. Both of them increase the CaO
content and promote the formation of high melting point
mineral Ca2Fe2O5 and magnesium-containing magnetite.
,e decrease of CaFe2O4 content leads to the decrease of
liquid phase content in the initial stage, which is not con-
ducive to the sintering reaction [19].

Meanwhile, in the process of solid-state reaction, MgO
will promote the decomposition of formed CaFe2O4 into
Ca2Fe2O5 and magnesium-containing magnetite. With the
increase of temperature, Fe3+ in CaFe2O4 and Mg2+ in MgO
diffuse each other at the contact interface between MgO and
CaFe2O4 to form magnesium-containing magnetite. With
the continuous diffusion of Fe3+ in CaFe2O4 to magnesium-
containing magnetite, the iron content in the adjacent area
of the interface between CaFe2O4 phase and magnesium
bearing magnetite phase decreases and the calcium content
increases relatively.

2.4. Effect of Al2O3 on Sintering Process and Calcium Ferrite
Formation. In the experimental study of Long fang, when
the Al2O3 content is small, the mineral composition of sinter
is relatively complex. Increasing the Al2O3 content can
promote the formation of calcium ferrite and inhibit the
increase of calcium orthosilicate in sinter, so as to improve
the drum index of sinter, continue to increase the Al2O3
content, increase the glass quality and liquid viscosity in
sinter, and inhibit the compactness of the sinter, fine
bonding bonds andmany pore structures are formed, so that
the sinter is subjected to a variety of stresses during cooling,
resulting in cracks, resulting in the fragmentation of the
sinter, resulting in the deterioration of the sinter drum index
[26].

When the Al2O3 content in sinter increases, the contents
of Al, Ca, and Si in calcium ferrite increase significantly. ,e
Al in calcium ferrite increases with the increase of Al2O3
content in sinter. At the same time, the increase of Al2O3
content also contributes to the enrichment of Ca and Si in
calcium ferrite. However, it should be pointed out that the
enrichment state of Al will vary according to the type of ore,
which will have varying degrees of impact on the formation
and drum strength of needle columnar calcium ferrite. For
all minerals containing Al2O3, the matrix strength of sinter
will be reduced with the increase of Al2O3 content [27].

2.5. Effect of SiO2 on Sintering Process and Formation of
Calcium Ferrite. In the experimental study under the
condition of fixed CaO content and temperature, Shijuan
Zhang et al. [28] carried out micro-sintering to study the
effect of SiO2 content on agglomerate phase. ,e results
show that under the condition of certain CaO content and
high binary alkalinity is high enough, SiO2 has no significant
effect on the formation of calcium ferrite, but plays a decisive
role in the morphology of calcium ferrite. When the SiO2
content is very low, only massive calcium ferrite can be
formed.When the SiO2 content reaches 3% to 8%, the needle
columnar calcium ferrite interleaving structure can be ob-
tained [23]. Although the formation amount of low-grade
sintered cake containing 8% SiO2 is very high, its porosity
and content are significantly reduced, while the silicate slag
phase increases, and the reducibility becomes poor [29]. In
general, the increase of sintering SiO2 content is beneficial to
the occurrence of Si and Ca in calcium ferrite, which can
improve the drum strength of sinter.

2.6. Conservation Equation in Drum Strength Prediction.
When predicting the drum strength of sinter, the invariants
in the sintering process can be found according to the
sintering mineralization mechanism and the physical and
chemical reactions in the sintering process, and then the
conservation equation can be established and predicted.
Phase change will occur in the sintering process, which is
essentially a comprehensive reaction of gas phase and solid
phase. ,e whole phase change reaction should meet the
mass conservation equation of both. ,e mass conservation
equation of gas phase and solid phase are shown in (4) and
(5) respectively:
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z ερg 

zτ
+ ∇ ρgv  � 

7

i�1
Ri, (4)

zρb

zτ
� − 

5

i�1
Ri. (5)

In the aforementioned formulas, i from 1 to 7 represents
the physicochemical changes of water transfer, coke com-
bustion, limestone decomposition, magnetite oxidation,
hematite reduction, carbon monoxide oxidation, and the
reaction between carbon monoxide and water vapor, re-
spectively. Variables 2 to 5 are gas-solid reactions, resulting
in simultaneous changes in the quality of gas and solid. Since
the reactions between different gas components will not
affect the quality of solid phase, therefore, reactions 6 and 7
only affect the gas phase quality [11]. ,e gas phase I in the
mass conservation equation shall also meet the conservation
of matter phase, that is:

z ερgYi 

zτ
+ ∇ ρgv Yi  � 

7

i�1
Ri. (6)

In addition, due to the complexity of physicochemical
changes, phase changes, and energy conversion involved in
the sintering process, other conservation conditions should
be met. Such as energy conservation conditions in the heat
transfer process of porous media, Navier–Stokes equation of
incompressible flow field, heat transfer equation between gas
and solid phases, and some empirical physical parameter
formulas. For the numerical model of drum strength in iron
ore sintering process, Bin Zhang et al. [11] have carried out
relevant mathematical modeling research.

3. Basic Theory of Sinter Blending
Model Algorithms

With the development of artificial intelligence technology,
more and more researchers apply artificial intelligence al-
gorithms to practical problems. ,ere are many different
domains where advanced artificial intelligence algorithms
have been applied as solution approaches, such as online
learning, scheduling, multobjective optimization, trans-
portation, image processing, and others. Haitong Zhao et al.
[30] on the basis of a decomposition-based many-objective
optimization framework, a learning automaton (LA) is in-
cluded in the algorithm, a learning-based algorithm with
strong generalization ability is proposed. Junayed Pasha et al.
[31] proposed a decomposition-based heuristic algorithm to
solve the integrated optimization problem for tactical-level
planning in liner shipping, and efficiently tackle large-size
problem instances. Zhao Tang et al. [32] studied the machine
learning and deep learning algorithms commonly used in
the simulation of railway vehicle dynamics and looked
forward to the future development direction and key re-
search contents of artificial intelligence algorithms and
vehicle system dynamics. Yuannian Qin et al. [33] con-
ducted in-depth research on the theory of ant colony al-
gorithm and its important parameters and studied its

application in the fields of job shop scheduling, vehicle
routing, image processing, and power system optimization.
Maxim A. Dulebenets et al. [34], in order to solve the de-
veloped mathematical model and analyze the trade-offs
among the conflicting objectives, proposed four multi-
objective heuristic algorithms. ,e developed multiobjective
methodology is expected to improve the safety of evacuees at
the natural disaster preparedness stage and ensure timely
evacuation from areas expecting significant natural disaster
impacts. In many different domains, advanced artificial
intelligence algorithms have been used as solutions and
achieved good application results. ,e advanced artificial
intelligence algorithm also provides a good solution to the
engineering prediction problem.

3.1. Prediction Algorithms. ,e so-called prediction is ac-
tually to estimate the value of the object requiring solution in
a certain state by using historical data. ,ere are many
prediction algorithms. ,e classical machine learning pre-
diction methods include linear regression prediction,
nearest neighbor regression, and neural network regression
prediction. Classical prediction algorithms show good
performance in small sample data prediction. Salminen et al.
[35] used classical machine learning algorithms such as
logistic regression, naive Bayes, support vector machines,
and xgboost to train the model of online hate detection. ,e
accuracy of the model trained by xgboost algorithm is 92%.
Arpitmallick et al. [36] predicted the productivity of sin-
teringmachine by establishing linear regression and artificial
neural network (ANN) models. It is concluded that the
prediction of ANN model is better than that of linear re-
gression model. In order to monitor transient Islamic attack
in the interior environment and improve risk management
of stroke, two machine learning algorithms support vector
machine (SVM) and random forest (RF) are used to establish
prediction models respectively [37]. ,e accuracy rate has
reached more than 97%. ,e prediction of sinter drum
strength is also a small sample and nonlinear prediction
problem. Based on the research on the drum strength of
sinter in the second part of this paper, it is feasible to predict
the drum strength of sinter by using the chemical compo-
sition of the sinter mixture.

In actual sintering production, two types of data, real-
time sintering data and historical records, need to be col-
lected to predict the drum strength of sintered ore. Among
them, the historical data are mainly used for the training and
learning of the prediction model. ,e real-time sinter data
are the data measured by the online detector. ,e online
detection indicators are mainly data related to the chemical
composition indicators of the raw materials, such as TFe,
FeO, CaO, SiO2, Al2O3, andMgO, the chemical composition
of the mixture is used as a prediction model. ,e input data
are input into the trained sinter drum strength prediction
model, the drum strength of sinter can be predicted, and
then the sinter production can be guided. In this study, the
chemical composition of the sintering mixture was used to
predict the drum strength of the sintered ore, and the ex-
perimental data of the sintering cup was selected to train the
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prediction model. A total of 243 available data were col-
lected. Examples of experimental data are shown in Table 1.

,e raw data can eliminate the influence of dimensions
on model training through data preprocessing. ,en use
different regression prediction algorithms to train the pre-
diction model to predict the sinter drum strength, and
different accuracy can be obtained. ,e training idea of the
sinter drum strength model is shown in Figure 2.

Linear regression fits a linear model with coefficients w �

(w1, . . . , wp) to minimize the residual sum of squares be-
tween the observed targets in the data set, and the targets
predicted by the linear approximation [38]. Ridge regression
addresses some of the problems of ordinary least squares by
imposing a penalty on the size of the coefficients [39]. ,e
complexity parameter α≥ 0 controls the amount of
shrinkage: the larger the value of α, the greater the amount of
shrinkage and thus the coefficients become more robust to
collinearity [40]. When training the model, the training
effect of the two algorithms is shown in Figure 3.

,e purpose of support vector regression is to obtain a
model f(x) that can fit the training set samples as much as
possible [41]. ,e usual method is to construct a loss
function between the sample label and the model predicted
value, and minimize the loss function to determine the
model f(x). ,e regression tree, as the name suggests, is to
use a tree model to do regression problems, and each leaf
outputs a predicted value [42]. ,e predicted value is
generally the mean value of the output of the training set
elements contained in the leaf. When training the model, the
training effect of the two algorithms is shown in Figure 4.

In random forests, each tree in the ensemble is built from
a sample drawn with replacement from the training set [43].
Furthermore, when splitting each node during the con-
struction of a tree, the best split is found either from all input
features or a random subset of size max_features. Random
forests achieve a reduced variance by combining diverse
trees, sometimes at the cost of a slight increase in bias. ,e
core principle of AdaBoost is to fit a sequence of weak
learners on repeatedly modified versions of the data [44].

,e predictions from all of them are then combined through
a weighted majority vote (or sum) to produce the final
prediction. Bagging builds several instances of a black-box
estimator on random subsets of the original training set and
then aggregates their individual predictions to form a final
prediction. Bagging is used as a way to reduce the variance of
a base estimator, by introducing randomization into its
construction procedure and then making an ensemble out of
it [45]. ,e K-nearest neighbor (regression) model is a
nonparameter model that uses the target values of the
K-nearest training samples to make decisions on the re-
gression values of the samples to be tested. ,at is, predict
the regression value based on the similarity of the sample.
Gradient tree boosting or gradient boosted decision trees are
a generalization of boosting to arbitrary differentiable loss
functions. GradientBoostingRegressor supports a number of
different loss functions for regression which can be specified
via the argument loss; the default loss function for regression
is squared error (‘squared_error’). In ExtraTreesRegressor
classes, randomness goes one step further in the way splits
are computed [46]. As in random forests, a random subset of
candidate features is used, but instead of looking for the
most discriminative thresholds, thresholds are drawn at
random for each candidate feature and the best of these
randomly generated thresholds is picked as the splitting rule
[47]. When training the model, the training effect of the
three algorithms is shown in Figure 5.

3.2. Data Preprocessing Algorithms. Using different data
preprocessing algorithms, data can be transformed into data
with different characteristics. Using data with different
characteristics to train the model, the effect of the model will
be different. ,e data preprocessing algorithm used in sinter
drum index prediction model is briefly introduced as
follows.

StandardScaler uses the mean and variance to process
data that obeys the normal distribution to obtain data that
meet the standard normal distribution. MaxAbsScaler

Table 1: Example of experimental data for prediction of sinter drum index.

Drum Index TFe (%) FeO (%) SiO2 (%) CaO (%) MgO (%) Al2O3 (%)
71.07 54.71 8.75 5.14 13.05 2.54 2.06
69.87 55.46 9.89 4.89 11.9 2.55 1.79
69.93 55.34 9.66 4.78 12.13 2.5 1.92
70.27 55.23 9.49 4.79 12.31 2.44 1.98
70.6 55.38 9.91 4.78 12.13 2.59 1.95

Real time
sinter data

Historical
data

Forecast
required data

Data
preprocessing

Regression
prediction

model

Drum
strength

prediction

Figure 2: Drum strength prediction process.
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transforms a data set composed of vector columns and
adjusts each feature to the range of [−1, 1], which is divided
by the maximum absolute value in each feature. Min_-
MaxScaler performs interval scaling based on the maximum

and minimum values to convert the data to the 0, 1 interval.
RobustScaler uses robust statistics to scale data with outliers
(outliers). �e QuantileTransformer class scales each feature
to the same range or distribution. Performing a rank
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transformation can smooth the distribution of anomalies
and receive less outlier e�ects than scaling FunctionTrans-
former constructs a converter based on any callable object.
Forward its X (and optional y) parameters to a user-de�ned
function or function object, and return the result of this
function.

4. Results and Analysis

4.1. Analysis of Prediction Algorithms’ Results. For the pre-
diction of sinter drum strength, the variables used in the
existing research are not the same.�e contents of TFe, FeO,
SiO2, CaO,MgO, and Al2O3 of sinteringmixture are taken as
input variables. �e sinter drum index is used as the pre-
diction index. Di�erent prediction models and algorithms
are used to predict the sinter drum index. Scaler algorithm is
used to preprocess the data, the data are cross-validated
according to the ratio of 0.1, and di�erent prediction al-
gorithms are used to predict the drum strength of sinter.�e
prediction scores of di�erent prediction algorithms are
shown in Table 2.

�e analysis shows that for the sinter drum strength, the
random forest regression prediction algorithm has the best
e�ect, reaching 55.1%, and the gradient boosting regression
prediction algorithm has a relatively good e�ect, reaching
54.5%. �e prediction e�ect diagram is shown in Figure 6
and 7.

4.2. Data Preprocessing Algorithm Result Analysis. When
predicting data, di�erent data preprocessing methods will
have a greater impact on the results. �erefore, in order to
�nd the most suitable preprocessing algorithm. Di�erent
data standardization algorithms are used to preprocess the
input variables. �e data of sinter drum strength were
preprocessed. And further �nd the most suitable prediction
algorithm.

Scaler, Min_max, Max_abs, Robust, Quantile, and
Function algorithms are used to standardize the input data
of the model. �en di�erent regression prediction algo-
rithms are used to predict the sinter drum strength. �e
results of the �nal prediction accuracy are shown in Table 3.

�e analysis shows that for the drum strength of sinter,
using the function data standardization algorithm for data
preprocessing has the best e�ect. And then using gradient
boosting regression, random forest regression, and extra tree
regression prediction algorithms, the prediction accuracy
rate reaches 64.4%, 56.5%, and 53.2%, respectively. �e
results of data preprocessing using Robust and Scaler data
standardization algorithms are poor, and the results of using
regression trees and SVR regression prediction algorithms
for prediction are poor.�e best prediction e�ect diagram of
drum strength is shown in Figure 8 and 9.

5. Optimization Scheme

Various regression prediction algorithms are used to predict
the sinter drum strength, and a more suitable algorithm for
drum strength data preprocessing and prediction is ob-
tained. �e function data standardization algorithm is used
to preprocess the sinter drum strength data, and then the
gradient boosting regression prediction algorithm is used for
regression prediction.

According to the prediction results, the parameters of
the regression prediction algorithm are continuously opti-
mized and improved to obtain the model parameters suit-
able for the drum strength. When using gradient boosting

Table 2: Preliminary prediction accuracy of the sinter drum
strength.

Algorithm Accuracy Algorithm Accuracy
Linear 0.231 RandomForest 0.551
Ridge 0.257 AdaBoost 0.35
Tree 0.206 G-boosting 0.545
SVR 0.001 Bagging 0.337
Kneighbors 0.392 ExtraTree 0.501
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Figure 6: �e preliminary prediction e�ect of random forest re-
gression prediction algorithm.
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Figure 7: �e preliminary prediction e�ect of gradient boosting
regression prediction algorithm.
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regression prediction algorithm to predict the drum
strength.�e learning_rate is set to 0.03.�e n_estimators is
set to 350, which can achieve the best prediction e�ect. �e

prediction accuracy is 87.4%. �e �nal prediction e�ect is
shown in Figure 10.

6. Conclusion and Prospect

Aiming at the prediction of sinter drum strength, this paper
deeply probes into the in�uencing factors and prediction
mechanism of sinter drum strength. By comparing 10 re-
gression prediction algorithms and 6 data preprocessing
algorithms, the model prediction algorithm and data pre-
processing algorithm suitable for sinter drum strength
prediction are obtained. �e prediction results show that for
sinter drum strength, the best prediction e�ect can be ob-
tained using function data standardization algorithm for
data preprocessing and gradient boosting regression pre-
diction algorithm for regression prediction. �e experi-
mental results are based on a large number of real
experimental data. �e compared model algorithms are
representative and have practical guiding value for the
process control of sintering blending process.

�is study uses the composition of the sinter mix to
predict the sinter drum strength. At present, the prediction
accuracy of the model can reach the demand for guiding
sinter production. On this basis, follow-up research can
further combine the environment and equipment

Table 3: �e prediction accuracy of the sinter drum strength.

Scaler Min_max Max_abs Robust Quantile Function
Linear 0.189 0.158 0.48 −0.081 0.227 0.368
Ridge 0.192 0.137 0.227 −0.075 0.238 0.379
Tree −1.408 0.178 −0.065 −0.465 -0.68 0.252
SVR 0.112 0.146 −1.586 0.108 0.119 −0.184
Kneighbors 0.182 0.398 0.301 −0.14 0.311 0.38
RandomForest 0.045 0.306 0.239 0.016 0.332 0.565
AdaBoost 0.12 0.141 0.279 −0.077 0.085 0.439
G-boosting −0.031 0.282 0.404 −0.126 0.158 0.644
Bagging 0.089 0.301 0.316 −0.149 0.039 0.475
ExtraTree −1.165 0.242 −0.448 −0.407 −0.487 0.532
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Figure 8: �e prediction e�ect of gradient boosting regression
prediction algorithm.
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Figure 9: �e prediction e�ect of random forest regression pre-
diction algorithm.

70

68

66

64

62

Processing By Function_GradientBoosting-Dum_strength, score = 0.87406

0 5 10 15 20 25

true value
predict value

Figure 10: �e prediction optimization diagram of drum strength.
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parameters in the sinter production process to improve and
optimize the prediction model and algorithm.
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