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Three-dimensional convolutional network (3DCNN) is an essential field of motion recognition research. The research work of this
paper optimizes the traditional three-dimensional convolution network, introduces the self-attention mechanism, and proposes a
new network model to analyze and process complex human motion videos. In this study, the average frame skipping sampling and
scaling and the one-hot encoding are used for data pre-processing to retain more features in the limited data. The experimental
results show that this paper innovatively designs a lightweight three-dimensional convolutional network combined with an
attention mechanism framework, and the number of parameters of the model is reduced by more than 90% to only about 1.7
million. This study compared the performance of different models in different classifications and found that the model proposed
in this study performed well in complex human motion video classification. Its recognition rate increased by 1%-8% compared

with the C3D model.

1. Introduction

In recent years, with the rapid development of deep learning,
computer vision has made rapid progress, and human action
recognition has become a research field that has attracted
much attention. Despite the continuous improvement of
research in this field, there are still many challenges for
complex human action recognition in videos.

A 3D convolution network (3DCNN) [1] is widely used
in human motion recognition. It is improved based on 2D-
CNN [2] and modeling time information through 3D
convolution and 3D pooling operation to extract spatio-
temporal details in videos. However, the video of complex
human movement has complex semantics and a lot of re-
dundant information, such as background clutter, occlusion,
and high dimensional data, which bring a lot of difficulties to
motion recognition. At the same time, the existing neural
network based on 3D convolution has a colossal structure,
which requires a lot of computing space and time due to its
high requirements on hardware devices. Due to their
complex network structures, these deep learning models are
incompatible with devices with limited computing and

storage space, such as smartphones, tablets, and PCS.
Therefore, designing an efficient and lightweight motion
recognition algorithm is very important.

In this study, the traditional three-dimensional con-
volutional neural network framework is improved to reduce
the number of convolution kernels and the number of
convolution operations. Meanwhile, 3 x3 x 3 pooling ker-
nels are used for pooling operations, and all zero filling is not
used. The self-attention mechanism is added in the final
feature extraction stage to establish the connection between
spatial pixels. Finally, the softmax layer is used to classify
complex human movements. Experimental results show the
effectiveness of the proposed algorithm. This method does
not use complicated and computationally expensive net-
works, such as C3D-bidirectional LSTM Net [3] or PWCNet
[4], to extract time features from test videos. Instead, the
simplified C3D Net was used to extract spatial and temporal
features through adequate data pre-processing and then
integrated with the attention mechanism [5] to extract global
features as much as possible with limited parameters and
computation. The trainable parameters of the Lite-3DCNN
network structure proposed in this study are reduced to
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about one-thirtieth of the original C3D network. The main
contributions of this work are as follows:

(1) Simplify the C3D network structure and propose a
lightweight 3DCNN architecture for complex hu-
man motion classifiers.

(2) The self-attention mechanism is integrated to en-
hance the learning of dependent features and global
features of video frame sequences.

(3) Compared with the traditional C3D network, the
recognition accuracy of this method is slightly im-
proved, and the number of parameters is signifi-
cantly reduced.

2. Related Work

In recent years, human motion recognition based on video
has become one of the most popular research fields in
computer vision and pattern recognition [6]. It has various
applications, such as surveillance, robotics, healthcare, video
search, and human-computer interaction. Human motion
recognition in the video involves many challenges, such as
cluttered backgrounds, occlusion, viewpoint changes, exe-
cution rate, and camera movement. Over the decades,
several technologies have been proposed to address these
challenges.

The framework for action recognition can be divided
into two types. One is to create a single network and
combine two-dimensional CNN with an RNN. In literature
[7], the author first uses a convolutional neural network to
extract spatial features. The convolutional layer is followed
by RNN (recursive recurrent neural network), which allows
time information to flow in time steps. Then, time pooling is
used to aggregate the features of all time steps to form video
sequence features.

The other is the framework based on 3DCNN [8], which
uses three-dimensional convolution to extract spatial fea-
tures. For example, in reference [9], the author extended the
convolutional neural network to 3D to automatically learn
spatio-temporal features. Then, a recurrent neural network
is trained to classify each sequence considering the time
evolution of each time step’s learning features. The authors
of [10] proposed a method of deep learning to recognize
human actions based on motion sequence information in
RGB-D video. A new representation emphasizes the critical
postures associated with each step. Features obtained from
motion in RGB and deep video streams are input to the
convolutional neural network to learn distinguishing fea-
tures. Similarly, Wang and Dantcheva [11] trained and fine-
tuned 3D ResNet [12] on the well-known FaceForensic++
dataset, which is an excellent motion recognition network
[13]. In addition, generative adversarial networks (GAEL
Net [14]) have also been used to design robust facial ma-
nipulation detectors. Therefore, researchers began designing
more complex architectures to achieve higher detection
accuracy. A method of combining 3DCNN with ConvLSTM
was proposed in [15] and applied to human action recog-
nition. The 3DCNN model proposed in [16] addresses a
complex scene classification problem. It uses the spatial and
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temporal features of the video to classify scenes as helping or
non-helping in natural disasters. The authors of [11] pro-
posed to use exponential linear unit-3D convolutional
neural networks to extract deep features of moving videos to
represent videos. The ability of state-of-the-art video CNNs
(including 3D ResNet, 3D ResNet, and I3D) to detect
tampered videos is investigated in work [17]. The authors of
[18] proposed a method for anomaly detection in crowd
scenes. They offered a 3DCNN architecture and a 3D GAN
for domain adaptation to reduce the domain gap. The au-
thors of [19] proposed a method to extract kinematic pose
features from 3D joint positions. It is used to classify Support
Vector Machines (SVM) and Convolutional Recurrent
Neural Networks (CRNN). Vehicle behavior recognition is
performed using 3DCNN in the article [20].

These high-precision motion classifiers have huge net-
work scale and complexity. When experiments are carried
out on the Utd-MHAD dataset, both the decision level and
feature level fusion methods produce higher identification
accuracy than those using each sensor mode alone. The
highest accuracy of the decision level fusion method [21] is
95.6%. However, it consists of about 27 M trainable pa-
rameters. Similarly, networks based on pre-trained VGG-16
[22], ResNet [23], 3D ResNet [12], and optical flow-based
methods [24] are networks with high computational costs.
Due to their large size and computing power, these efficient
networks are incompatible with limited computing and
space devices such as smartphones, personal laptops, and
tablets. However, lightweight deep learning models are
easier to train and less expensive to update when deployed
on smartphones, personal laptops, and tablets.

Considering many real-life application scenarios, the
deep learning action classification model has been widely
used in PCs and personal laptops. Laptop computers carry
out many human motion recognition scenarios, and the
current configuration of laptop computers is often unable to
achieve training and use a large structure of deep learning
models. As a result, real-world applications place high de-
mands on lightweight models. Therefore, this paper pro-
poses a light 3D convolutional neural network (Lite-
3DCNN) for complex human motion classification.

3. Proposed Method

The 3D convolutional network is an extension based on the
2D convolution, which adds the time dimension to the 2D
convolution to fully use the timing information in the video,
as shown in Figure 1. It is widely used in video classification
and retrieval.

However, the traditional 3D convolutional network
framework has huge parameters and requires high machine
performance. These models’ training and prediction stages
consume a lot of time and computing power. At the same
time, sports videos often contain high-level semantic in-
formation and a large amount of redundant data, and videos
of different modes interfere with each other, making the
model unable to accurately capture essential features in
complex videos. This study optimizes based on the C3D
framework, first reducing the number of convolution
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FIGURE 1: 2D Convolution (a) and 3D convolution (b) diagram.
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operations and increasing the size of the pooling kernel,
which significantly reduces the computational complexity.
Then, a PreLU activation function with learnable parameters
is used to avoid the problem of vanishing gradients. A self-
attention mechanism is introduced into the model to extract
long-distance interdependent features in complex videos,
dramatically enhancing the feature extraction capability of
lightweight 3D convolutional networks. In this study, data
pre-processing is performed using average frame skip
sampling and scaling. One-hot encoding is performed on the
data, which enriches the training data features and makes the
calculation between the elements more reasonable. The
experimental results in Section 4 demonstrate that the
method proposed in this study is suitable for complex
human motion classification and is an efficient model that is
convenient for training and prediction.

The proposed approach is divided into two phases, as
shown in Figure 2. The first stage is the pre-processing stage.
The video is clipped and scaled to continuous video frames, and
then the four-dimensional matrix with depth is transformed.
The four-dimensional matrix comprises the video frame’s
length, width, channel number, and depth. The transformed
four-dimensional matrix plus batch_size is used as the input of
the 3D convolution operation in the classification stage. In the
second stage, the five-dimensional matrix calculated in the pre-
processing stage is used as the input of Lite-3DCNN in the
detection stage. The input five-dimensional matrix consists of
the batch size, the width, and height of the video frame, and the
depth and channel number, respectively, i.e., [batch_size,
width, height, depth, channel]. Lite-3DCNN processes the

input and learns the key features. Finally, an autonomous
attention mechanism is added to enhance the learning of long-
term dependent features.

3.1. Data Preprocessing. First, OpenCV was used to clip the
video 20mmc20 times. Since the video data length is in-
consistent with intercepting the image samples as evenly as
possible, the clipping method uses average skipping frame
sampling. The depth of a video frame is the number of times a
video is clipped. frames,,, represents the total number of
frames for a video, de pth indicates the number of frames you
want to intercept, and out put frames TNEANS the video frame
set after clipping, as shown in formula (1) and Figure 3,
depth

Outputfmmes = Z

i=0

i* frames,y,

depth ()

Then, resize it to 32x32 and store all the processed
images, including the video frame’s width and height and
height of the video frame and the number of channels.
Finally, all the videos in each category are traversed, and then
the four-dimensional array obtained after each video pro-
cessing is combined to form a five-dimensional X.

As the input_shape format of Conv3d required, the data
dimensions were adjusted to suitable inputs using the
transpose method. Finally, the input data is X, the label is Y,
and the label Y is processed by one-hot encoding [25], which
makes the feature calculation among features more rea-
sonable and improves the computing speed. The calculation
method is shown in Figure 4.
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3.2. Action Classification Model. The original C3D [8] net-
work consists of five pool layers, eight 3D convolutional
layers, and then two fully connected layers; the last one is the
softmax layer for action prediction, in which the number of
convolution cores in each convolution layer is 64, 128, 256,
256, 512, and 512. All pooling layers are maximum pooling,
with the first pooling layer having a kernel size of 1 x2x 2 (in
order not to merge time signals prematurely). The size of the
remaining convolution kernel is 2 X 2 x 2, and the maximum
pooling step is 1, which means that the size of the output
signal is reduced by eight times compared with the input
signal. The C3D network structure is shown in Figure 5.

The Lite-3DCNN network structure proposed in this
study contains only four convolution operations, and the
size of the convolution kernel at each layer is reduced to 32,
32, 64, and 64. At the same time, the ReLU activation
function in the original network was abandoned in this
paper. PreLU and softmax activation functions were used
alternately after each convolution layer for activation
operation.

According to Figure 6 and formula (2), the gradient of
the ReLU activation function is 0 when x < 0. Hence, the rise
of this neuron and subsequent neurons is always zero, which
is gradient disappearance. In formula (2), in PReLU, the
slope a; of the negative part is not defined in advance but is
constantly updated through backpropagation, as shown in
formula (3). In this way, the problem of gradient disap-
pearance can be solved, and the classification accuracy can
be improved only by adding a few parameters,

x,ifx<0
ReLU (x) =
0,ifx>0
] ; (2)
X;,ifx;<0
PRelU (x) =
a;x;,ifx; >0
Aa; = UAag; + eg—y, (3)

i

where U represents the momentum, ¢ represents the
learning rate, and the initial a; is 0.25. Experiments show that
the PreLU function can accelerate model convergence and
improve classification accuracy.

The proposed method only uses maximum pooling twice,
changing the size of the pooling kernel to 3 x 3 x 3 and further
reducing the number of parameters on the premise of sac-
rificing a few features. To extract the most valuable elements
from the limited number of features, the self-attention
mechanism with 512 output dimensions was connected to the
full connection layer with the same number of units before the
softmax classification layer at the end of the model, and then
normalized and finally sent to the output layer. The pre-
processed data is input into the Lite-3DCNN network, and
high-level semantic information is collected at a higher level
of the deep convolutional network. Next, the Self Attention
network identifies long-term motion correlations from fea-
tures extracted by 3D convolution. Therefore, the Lite-
3DCNN coupled Self_Attention architecture proposed by us
can better extract the spatio-temporal features of data while
minimizing the time and space complexity. The complete
network architecture information is shown in Figure 7.

Self-attention is borrowed from natural language pro-
cessing, so it retains names like query, key, and value. The
input convolution feature maps are feature maps extracted
by backbone CNN. The structure of self-attention is divided
into three branches from top to bottom: query key and value.
Figure 8 is the basic structure of self-attention, and the
calculation formula is shown in formula (5),

T
Attention(Q,K,V) = softmax(g )V, (4)

NER
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where Attention(Q, K,V) refers to the value of attention
obtained and Q, K, and V are the query vector matrix, key
vector matrix, and value vector matrix, respectively. Each
row in these three matrices represents a corresponding
vector. Q, K, and V are typically obtained by multiplying the
input sequence X by three matrices, W1, Wk, W,

First, for each sample, we have a dq-dimensional query
vector, forming an N x d_n-dimensional query vector matrix
Q.You canthink of the query vector as the characteristic of the
model.

Then, for each piece of information (vector) in our
“information base,” there is a d_-dimensional key vector and
a d,-dimensional value vector, forming a key-value pair.
Suppose there are n, pieces of information, then they
constitute the key vector matrix K of n, by d, dimension and
the value vector-matrix V of #, by d, dimension, respec-
tively. You can think of key vectors as features of infor-
mation and value vectors as the information content.

QKT, . represents the similarity between n query vec-
tors (sample features) and n, key vectors (information



TaBLE 1: The network structure and parameters of this framework
(20 class).

Layers Output shape Parameters
Input layer 32, 32,20, 3 0
conv3d 32, 32, 20, 32 2624
activation 32, 32, 20, 32 655360
conv3d_1 32, 32, 20, 32 27680
activation_1 32, 32, 20, 32 0
max_pooling3d 10, 10, 6, 32 0
Dropout 10, 10, 6, 32 0
conv3d_2 10, 10, 6, 64 55360
activation_2 10, 10, 6, 64 0
conv3d_3 10, 10, 6, 64 110656
activation_3 10, 10, 6, 64 0
max_pooling3d_1 3,3,2, 64 0
dropout_1 3,3,2, 64 0
time_distributed (flatter) 3, 384 0
self__attention 3, 512 589824
Dense 3, 512 262656
batch_normalization 3, 512 2048
dropout_2 3, 512 0
global_average_poolingld 512 0
dense_1 20 10260

features). For example, if we assume n=2 and n, =3, then
the first behavior [2, 3, 5] represents that the similarity
between the first sample and the first, second, and third
information is 2, 5, and 3 respectively.

We then apply an activation function w (-), typically
softmax (-/), to obtain the correlation or similarity distri-
bution w (QKE“‘V) between samples and pieces of infor-
mation. For the previous example, we simply call w (x) =
[x;/ Y x;]. The result is [0.2, 0.5, 0.3], which means that the
correlation or similarity between the first sample and the
first, second, and third information is 20%, 50%, and 30%,
respectively.

Finally, multiply w (QKE*HV) and V, .4, and get
Attention(Q, K, V), that is, the weighted sum of the value
vector (information); the weight is the distribution of cor-
relation or similarity between each sample and each piece of
information, and this is the final result of self-attention. The
network structure and parameters of this framework are
shown in below Table 1.

4. Experimental Discussion

4.1. The Dataset. The method was trained and tested on the
UCF-101 dataset [24]. The dataset contains videos of dif-
ferent types of sports, such as handstand walking, canoeing,
horse racing, etc. The UCF-101 dataset was generated from a
collection of YouTube videos, with videos in 101 action
categories divided into 25 groups, each of which can be
composed of 4-7 action videos. Videos from the same group
may have some standard features, such as similar back-
grounds, similar viewpoints, etc. They are shown in Figure 9.

At the same time, it offers the most incredible variety in
motion, with wide variations in camera movement, object
appearance and posture, object proportions, viewpoint,
cluttered backgrounds, lighting conditions, and so on,
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making it the most challenging dataset to date. The original
dataset contains 13320 original videos and 50 related sports
videos, of which 30 sports videos are randomly selected in
this study.

4.2. Contrast Experiment. According to the nature of the
deep learning model in this study, the video is first processed
as video frames. To minimize clipping and retain relatively
complete video features, the average structure hopping
sampling method is adopted in the data pre-processing
stage, and then the video frames are scaled. This paper
extracts 20 RGB video frames from each video clip. Each
video clip is fed individually into a Lite-3DCNN network
stream with a frame size of 20 x 32 x 32.

In the experiment in this paper, the initial learning rate
of model training was set at 0.001, the PreLU activation
function was used to accelerate model convergence, and the
adaptive moment estimation (Adam) optimizer [26] was
used during training, which combined the advantages of
AdaGrad and RMSProp optimization algorithms. The up-
date step size is calculated using the first moment estimation
and second moment estimation.

In formula (5), B, is the exponential decay rate, con-
trolling the weight distribution (momentum and current
gradient), and f3, is the exponential decay rate, maintaining
the influence of the previous gradient square. ¢ is a time step,
initialized to 0. g, is the gradient when the time step is t. 0 is
the parameter to be updated, and f () is the random ob-
jective function of parameters. m, is the first-order moment
estimation of the gradient, and u, is the second-moment
estimation of the slope. m, , u, is the correction of m, and
u, , respectively. o is the learning rate, and ¢ is a constant to
maintain numerical stability.

The specific update rule is as shown in formula (5):
initialize 8, =0.9, 3, =0.999, € =10e - 8, and ¢ =0.001. The
minimum batch of training is 32 samples for data training,

(t=t+1
9:=Vof: (Gt—l)

my = Bim,_y +(1-B1)g;

= Pothyy + (1~ ﬁZ)gtz

. . (5)
= m,
t = t
l_ﬁl
Uy
u, = ;
1-5,
o
Op1 =0, — my
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TaBLE 2: The validation accuracy of the proposed method for the
complex human movement of the UCF-101 dataset.

Model 10 class (%) 20 class (%) 30 class (%)
C3D 82.2 84.7 83.5
Lite-3DCNN 85.3 80.2 70.6
Lite-3DCNN-LSTM 81.1 83.5 75.2
Lite-3DCNN-BILSTM 84.5 85.3 79.5
Proposed method 91.6 88.5 84.8

Figures 10 and 11 show the change in the prediction
accuracy of the C3D model and the model in this paper,
respectively. The experiment carried out 80 rounds of
training under 10 classifications and finally obtained the
accuracy of the training set and the test set. It can be seen
from the figure that the convergence speed of the C3D
framework training is slow, and the curve rises erratically,
resulting in oscillations. The overall trend of the method in
this paper is rising and stable, the convergence speed is fast,
and the final accuracy rate is about 9% higher than that of the
traditional C3D model. The learning rate of these two
methods is the same, so this may be because the C3D model
cannot accurately capture the long-distance interdepen-
dence characteristics of complex actions, and the C3D model
lacks normalization processing, resulting in singular values
in the training process, which affect the speed and final
accuracy of model learning.

In the comparative experiment, this study combined
different network structures and verified the effectiveness of
complex human motion classification on the UCEF-101
dataset. The combination of lightweight 3D convolution and
long short-term memory network is added in the experiment
because, considering the reduced ability of the simplified
C3D model to extract time series features, the LSTM net-
work can well extract the context of video frames.

According to Table 2, the lightweight 3D convolutional
network performs well on the 10-class classification prob-
lem, but the accuracy rate is significantly reduced with in-
creasing the number of classifications. This may be because
the depth of the lightweight 3D convolutional network is not
enough. When faced with multi-classification tasks of
complex motion, the lightweight model cannot extract



TaBLE 3: The trainable parameters (in millions) of the proposed
method and other methods for the UCF-101 dataset.

10 class 20 class 30 class

Model type (M) (M) (™)
C3D 52.87 61.30 61.34
Lite-3DCNN 1.609 1.616 1.621
Lite-3DCNN-LSTM (512) 3.120 3.122 3.135
Lite-SDCNN-BIiLSTM 5219 5.224 5.229
(512)

Proposed method 1.712 1.716 1.884

richer features to distinguish different categories of videos.
The performance of the classic C3D model is relatively
stable, indicating that even if faced with more classification
tasks, the C3D network architecture can still maintain a sure
accuracy. Still, it needs to train more than 50 million
parameters.

The combination of the Bi LSTM network and Lite-
3DCNN has produced a specific result. Table 2 shows that
the classification accuracy of the Lite-3dcnn combined with
the LSTM framework is lower than that of the Lite-3DCNN
model in the ten classification tasks. This is because when the
number of classifications is small, the performance of the
Lite-3dcnn model is good enough, and the advantages of the
LSTM unit do not play a role. Still, the bidirectional LSTM
unit extracts the information below the video frame to a
certain extent, so it performs better than the C3D model.
However, at 20 and 30 categories, the LSTM unit plays an
advantage, making up for the simple structure of the Lite-
3DCNN network. Even so, there is still no superior per-
formance of the C3D model because the significant trainable
parameters of the C3D model improve the ability of multi-
classification tasks.

Experimental results show that the performance of the
lightweight 3D convolutional architecture deteriorates
with the increase in the number of classes. Although the
method proposed in this paper also offers such a trend, the
results are still better than the C3D framework on 30
classification tasks. The fundamental reason for this result
is that the three-dimensional convolutional neural net-
work can extract the spatio-temporal features of video data
to a certain extent. The self-attention mechanism focuses
on the global key features, increasing the receptive field
with almost no increase in computational cost. Compared
with the LSTM network, the self-attention mechanism and
lightweight three-dimensional convolution network are
better integrated, and more accurate prediction results are
obtained.

4.3. Parameter Quantity Comparison. According to Table 3,
the parameter amount of the method in this paper is only
one-thirtieth of the C3D model. The accuracy is improved
by about 4% in the 10-30 classification task. At the same
time, in the case of adding a small number of parameters,
the classification accuracy of the method in this paper is
improved by about 9% on average compared with the
lightweight 3D convolutional network, and the accuracy
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rate is still slightly higher than that of the C3D model when
completing 30 classification tasks. This shows that the
introduced self-attention method has played an important
role, effectively making up for the deficiency of lightweight
3D convolution feature extraction capability. Although the
combination of bidirectional LSTM and Lite-3DCNN
produces some effect, the number of parameters is still
about three times that of our model. Even under thirty
categories, the trainable parameters of our model are only
1.884 M.

5. Conclusions

Complex human motion videos usually contain high-level
semantic information and a large amount of redundant
information. Although the classification framework based
on the traditional three-dimensional convolution network
can better complete the classification task, such a frame-
work has many parameters. It requires a lot of time and
computing power. This research introduces an efficient and
lightweight human motion recognition framework, com-
bining the lightweight C3D model and self-attention
mechanism. The self-attention mechanism is used to
capture critical global features. The receptive field is in-
creased with only a few parameters, which makes up for the
lightweight three-dimensional convolution network
shortage. In the data processing stage, this study uses the
average frame skipping sampling to reduce the data size as
much as possible while retaining more complete features
and uses the method of hot coding to enrich the data
features and minimize interference. The experimental re-
sults show that, based on the ucf-101 dataset, the accuracy
of the proposed method in the task of 10-30 classification is
between 91.6% and 84.8%, which is about 5% and 10%
higher than other models on average, and the parameter
quantity is only one-thirtieth of that of the C3d model.
However, the classification accuracy of the method pro-
posed in this paper decreases slowly with the increase of
categories, and no more classification experiments have
been carried out in the study. In future research, we will
consider combining the two-stream method and retraining
in a more extensive dataset to improve the framework of
this study further.
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