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Combinatorial optimization problems allow for modeling multiple situations in which proper allocation of resources is needed.
For some real-world problems, the use of fuzzy elements in the models allows for incorporating certain levels of uncertainty to
better approximate such real-world situations. One way to solve combinatorial optimization problems with fuzzy elements is the
parametric approach, where it is necessary to de�ne how to explore di�erent relaxation levels using alpha-cuts. Researchers tend
to select such alpha-cuts uniformly.  e current investigation proposes a novel strategy for selecting alpha-cuts in the School Bus
Routing Problem with fuzzy students’ maximum walking distance.  is proposal bases its foundations on the number of student-
bus stop pairs available according to the di�erent levels of relaxations allowed. Results demonstrate how the proposed strategy
gives attractive solutions with more diverse trade-o�s, contrasted with other methods in the literature. Furthermore, it decreases
the computational cost for those instances where the maximum relaxation does not provide new pairs of students-bus stops.

1. Introduction

Decreasing environmental pollution, reaching responsible
consumption, and setting up access to transportation are
fundamental objectives for human society to achieve sus-
tainable development, according to the 2030 United Nations’
agenda for sustainable development [1].  e proper use of
science and technology might contribute to the ful�llment of
such objectives, and in particular, Arti�cial Intelligence (AI)
and soft computing (SC) are excellent candidates for such an
endeavor [2, 3]. One of the areas where AI has had a greater
impact is modeling and solving optimization problems based
on transportation planning [4].

One of the current challenges in modeling optimization
problems is to make them closer to contemporary reality’s

requirements [5]. In this way, the use of fuzzy optimization can
be a valuable approach because, inmany cases, there is a total or
partial absence of information, knowledge, understanding, or
awareness of a potential event’s occurrence. us, certain levels
of uncertainty need to be introduced [6]. Numerous authors
have employed fuzzy elements tomodel optimization problems
[7–11]. In particular, there are several engaging solutions to
transportation planning problems, like the numerous variants
of the Vehicle Routing Problem (VRP) [12–14].

A proven way to reach good results in the resolution of
fuzzy optimization problems is through the parametric
approach [15]. By this approach, a fuzzy problem is trans-
formed into a set of crisp instances of the problem by de-
�ning a set of alpha-cuts.  e union of the solutions of each
of these instances forms the �nal solution of the original
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fuzzy problem. Usually, the authors define the alpha-cuts
based on experience or somehow arbitrarily. ,e authors of
[16] presented a method to determine the alpha-cuts in a
better way, using an adaptive approach similar to a binary
search technique. ,e results showed the advantages of their
proposal to give a more meaningful set of solutions to the
decision-maker.

,e School Bus Routing Problem (SBRP) is one of the up-
to-date transportation optimization problems, as seen in [5].
,is problem aims to create an optimal set of routes to
transport the students from/to a set of selected bus stops to/
from their school [9]. Many authors, like [17–19], guide their
research on the SBRP for practical applications that lead to
significant cost savings for those affected by such applications.

In [20], a model for the SBRP with Fuzzy Walking
Distance (FWDSBRP) was presented, and the parametric
approach was used in its solution. In this case, the explored
alpha-cuts were arbitrarily selected (uniformly distributed in
the interval [0, 1]) to explore the space of fuzzy solutions.,is
arbitrary selection of the alpha-cuts can bring with it some
difficulties: the unnecessary exploration of all the alpha-cuts
even though there are no differences in the quality of the
solution obtained with each one of them; little or no variation
between the quality of the set of solutions in terms of the
objective function. It is worth noting that the variation of the
relaxation (in terms of alpha values) is not necessarily pro-
portional to the variation of the value obtained in the objective
function. ,erefore, it is important for the decision-maker to
have a set of solutions with diversity in terms of the objective
function based on more intelligent and conscious relaxations.

,e main goal of this paper is to present a wiser strategy
to explore the alpha-cuts, based on previous knowledge of
each instance of a School Bus Routing Problem with Fuzzy
Walking Distance (FWDSBRP). In particular, the proposed
strategy uses information about the distances between
students and bus stops to guide the exploration. Experi-
mental results show that better results can be obtained with
such a strategy in the sense of less redundant solutions and
more diverse quality trade-off values for decision-makers.

,e rest of the document is organized as follows. Ma-
terials andMethods address the general characteristics of the
SBRP, the mathematical model and the fuzzy approach for
the SBRP, and the description of the proposed strategy.
Results and Discussion presents and discusses the experi-
mental results with the proposed alpha-cuts selection
strategy, and a comparison is conducted between the pro-
posal and other alpha-cuts selection strategies. Finally, the
conclusions and future work are presented.

2. Materials and Methods

2.1. School Bus Routing Problem. ,e SBRP is a combina-
torial optimization problem with a specific type of VRP [21].
,e main goal of this problem is to reach a cost-effective set
of bus routes to transport the appropriate students from a set
of designated bus stops to their school [22]. An adequate
solution to the problem can only be reached when various
constraints, such as the bus capacity, the maximum time that
students can travel on the bus, or others, are satisfied [5]. It is

important to note that despite the model being commonly
expressed in terms of schools and students, it may be rel-
evant too for other institutions.

As stated by [5], SBRP is a complex problem that can be
divided into some less-complex subproblems. ,ese sub-
problems are the selection of bus stops, the generation and
scheduling of the routes, the adjustment to the school bell time,
and the strategic transportation policy. As observed in [5],
many authors focus their research on one subproblem or a mix
of two or more of them. For instance, the authors of [23]
presented an SBRP with multiple schools that include three of
the previous subproblems.Meanwhile, [24] only focuses on the
subproblem of the construction of the routes. From the point of
view of the objectives, some authors focus their efforts on
solving the SBRPwith a single objective [18, 25, 26], and others,
like [27, 28], attempt to solve the SBRPwithmultiple objectives.

More recently, researchers have focused their studies of
SBRP on more realistic situations. An example of that can be
seen in [17], where the main contributions are to assume
gender separation and the special needs of some students. In
[29], they considered the possibility of demand outsourcing
(e.g., students using parallel systems for transportation).
Finally, [30] introduced an SBRP with fuzzy constraints
related to the capacity of the buses and the maximum
distance that each student can walk, and also the consid-
eration of special students’ needs.

2.2. Fuzzy Mathematical Model and Solution Approach.
,e following fuzzymodel is used to represent the SBRP, and
it was previously proposed in [20]. ,is model aims to
minimize the total distance traveled by the bus fleet, com-
plying with the restrictions of bus capacity and the fuzzy
students’ maximum walking distance.

2.2.1. Input Variables

c: Capacity of each bus.
B, b: Set and index of buses, b � 1, . . . , |B|.
P, p: Set and index of possible stops, p � 0, . . . , |P|,
where p � 0 indicates the school.
E, e: Set and index of students, e � 1, . . . , |E|.
de: Maximum walking distance for student e.
Vp: A set of vectors with pairs of coordinates repre-
senting the possible stops.
Ve: A set of vectors with pairs of coordinates repre-
senting each student’s home
He: Maximum admissible tolerance for the distance
that the student e could walk.
T: Maximum allowed tolerance to overload the bus
capacity.

2.2.2. Auxiliary Parameters

D: A distance function that indicates the cost between a
pair of stops or between a student and a bus stop.
CP

pq: A distance matrix between each pair of stops (p, q).
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CE
ep: A distance matrix between each pair of student-

stop (e, p).
cp

i: Coordinates of the stop located on the i index of Vp.
ce

j: Coordinates of the student located on the j index of
Ve.
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2.2.3. Decision Variables

Rbm: Indicates the stop that is visited by bus b in the
orderm. |Rbm| indicates the number of bus stops visited
by the bus b.
Ze: Indicates the stop where the student e is picked up

2.2.4. Objective Function

Min 

|B|

b�1
C

P
0[1] + 

|P|−1

m�1
C

P
Rbm[ ] Rbm+1[ ] + C

P
Rbm| |[ ]0

⎛⎝ ⎞⎠. (3)

2.2.5. Constraints. ≤ f: A fuzzy comparison operator, in-
dicating the fuzzy imprecision of the constraint (5).

Rbm|Rbm � p |≤ 1, ∀p ∈ P − 0{ },∀b ∈ B, ∀m ∈ 1, . . . , |P|{ }, (4)

Ze � p ⊆ C
E
ep ≤

f
de , ∀e ∈ E,∀p ∈ P, (5)

∃m Rbm � Ze 


≤ cm ∈ 0, . . . , |P|{ }, ∀b ∈ B,∀e ∈ E,

(6)

Rbm � Ze 


 � 1, ∀e ∈ E. (7)

,e objective function, equation (3), minimizes the total
distance traveled by the entire bus fleet. Equations (4)–(7)
represent the constraints needed for the solution to be
achievable. Equation (4) guarantees that each stop is visited
at most once, except for the final destination of all buses
(school, p� 0). Equation (5) ensures that each person can
reach their assigned bus stop. Equation (6) considers that the
number of persons assigned to one route does not exceed the
size of the bus. Finally, with equation (7), it is guaranteed
that one bus visits each stop to which at least one person is
allocated. Equation (8) is used to replace equation (5), and
the following explanation argues why.

Ze � p ⊆ C
E
ep ≤ de + He 1 − αw(  . (8)

As can be seen in the previous model, equation (5) is
where the model becomes a fuzzy model. ,e way of posing
these constraints implies that the feasibility of a student

reaching a stop becomes fuzzy (i.e., not crisp), and therefore
it is possible to satisfy this constraint with different degrees
of membership.

Let us see an example. If the maximum walking distance
for students is 350 meters, then a student at a distance of 200
meters to a bus stop satisfies it with a grade of 1. On the other
hand, if a student walks 355meters, the degree of satisfaction
with this constraint may be less than 1, but it may be higher
than the membership if the stop is 370 meters away. On the
contrary, if a student needs to walk 600 meters to reach a bus
stop, then this stop may be considered unreachable with a
grade of 0.

All these values (e.g., 355 or 600, for the walking dis-
tance) will depend on the admissible conditions and the
allowed tolerance. ,ese values will imply that solutions will
have distinct degrees of compliance with the constraint.
From the decision-making point of view, these relaxations
may allow a modest increment in the distance the students
need to walk to find a relaxed solution with a reduced cost of
the objective function.

To model this situation, it is necessary to define a tol-
erance He, which determines the maximum admissible ac-
ceptance for a student’s distance. If all the values of He are
equal to 0, then the problem is reduced to the crisp case.
Figure 1 shows the function to measure the degree of
compliance with the restriction of maximum walking dis-
tance, taking into account the distance d and the tolerance
He.

To comprehend this function, having d as the maximum
walking distance and He as the maximum admissible tol-
erance, a bus stop distance less than or equal to d has a
degree of compliance of 1. On the other hand, if the bus stop
is located at a distance between d and d+He, it has a degree
of compliance in the interval [0, 1]. Finally, if the distance to
reach the bus stop is greater than d+He, the degree of
compliance is 0, then it is assumed that the student e cannot
reach this bus stop.

,is is a linear function, and the parametric approxi-
mation method, based on the principles of parametric linear
programming and the concept of alpha-cuts [15], can be
applied. ,e alpha-cut notion applied to this case implies
that different sets of feasible solutions are associated with
each particular value of alpha, i.e., those solutions with a
degree of feasibility (the accomplishment of the original
conditions) greater than or equal to alpha. Consequently,
with small values of alpha, a few relaxed solutions are
considered feasible. ,en equation (8) is used instead of
equation (5).

With these changes, when αw � 1, the problem remains
crisp, and then students can only reach those bus stops
settled at the original maximum walking distance, i.e., it is
the most restrictive case. On the other hand, when αw � 0,
the students are allowed to reach those bus stops located at
the original maximum distance plus the maximum toler-
ance, i.e., it is the greatest relaxation.

Authors who use the parametric approach to solve fuzzy
problems usually use a uniform method to establish the
aforementioned alpha-cuts, such is the case of [7, 9, 31]. On
the other hand, in [16], an adaptive method is proposed
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where the alpha-cuts are calculated similarly to a binary
search.  is method o�ers certain advantages over the
traditional uniform approach.

In general, selecting the alpha-cuts uniformly can bring
with it various di¢culties. Among these, the unnecessary
exploration of some of (even of all) these alpha-cuts stands
out when the maximum relaxation allowed does not con-
tribute any di�erences to the quality of the solution. On the
other hand, both in the traditional uniform way and the
adaptive method, the set of crisp solutions obtained with
each alpha-cut is not uniformly distributed in the space of
the possible values of the objective function.

3. Conscious Exploration Strategy

 e conscious exploration strategy for the obtention of al-
pha-cuts values takes into consideration a previous
knowledge of the speci�c problem instance. In the case of the
SBRP with fuzzy walking distance, the main feature to be
taken into account is the distance between the students and
the bus stops.  is distance is calculated using the locations
of each student and each bus stop.  ese pieces of infor-
mation are part of the input variables of the model.  en a
matrix that contains all the pairs of student-bus stop dis-
tances is calculated and becomes part of the auxiliary var-
iables in the model (equation (2)).

To obtain the alpha-cuts, thementioned distance values are
split into three groups: (a) the distances that are less than or
equal to d, (b) the distances between d and d+He, and �nally,
(c) the distances that are greater than d+He. Knowing that the
distance in group (a) will always satisfy the constraint and
distances in group (c) will always be beyond the allowed limits,
then only the distances in group (b) are of value for the analysis.
In this way, in an instance where all the distances are in groups
(a) or (c), the relaxation that is given byHe does not contribute
to any improvement to the solution of the crisp instance. us,
there is no need to explore any alpha-cuts, and the fuzzy
solution will always be the same as the initial crisp solution.

 e next step is to split group (b) as uniformly as possible
into several subgroups that satisfy the desired quantity of
alpha-cuts. For example, if an instance has ten distances in
group (b), and we want to explore �ve alpha-cuts including 1
and 0, then four subgroups can be formed consecutively: the
�rst three distances in the �rst subgroup, the following three
in the second subgroup, the next two distances in the third

subgroup, and the remaining two distances in the fourth
subgroup. Now, with the last distance of each subgroup,
except the last one, the alpha-cuts can be calculated, and
three di�erent alpha-cuts are obtained in addition to 1 and 0,
which include the initial crisp problem and the maximum
allowed relaxation problem.  en [1, b1, b2, b3, 0] represent
all the alpha-cuts to be used in the parametric approach. It is
to be noted that the alpha-cuts are set according to the
characteristics of each instance. In Figure 2, a graphic
representation of this example can be observed.

 e complete method is described below.

3.1. Initialization

(a) Set n as the number of crisp subproblems to solve.
(b) De�ne A� {} as the array of alpha-cuts.
(c) Calculate the distance matrix (M) between each

student-bus stop pair.

3.2. Obtaining Alpha-Cuts

(a) Make A(0)� 1 as the crisp initial problem.
(b) Split the distances in the obtained matrix into three

groups: (a), (b), and (c).
(c) If the group (b) is empty, go to step 3 with A� {1}.
(d) Sort the distances in group (b) and split this group

into n− 2 subgroups.
(e) For each subgroup, calculate the alpha-cut (α) as

follows:

(i) α � 1 −
M(bi) − d

H
. (9)

LetM(bi) be the last distance in the subgroup (i), d the
maximum original walking distance, and H as the
maximum allowed tolerance

(f ) Add α to A.
(g) If the group (b) has more than n− 2 elements, make

A(n)� 0 as the maximum allowed relaxation prob-
lem. Otherwise, go to step 3 without the unnecessary
relaxation of α� 0, since relaxation A(n− 2) will yield
the last solution of interest.

3.3. Solve. (a) Obtain a solution for each crisp instance
corresponding to each value in A to get the fuzzy solution.
Following the idea of [16], it is only needed to explore the
central alpha-cut if the nonrelaxed crisp problem (A0) and
the full relaxed crisp problem (An) are di�erent.

Equation (9) is the result of simplifying equation (7) in
the previously exposed model.

4. Results and Discussion

To demonstrate the proposal’s validity, a set of instances is
obtained from the literature. In this case, 33 SBRP crisp
instances from [32] were used and transformed into fuzzy

0
<d d d+He >d+He

0.2

0.4

0.6

0.8

1

Figure 1: Membership function of the compliance of the fuzzy
student’s maximum walking distance.
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instances with an H-tolerance of 20% of the maximum
student’s walking distance.

 e characteristics of the instances can be appreciated in
Table 1.  e Instance column shows the identi�er for each
instance. Columns Students, Stops, and MWD show the
number of students, the number of bus stops, and the
maximum students’ walking distances, respectively. All
these columns correspond to original instances from [32].
 e Variation column shows the number of new student-
stop pairs that arise after applying the tolerance (20%). ese
student-stop pairs are the ones that could bring about
changes in fuzzy solutions. Finally, the Group column shows
a group identi�er to organize the analysis of the results
conducted in the next section.

5. Results

In the experimentation, three approaches for obtaining the
necessary alpha-cuts were used.  e proposed approach,
named Conscious, the Adaptive approach presented by [16],
and a uniform approach previously used in [20], with α� {1,
0.75, 0.5, 0.25, 0}.

 e number of crisp instances to be solved corresponds
to the number of generated alpha-cuts by applying the
parametric approach to solve these fuzzy instances. A
metaheuristics-based method reported in [33] was used to
�nd the solution for each crisp instance.

 e cost (integer part) of the obtained results can be seen
in Table 2. In this table, the Id column represents the
identi�er of the instance. Column α� 1 shows the result of
the original crisp instance (the same value for all strategies).
 e following twelve columns show the results of the ob-
jective function obtained with each strategy for the selected
alpha-cuts (Conscious, Adaptive, and Uniform).  e last
columns with values on each strategy represent the solutions
with maximum relaxation (α� 0). Cells with “—” represent
crisp instances that do not need to be solved.

We divide the instances into three subgroups (see the
Group column in Table 1).

In the case of the �rst subgroup (with 10 out of 33
instances, i.e., 30%), the �rst ten instances of Table 2 are
those instances in which the maximum relaxation of 20%
does not generate new student-bus stop pairs. So, it is
identi�ed that it is unnecessary to solve these instances for
any relaxation of the original problem. As shown in Table 2,
the Conscious strategy executes only one crisp problem, the

nonrelaxed one. In the case of the Adaptive method, two
solutions were found: for the nonrelaxed problem and the
full-relaxed problem. Finally, the Uniform strategy found an
identical solution for each preestablished relaxation level. In
this case, the resolution of the intermediate relaxations could
be avoided by applying a principle similar to the rest of the
strategies, solving and comparing the nonrelaxed problem
and the full-relaxed problem at the beginning.

 e results of this �rst group let us con�rm that the
Conscious strategy allows for time savings in solving the
fuzzy problem.  is time-saving comes in since it avoids
executing the solution method for relaxations that do not
bring any change to the original problem and, thus, the best
(thus, the only) solution is that of the initial problem, i.e., the
nonrelaxed one. In general, the Conscious method allows for
savings of at least 50% of the computational cost concerning
the other methods in 30.3% of the instances used in the
experiments.

 e second subgroup (with 7 out of 33 instances, i.e.,
21.2% of the instances) are those instances in which the
solution mechanism cannot �nd distinct solutions for the
di�erent levels of relaxation. It is important to note the
di�erence concerning the �rst subgroup. In the �rst sub-
group, it is impossible to obtain an improvement based on

Table 1: Characteristics of the instances to analyze.

Instance Students Stops MWD Variation Group
1 25 5 5 0 1
2 25 5 5 0 1
4 25 5 10 0 1
5 25 5 20 8 3
6 25 5 20 3 3
9 50 5 5 0 1
10 50 5 5 0 1
12 50 5 10 0 1
17 100 5 5 0 1
18 100 5 5 0 1
19 100 5 10 8 3
24 100 5 40 33 3
27 50 10 10 13 3
30 50 10 20 42 2
39 100 10 40 56 2
41 200 10 5 0 1
42 200 10 5 0 1
44 200 10 10 32 2
45 200 10 20 142 3
47 200 10 40 124 2
48 200 10 40 151 3
56 100 20 40 141 3
58 200 20 5 15 2
64 200 20 40 306 3
72 400 20 40 635 3
87 400 40 40 1316 3
88 400 40 40 1113 3
95 800 40 40 2593 3
96 800 40 40 2416 3
103 400 80 40 2495 3
105 800 80 5 262 2
111 800 80 40 4381 3
112 800 80 40 4511 3

α=1

3 3 2 2
distances distances

10 distances

distances distances

α=b1 α=b2 α=b3 α=0

Figure 2: Graphic representation of the selection of alpha-cuts
following the conscious strategy in an instance with 10 distances of
interest.
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the relaxation because no student can reach additional stops,
while in this second subgroup, the relaxation allows to
analyze more options, but this does not allow to get better
solutions. ,ese instances are in the next seven rows in
Table 2. In these instances, the Conscious and the Adaptive
strategies only evaluated the nonrelaxed and full-relaxed
instances. ,e Uniform strategy considers all the pre-
established alpha-cuts offering the same solution. In general,
the Conscious and Adaptive methods allow for savings of
80% of the computational cost concerning the Uniform
method in 20% of the instances of the experiments.

,e third subgroup contains the last sixteen instances of
Table 2 (16 out of 33 instances, i.e., 48.5% of the instances).
Different objective function values were found in these
instances for distinct alpha-cuts on each strategy. Using this
group, we present four criteria that show the superiority of
the Conscious technique over the other methods.

,e first criterion is that, on average, the number of
different trade-off solutions (solutions with different values
of the objective functions) in each fuzzy instance when using
the Conscious strategy is 3.938, slightly higher than the 3.875
obtained with the Adaptive method and than the 3.563
achieved with the Uniform strategy (see Table 3). ,is aspect

allows us to confirm that, with the Conscious technique,
more diverse results are found. For instance, in instance 48,
the Conscious method produces four different solutions
(with cost 60, 56, 52, and 43), the Adaptive method also
produces four different solutions (with cost 60, 51, 49, and
43), while the Uniform method produces three different
solutions (with cost 60, 49 and 43). As the extreme values are
identical, the Conscious and Adaptive strategies produce
two new interesting, relaxed solutions while the Uniform
method only produces one.

,e rest of the criteria are based on analyzing the dif-
ferences in the cost of the objective function between two
consecutive relaxations. For each fuzzy solution of an in-
stance where five alpha-cuts were studied, there are four

Table 2: Results obtained after applying each of the three methods, grouped by the group id of the instance.

Id α� 1
Conscious Adaptive Uniform

α1 α2 α3 0 α1 α2 α3 0 0.75 0.5 0.25 0
1 141 — — — — — — — 141 141 141 141 141
2 162 — — — — — — — 162 162 162 162 162
4 196 — — — — — — — 196 196 196 196 196
9 239 — — — — — — — 239 239 239 239 239
10 197 — — — — — — — 197 197 197 197 197
12 216 — — — — — — — 216 216 216 216 216
17 311 — — — — — — — 311 311 311 311 311
18 259 — — — — — — — 259 259 259 259 259
41 668 — — — — — — — 668 668 668 668 668
42 428 — — — — — — — 428 428 428 428 428
19 230 — — — 230 — — — 230 230 230 230 230
24 12 — — — 12 — — — 12 12 12 12 12
27 144 — — — 144 — — — 144 144 144 144 144
44 410 — — — 410 — — — 410 410 410 410 410
47 103 — — — 103 — — — 103 103 103 103 103
58 476 — — — 476 — — — 476 476 476 476 476
105 2582 — — — 2582 — — — 2582 2582 2582 2582 2582
5 112 112 112 110 97 110 110 97 97 112 110 97 97
6 103 103 103 92 92 103 103 92 92 103 103 103 92
30 122 115 105 105 92 121 121 105 92 109 105 102 92
39 61 53 53 41 41 53 41 41 41 41 41 41 41
45 339 330 330 330 330 339 330 330 330 339 330 330 330
48 60 56 52 43 43 60 51 49 43 49 49 43 43
56 21 16 16 11 4 16 8 8 4 16 16 8 4
64 54 54 50 33 29 54 49 33 29 54 40 30 29
72 95 86 68 68 63 93 79 63 63 79 63 63 63
87 217 216 206 203 190 216 205 202 190 210 202 202 190
88 78 77 70 62 53 76 70 64 53 76 66 53 53
95 415 405 405 404 393 405 402 393 393 415 415 393 393
96 220 213 204 184 177 214 196 195 177 204 195 188 177
103 141 133 129 123 110 130 129 123 110 130 129 123 110
111 324 315 309 294 294 318 313 305 294 315 297 294 294
112 139 131 122 112 104 135 127 115 104 127 115 110 104

Table 3: Criteria to take into account for the analysis.

Criteria Conscious Adaptive Uniform
Average of different values 3.938 3.875 3.563
Values in [0.2, 0.3] 14 9 7
Values in [0.15, 0.35] 22 15 15
Values in [0.1, 0.4] 27 21 21
Standard deviation 0.243 0.246 0.285
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distances between the costs of two adjacent relaxations.
 e ideal situation is that the di�erence in terms of cost
between them is similar since this implies a similar dif-
ference in the quality of the solutions.  is situation is
more interesting for a decision-maker because it implies
having options with di�erent costs to evaluate di�erent
trade-o�s. For example, in an instance where the cost of
the original crisp solution is 100 and the cost of the more
relaxed solution is 60 for a decision-maker, an ideal set of
intermediate relaxations are those with costs of 90, 80, and
70 because they are equally separated in terms of costs (all
at equal distance of 10).  is is more interesting for a
decision-maker than intermediate relaxations with costs
of 97, 95, and 92. In this last case, the distances between
each successive relaxation are 3, 2, 3, and 32 (e.g., 32 is the
distance between 92 and 60).

To generalize this analysis, it is convenient to normalize
the distances to eliminate the noise caused by the di�erent
sizes of the instances. So, the nonrelaxed solution corresponds
to 1, while the full-relaxed solution corresponds to 0.  is
allows analyzing all instances from a uniform point of view.
Following the previous example, according to this normali-
zation, the ideal case with four distances of 10 in the interval
[60, 90] corresponds to a normalized distance of 0.25. On the
other hand, the normalized values of distances 3, 2, 3, and 32
in the same example are 0.075, 0.05, 0.075, and 0.8.

 e normalization has the following steps:

(1) Find the di�erences between the solutions based on
alpha-cuts concerning the previous one, with less
relaxation.

(2) Find the di�erence between the nonrelaxed and the
full-relaxed solution.

(3) Find the ratio between each di�erence computed in
step 1 and the one calculated in step 2.

Table 3 shows the data obtained after the normalization
for all the instances. In this table, the �rst row corresponds to
the �rst criterion already described, showing the average
number of di�erent solutions obtained by each strategy.
Rows 2, 3, and 4 present the number of normalized values in
each indicated interval obtained by each technique. Finally,
the �fth row shows the standard deviation of the normalized
values for each strategy.

 e second criterion to be considered in the analysis is
that most di�erences should be as close as possible to the
ideal value of 0.25. For the third criterion, the standard
deviation of the normalized values is considered, with a
lower deviation being an indicator of higher quality.

Table 3 shows how the Conscious strategy contains more
normalized values in [0.1, 0.4], in [0.15, 0.35], and in [0.2,
0.3] than the other techniques. is di�erence is accentuated
in the narrowest interval. Likewise, the standard deviation
presented by the normalized values in the Conscious strategy
is slightly lower than that of the Adaptive and Uniform
methods.  ese criteria demonstrate that the Conscious
technique provides better levels of quality in the trade-o�
values to be taken into account by decision-makers.

Finally, Figure 3 presents the fourth criterion. It shows
the 64 normalized values (4 distances, 16 instances) of all
instances for each strategy analyzed.  e values are in as-
cending order. e plot displays how these values come close
to the desired value (0.25) earlier with the Conscious strategy
and move away from this ideal later than with the rest of the
strategies. Likewise, the Adaptive method shows better
performance in this aspect than the Uniform method.

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

63615957555351494745434139373533312927252321191715131197531

0,2

0,4

0,6

0,8

1

1,2

Conscious
Adaptative

Uniform
0.25

Figure 3: Normalized values of distances in terms of the cost of two consecutive relaxations in all instances.  e dotted grey line represents
the ideal value (0.25).
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6. Conclusions

,is paper proposes a strategy that makes use of the
characteristics of the instances of the School Bus Routing
Problem to focus the search towards interesting relaxations
in the solutions of the fuzzy model with fuzzy students’
maximum walking distance.

,is proposed Conscious strategy is advantageous
concerning the traditional way of obtaining the possible
relaxation values (Uniform method) in all the instances
used. It also presents advantages concerning the Adaptive
method in terms of the amount and quality of the different
solutions found and computational cost savings by avoiding
relaxations on instances where these do not provide new
solutions.

Despite the advantages of the Conscious method, it is
worth noting that the Adaptive method has general char-
acteristics that allow it to be used in multiple combinatorial
optimization problems. On the other hand, the proposed
method must be adapted according to the characteristics of
each particular problem.

In future work, we recommend using the Conscious
strategy in other combinatorial optimization problems with
fuzzy elements, such as the Maximum Coverage Location
Problem with fuzzy coverages. Also, it is motivating for
future work to compare the presented results with a mul-
tiobjective approach that minimizes the fuzzy constraint
violation and the total distance traveled.
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Bus Problem on Trees,” Algorithms and Computation,
Springer, Berlin, Germany, pp. 10–19, 2011.

[22] R. M. Newton and W. H. ,omas, “Design of school bus
routes by computer,” Socio-Economic Planning Sciences,
vol. 3, no. 1, pp. 75–85, 1969.

[23] D. M. Miranda, R. S. de Camargo, S. V. Conceição,
M. F. Porto, and N. T. R. Nunes, “A multi-loading school bus
routing problem,” Expert Systems with Applications, vol. 101,
pp. 228–242, 2018.

[24] O. Unsal and T. Yigit, “Using the genetic algorithm for the
optimization of dynamic school bus routing problem,” Broad
Research in Artificial Intelligence and Neuroscience, vol. 9,
2018.

[25] Y.-E. Hou, L. Dang, W. Dong, and Y. Kong, “A metaheuristic
algorithm for routing school buses with mixed load,” IEEE
Access, vol. 8, Article ID 158293, 2020.

[26] L. Xu, M. Cheng, and Y. Zhang, “A mixed-load school bus
routing problem to minimize the total cost,” in Proceedings of
the CICTP 2020, pp. 4929–4942, Xi’an, China, December
2020.

[27] S. P. Parvasi, R. Tavakkoli-Moghaddam, A. A. Taleizadeh, and
M. Soveizy, “A Bi-level Bi-objective mathematical model for
stop location in a school bus routing problem,” IFAC-
PapersOnLine, vol. 52, no. 13, pp. 1120–1125, 2019.

[28] D. Zhang and K.-H. G. Bae, “School bus routing and student
assignment with special-need student consideration,” in
Analytics, Operations, and Strategic Decision Making in the
Public Sector, G. W. Evans,W. E. Biles, and K.-H. G. Bae, Eds.,
IGI Global, Hershey, PA, USA, pp. 38–63, 2019.

[29] M. R. Sayyari, R. Tavakkoli-Moghaddam, A. Abraham, and
N. Oladzad-Abbasabady, “A school bus routing and sched-
uling problem with time windows and possibility of out-
sourcing with the provided service quality,” in Advances in
Intelligent Systems and Computing, pp. 829–839, Springer,
Cham, 2021.
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