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�is paper solves the problem of di�culty in achieving satisfactory results with traditional methods of bearing fault diagnosis,
which can e�ectively extract the fault information and improve the fault diagnosis accuracy. �is paper proposes a novel arti�cial
intelligence fault diagnosis method by integrating complementary ensemble empirical mode decomposition (CEEMD), energy
entropy (EE), and probabilistic neural network (PNN) optimized by a sparrow search algorithm (SSA). �e vibration signal of
rolling bear was �rstly decomposed by CEEMD into a set of intrinsic mode functions (IMFs) at di�erent time scales. �en, the
correlation coe�cient was used as a selection criterion to determine the e�ective IMFs, and the signal features were extracted by
EE as the input of the diagnosis model to suppress the in�uence of the redundant information and maximize the retention of the
original signal features. Afterwards, SSA was used to optimize the smoothing factor parameter of PNN to reduce the in�uence of
human factors on the neural network and improve the performance of the fault diagnosis model. Finally, the proposed CEEMD-
EE-SSA-PNNmethod was veri�ed and evaluated by experiments.�e experimental results indicate that the presentedmethod can
accurately identify di�erent fault states of rolling bearings and achieve better classi�cation performance of fault states compared
with other methods.

1. Introduction

Rolling bearings often work under complex operating
conditions such as heavy load, impact, and variable speed.
�e faults of rolling bearings may seriously a�ect the normal
operation of mechanical equipment and even cause safety
accidents. �erefore, the condition detection and fault di-
agnosis of rolling bearings are of great signi�cance to ensure
the safe operation of mechanical equipment [1]. Feature
extraction and classi�cation identi�cation are the most
important parts in the bearing fault diagnosis process.

E�ectively extracting the features of the rolling bearings
is the key to recognize di�erent fault states in the fault
diagnosis [2]. However, the early fault signal of bearing is
weak and easy to be corrupted by noise, which will make the
fault feature extraction di�cult. In addition, the vibration
signal has the characteristics of nonlinearity and

nonstationary due to the vibration coupling of mechanical
system and the in�uence of complex environment, which
will make it hard to extract fault features only from the
perspective of time domain, frequency domain, or time-
frequency domain [3]. Presently, some signal analysis
methods, such as wavelet transform (WT), empirical modal
decomposition (EMD), ensemble empirical modal decom-
position (EEMD), complementary ensemble empirical mode
decomposition (CEEMD) as well as variational mode de-
composition (VMD), have been applied to extract signal
features. �e WT method has good time-frequency locali-
zation characteristics but lacks self-adaptation due to dif-
�culties in determining wavelet basis and decomposition
levels [4]. �e EMD method proposed by Huang et al. [5]
adaptively decomposes a signal into the sum of several
intrinsic modal functions (IMFs), which has good decom-
position performance and can stabilize the nonstationary
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data. *is method is considered as a significant break-
through of traditional time-frequency analysis methods and
has been frequently applied in the field of mechanical fault
diagnosis. However, it suffers from the drawbacks of mode
mixing and endpoint effects [6, 7]. *e EEMD method is
proposed to reduce the mode mixing by adding Gaussian
white noise with different values to the original signal, which
can make the extreme point distribution in the original
signal change and reliably eliminate the phenomenon of
modal aliasing. For avoiding interference from the added
Gaussian white noise, the mean value of the decomposed
results is solved based on the zero-mean characteristics of
the Gaussian white noise. With the increase of the number of
operations to calculate the mean value, the decomposition
results will be less affected by the added Gaussian white
noise. However, EEMD clearly has the disadvantages of
excessive iterative loss time and low decomposition accuracy
[8, 9]. Yeh et al. [10] proposed the CEEMD method to
further suppress the adverse effects of Gaussian white noise
on the reconstruction of the original signal. Unlike the
EEMDmethod, which only adds Gaussian white noise to the
original signal once during the operation of averaging,
CEEMD introduces the corresponding opposite value on the
basis of adding Gaussian white noise, and realizes the op-
eration of adding positive and negative Gaussian white noise
to the signal, respectively, to perform double averaging.
*erefore, CEEMD can more thoroughly eliminate the re-
construction error caused by the addition of Gaussian white
noise [11, 12]. *e VMD algorithm is a nonrecursive signal
decomposition method proposed by Dragomiretskiy and
Zosso [13], which uses an iterative search for the optimal
solution of the variational model to determine the frequency
center and bandwidth of each decomposition part. It can
transform the constrained variational problem into a non-
constrained one by introducing a quadratic penalty factor
and Lagrangian multiplication operator, and has a complete
mathematical basis and solution method. Huang et al. [14]
proposed a modified scale-space VMD to improve the
adaptability of variational mode decomposition and com-
putational efficiency. Lv et al. [15] studied a support vector
machine algorithm based on VMD and refined the com-
posite multiscale dispersion entropy to realize the rapid and
effective identification of bearing fault types. However, the
VMD method has the problem of selecting the proper de-
composition parameters including the mode number and
bandwidth control parameter. If the two parameters are
optimized independently and the interaction between them
is neglected, it would cause a trap in local optimization. *e
intelligence optimization algorithms are prevalent options
for the optimizing of VMD decomposition parameters.
However, there is no unified standard for the construction of
objective function for the VMD parameter optimization,
such as kurtosis, entropy, and correlation coefficient, which
directly influences the performance of decomposition. To
achieve the optimal selection of the two parameters in VMD,
Zhang et al. [16] propose a parameter-adaptive VMD by
using the grasshopper optimization algorithm to improve
the performance of VMD, in which the maximum weighted
kurtosis index was used as optimization objective. Gai et al

[17] utilized the hybrid grey wolf optimizer algorithm to
search for the optimal parameter combinations in VMD for
the early fault diagnosis of rolling bearing. Recently, Ni et al.
[18] proposed a fault information-guided VMD (FIVMD)
method for extracting the weak bearing repetitive transient
under complicated operating conditions, which used the
generalized Gaussian cyclostationary (GGCS) model and the
generalized Gaussian stationary (GGS) model to determine
the mode number, and employed the ratio of fault char-
acteristic amplitude (RFCA) to identify the optimal band-
width control parameter.

After feature extraction, classification identification is
another critical step to fault diagnosis by using an intelligent
pattern classifier. In essence, fault diagnosis can be regarded
as a process of fault pattern recognition. Early classification
identification mainly depends on manual experience, which
has great limitations in terms of real-time and accuracy of
fault diagnosis. Current development of mechanical
equipment is in the direction of high speed, high precision,
and high efficiency; the field of mechanical health detection
has entered the era of big data, artificial intelligence, and
machine learning technologies which have been widely used
in intelligent fault diagnosis of mechanical equipment. A
series of artificial intelligence methods such as support
vector machines (SVM) [19, 20], k-nearest neighbor (KNN)
[21], convolutional neural network (CNN) [22, 23], artificial
neural network (ANN) [24], recurrent neural network
(RNN) [25], gated recurrent unit (GRG) [26], etc., have been
used in the field of fault diagnosis. *e application of the
artificial intelligence methods can make progressively the
fault diagnosis of rolling bearings more efficient and ef-
fective. However, there still reminds some challenges while
developing the artificial intelligence and machine learning
methods including local minimum and over-fitting.

Probabilistic neural network (PNN) [27] is an intelligent
algorithm based on Bayesian decision theory and Parzen
window probability density function and is developed on the
basis of radial basis function neural network. Compared
with other artificial intelligence methods, the computational
process of PNN is relatively simple, and it has a fast con-
vergence rate in running computation, with results always
converging to the Bayesian optimal solution. Moreover,
PNN has ultra-high stability and strong fault tolerance for
individual abnormal data, especially in the field of fault
diagnosis. For newly added or deleted sample data, it does
not need retraining, while maintaining high classification
accuracy and can also meet the requirements of modification
at any time in sample training. Liu et al. [28] proposed a fault
diagnosis algorithm which combines CEEMD and energy
moment calculation with PNN algorithm to improve the
performance on the feature extraction from bearing signals
and the accuracy of the fault diagnosis. Zhao et al. [29]
combined fast iterative filter decomposition with PNN to
decompose the bearing signal into several eigen modal
functions and extract the EE values as the feature vector,
which can rapidly and accurately identify the faults at dif-
ferent positions of the bearing.

As the only input parameter for PNN, the choice of
smoothing factor has a great influence on the final
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identification performance of the network model. However,
the smoothing factor in traditional PNN depends on em-
pirical values and lacks self-adaptability [30]. *erefore, it is
essential to optimize the smoothing factor of PNN to im-
prove the classification accuracy and calculation speed.
Although many traditional optimization algorithms have
carried out relevant research, some deterministic methods,
such as the Lagrange, conjugate gradient, and simplex
method, cannot provide a fitting solution with highly
nonlinear search domains in PNN and are easy to get
trapped in local optimal solutions [31]. Exploring the most
suitable smoothing factor of PNN by using such deter-
ministic methods is not always possible or feasible. In recent
years, the swarm intelligence algorithm has been applied
because of its simple structure and high solving efficiency in
the fields of machine learning, process control, and pattern
recognition. As a meta-heuristic optimization algorithm, the
swarm intelligence optimization algorithm imitates the
behavior of biological populations or natural phenomena in
nature, which has intelligent characteristics such as self-
adaptation, self-learning, and self-organization, and is
convenient for large-scale parallel computing. *ere have
been many different swarm intelligence optimizations
available in the existing literature. Among them, genetic
algorithm (GA) and particle swarm optimization (PSO)
algorithm are the most representative methods and have
been successfully applied in many engineering problems
[32]. Currently, more and more new swarm intelligence
algorithms are proposed, such as bat algorithm (BA) [33],
monarch butterfly optimization (MBO) [34], slime mould
algorithm (SMA) [35], moth search algorithm (MSA) [36],
hunger games search (HGS) [37], Runge Kutta method
(RUN) [38], colony predation algorithm (CPA) [39],
weIghted meaN oF vectOrs (INFO) [40], and Harris hawks
optimization (HHO) [41].

Sparrow search algorithm (SSA) [42] is a new swarm
intelligence optimization algorithm based on the foraging
and anti-predation behaviors of sparrows proposed by Xue
et al. In detail, SSA has the advantages of fast convergence,
high search accuracy, and good stability, which can help the
population to find the optimal solutionmore quickly. Li et al.
[43] provided a review of relevant studies on six more typical
swarm intelligence algorithms proposed since 2010, in-
cluding BA, grey wolf optimization (GWO), dragonfly al-
gorithm (DA), whale optimization algorithm (WOA),
grasshopper optimization algorithm (GOA), and SSA, and
further compared the experimental performance of these
algorithms by using 22 standard CEC test functions in terms
of the convergence speed, accuracy, stability, and robustness.
From the comprehensive comparison of the experimental
results, the performance of the SSA proposed in 2020 is far
superior to the other five optimization algorithms, and it has
great potential. *erefore, this paper employs SSA to op-
timize the parameters of PNN.

In view of the drawbacks of the abovementioned feature
extraction methods and the limitations of classification
identification, in this paper, a method combining CEEMD
and PNN is proposed to identify the fault type of rolling
bearings. *e vibration signal is decomposed into a series of

IMFs by CEEMD, and the energy entropy (EE) value of the
first few IMF components with high correlation are esti-
mated. *e difference of the EE values under different
working conditions can effectively reflect the characteristics
of fault type. Extract the EE values to form a feature vector to
input into PNN, which was chosen as the basis for the fault
diagnosis classifier. Since the classification performance of
PNN is easily affected by the smoothing factor, the PNN
model optimized by sparrow search algorithm is used to
train and identify the different fault states of rolling bearings.
*e effectiveness of the proposed method is analyzed
through the measured rolling bearing test. Experimental
results show that the fault diagnosis performance of the
proposed method is better than that of other similar fault
diagnosis methods of rolling bearings.

*e remainder of this paper is organized as follows:
Section 2 introduces the related theories of the proposed
method. *e overall procedure of the proposed fault diag-
nosis model is presented in Section 3. Section 4 presents the
simulation experiment to verify the proposed method in
decomposition performance. In Section 5, the proposed fault
diagnosis model based on CEEMD, EE, and SSA-optimized
PNN is validated in comparison experiments. Section 6
draws the conclusions of this work.

2. Theoretical Background

2.1. Complementary Ensemble Empirical Mode
Decomposition. *is work selects CEEMD to process the
original vibration signal, which is the improvement of EMD
and CEEMD. *e traditional EMD is able to adaptively
decompose a nonstationary time-series signal into a series of
relatively stable intrinsic mode components (IMFs) as well as
a standard residual in which each IMF reflects the dynamic
characteristics of the original signal. However, some non-
linear signals with abnormal interference can producemodal
aliasing, resulting in the appearance of different time-scale
characteristics simultaneously in the same modal compo-
nent. EEMD adds Gaussian white noise to the original signal
and takes advantage of the uniform feature of Gaussian
white noise spectrum to make the signals of different time
scales automatically distributed to a suitable reference scale,
which can effectively suppress modal aliasing. However, the
implementation of repeated decomposition of the signal
several times and averaging by EEMD do not eliminate the
effect of the added Gaussian white noise on the decompo-
sition results, and the operation efficiency is low.

*e CEEMD algorithm can solve the interference of
Gaussian white noise and the problem of generating error in
signal reconstruction. *e empirical modal and empirical
modal decomposition of the two groups of signals, re-
spectively, by adding a pair of Gaussian white noise with the
same phase but opposite amplitude to the original signal can
significantly reduce the reconstruction error since the added
Gaussian white noise is neutralized. *e CEEMD method
not only effectively solves the problem of mode mixing
caused by EMD but also overcomes the defect of the in-
completeness of signal reconstruction by EEMD [44]. *e
concrete steps of CEEMD are as follows:
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(1) Set the total aggregation time M and the root mean
square (RMS) amplitude of added Gaussian white
noise a, and i� 1.

(2) Add a pair of Gaussian white noise with the same
phase but opposite amplitude to the original signal to
obtain two new sets of signals

p
+
i (t) � x(t) + ni(t),

p
−
i (t) � x(t) − ni(t),

⎧⎨

⎩ (1)

where x(t) is the original signal, ni(t) is the added
Gaussian white noise for ith time, p+

i (t) and p−
i (t)

represent the signal after adding positive and neg-
ative Gaussian white noise for the ith time,
respectively.

(3) Decompose p+
i (t) and p−

i (t), respectively, by EMD
to obtain two sets of IMF components, and the
number of components in each group is K, then

p
+
i (t) � 

K

j�1
c

+
i,j(t) + r

+
i (t),

p
−
i (t) � 

K

j�1
c

−
i,j(t) + r

−
i (t),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

where c+
i,j(t) and c−

i,j(t) are the jth IMF component
decomposed after adding Gaussian white noise for
the ith time, K is the number of IMF components,
r+

i (t), and r−
i (t) are the residuals after

decomposition.
(4) i� i+ 1, repeat steps (2) and (3) until the condition

i�M is satisfied. Noted that the magnitude of
Gaussian white noise is different for each addition
with the different i.

(5) Take the average value of all IMF components after
M times of decomposition as the final IMF
components

cj(t) �
1
2M



M

i�1
c

+
i,j(t) + c

+
i,j(t) , (3)

where cj(t) is the jth IMF component obtained by
the CEEMD, j � 1, 2, · · · , K.

*e difference between the original signal and the sum of
all IMF components obtained by CEEMD can evaluate the
effect of the added white noise on the decomposition results
as follows:

ε �
a
��
M

√ , (4)

where ε is the final standard deviation of the reconstruction
error.

Reducing the value of a contributes to improve the
decomposition accuracy, and the value of a is usually taken
as 0.1–0.3 times of the standard deviation of the original
signal. When a is small to a certain degree, it is not enough to
cause the local extreme points of the signal to change, and

failing to alter the local time span of the original signal makes
it difficult to achieve the goal of utilizing as many scales as
possible to analyze the signal. On the other hand, increasing
M also decreases the reconstruction error but greatly in-
creases the computation time. WhenM is 100–300, the error
caused by the residual white noise can be small enough in
general, and increasing the execution time does not sig-
nificantly improve the decomposition accuracy.

2.2. CorrelationCoefficientCriterion. *e IMFs decomposed
by CEEMD are arranged from high frequency to low fre-
quency; however, the IMFs with high frequency may contain
random noise and the IMFs with low frequency may contain
trend terms, spurious components, and residual compo-
nents due to interpolation error and boundary effect. Only a
part of IMFs can characterize the essential nature of the
original signal, while the rest are some false mode com-
ponents caused by noise. *erefore, the invalid IMF com-
ponents need to be removed to maximize the retention of
original signal features.

*e correlation coefficient was applied as the criterion
to select the effective IMF components, which is an im-
portant parameter to evaluate the correlation degree be-
tween the original vibration signal and each decomposed
IMF component. If the correlation coefficient of the
component is large, it indicates that the correlation between
the component and the original signal is strong, in which
the bearing operating state features contained are abun-
dant. On the contrary, it shows that the bearing operation
state characteristics contained in this component are less,
and even there may be false components, which will disturb
the fault diagnosis. By calculating the correlation coefficient
between each IMF component and the original signal, the
IMFs with relatively large correlation coefficient can be
selected to represent the effective information in the
original signal. *e correlation coefficient can be defined as
follows:

Cr(j) �


Nd

i�1 cj,i − cj  xi − x( 
�������������


Nd

i�1 cj,i − cj 
2

 ������������


Nd

i�1 xi − x( 
2

 , (5)

where Cr(j) is the correlation coefficient between the jth IMF
component cj(t) and the original signal x(t), Nd is the
number of data points, xi is the ith data point of the original
signal x(t), cj,i is the ith data point of the jth IMF component
cj(t), cj and x are the average values of the corresponding
signal data points, respectively.

In this way, the original signal can be reconstructed
using IMF components filtered by the correlation coefficient
principle, resulting in effective suppression of noise to en-
sure the accuracy of subsequent feature extraction and fault
diagnosis.

2.3. Energy Entropy. Entropy is a powerful tool to analyze
the dynamic changes of signals, which can represent the
disorder degree of a complicated signal. *e purpose of
extracting feature information can be achieved by using the
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characteristic that entropy can effectively detect the com-
plexity of the vibration signal of the bearing in case of fault.
When the bearings operate in different states, there is a great
difference in the energy of vibration signals, and the dis-
tribution of the energy in different frequency bands will
change. *erefore, the different signal energy distribution of
the bearing under different working conditions can be used
as the basis for identifying the fault type. As an information
entropy feature extraction method, energy entropy can
characterize the signal change from the perspective of energy
change. Here, energy entropy is introduced to judge dif-
ferent fault states of rolling bearings.

Given h effective IMF components selected by the
correlation coefficient criterion, the energy value of each
IMF component can be expressed as

Ej � 
+∞

−∞
cj(t)




2
dt, j � 1, 2, · · · , h, (6)

where Ej is the energy value of the jth IMF component.
*e total energy of h effective IMF components can be

calculated as

E � 
h

j�1
Ej. (7)

*e proportion of the energy of each IMF component to
the total energy is taken as its probability value as

Pj �
Ej

E
, (8)

where Pj is the proportion of the energy of the jth IMF
component to the total energy.

*en, the EE values of each IMF component can be
expressed as:

Hj � − 
h

j�1
Pj lnPj, (9)

where Hj is the EE value of the jth IMF component.

2.4. Probabilistic Neural Network. Probabilistic neural net-
work (PNN) is a radial basis network based on the theory of
Bayesian decision, and Parzen window function, which can
solve nonlinear problems with a linear learning algorithm
and has the advantages of simple learning process, fast
training speed, more accurate classification, good fault
tolerance, etc. *e PNN structure is composed of four layers:
input layer, pattern layer, summation layer, and output layer,
as shown in Figure 1.

*e function of the input layer is to receive the input
feature vector x � [x1, x2, · · · , xh]T from the training set and
directly transfer these values to the pattern layer without any
operation, in which the dimension of the input vector is
equal to the number of neurons in the input layer.

*e pattern layer is connected to the input layer by
connecting weights, and the number of neurons in the
pattern layer is equal to the product of the training types and
the number of samples, in which the Gaussian function of

each sample, and the output function of the pattern layer is
expressed as:

ϕik(x) �
1

(2π)
h/2σh

exp −
x − xik( 

T
x − xik( 

2σ2
 , (10)

where i � 1, 2, · · · , b, k � 1, 2, · · · , mi, b is the number of all
types of training samples, mi is the number of ith type of
training samples, h is the dimension of the testing sample
vector x and the training sample vector xik, σ is the
smoothing factor, and xik is the kth center value of the ith
type of training sample.

*e summation layer averages the output weights of the
neurons belonging to the same type of pattern layer and the
result is as follows:

gi(x) �
1

mi



mi

k�1
ϕik(x), (11)

where gi(x) is the output of ith type of training samples in
the summation layer.

*e number of neurons in the summation layer is the same
as the total number of pattern layer, and the neurons in this
layer are only connectedwith the corresponding neurons in the
pattern layer and will not be connected with other neurons.

*e output layer is composed of competing neurons with
the same number of neurons as the summation layer, in
which each neuron corresponds to a kind of pattern, re-
spectively. Its function is to receive the output generated by
the summation layer and set the type corresponding to the
highest probability in the network summation layer as the
output result. *e result is as follows:

Input layer Pattern layer Summation layer Output layer

xh

x2 y(x)

g1(x)

g2(x)

gi(x)

gb(x)

x1

xbmb

ximi

x2m2

x1m1

xb1

xi1

x21

x11

...
...

...
...

...
...

...
...

...

Figure 1: Probabilistic neural network structure diagram.

Computational Intelligence and Neuroscience 5



y(x) � argmax
i�1,2,···,b

gi(x) . (12)

When the data and types of the training samples are
determined, the structure of the probabilistic neural
network and the number of neurons in each layer are
fixed and the performance of the network model depends
on the choice of smoothing factor σ. Since the smoothing
factor is related to the correlation degree between the
layers of the training sample, an optimization algorithm
needs to be employed to select an appropriate smoothing
factor.

2.5. Sparrow Search Algorithm. Sparrow search algorithm
(SSA) is a novel intelligent optimization algorithm with fast
convergence speed and strong optimization ability, which is
proposed according to the behavior of sparrows foraging
and escaping from predators. SSA takes into account all
possible factors of population behavior, so that the algorithm
can quickly converge to the optimal value with good global
optimization ability and stability. *e performance of SSA
had been discussed in great detail by previous research work
[42, 43], and the experimental studies have shown that SSA
has strong competitiveness with good convergence speed
and exploitation capability for the optimization of the
unimodal test functions, multimodal test functions, and
fixed-dimension test functions. Moreover, SSA has a good
search ability to explore the potential region of the global
optimum, and the local optimum can be avoided effectively.
Overall, the SSA employed in this paper has the following
advantages: (1) it is promising for real complex and chal-
lenging optimization problems with constrained and un-
known search domains; (2) it is easy to implement, and has a
strong ability to adapt to various types of optimization
problems; (3) it has a good ability of global exploration and
local exploitation; and (4) it has strong scalability, stability,
and robustness.

*e search process can be abstracted as a discoverer-
follower-scouter model, and their identities constitute a
dynamic balance in the sparrow population. *e discoverer
is responsible for guiding the population to forage, and the
follower follows the discoverers to obtain food. Meanwhile, a
certain proportion of individuals in the population are se-
lected as scouters for detection and early warning, which
keep alert to environmental threats and warn the sparrow
population to move to closer to safe areas [45].

In the SSA model, the discoverers with good fitness
evaluation are able to find the food area and obtain food first
during the search process, and the discoverers have a larger
foraging search range than the followers since they are re-
sponsible for providing the feeding direction for the sparrow
population.

Assuming the number of sparrows is R and the di-
mensionality of the optimization variables is D,
Xr � [Xr,1, · · · , Xr,d, · · · , Xr,D] is the position of the rth
sparrow, Xr,d is the position of the rth sparrow in the dth
dimension,r � 1, 2, · · · , R. *e position of the discoverer is
updated during the iterative process as follows:

X
t+1
r,d �

X
t
r,d · exp −

r

λ · tmax
 , if VW <VST,

X
t
r,d + Q · L, if VW ≥VST,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

where t is the current number of iterations, d � 1, 2, · · · , D,
tmax is the maximum number of iterations, Xt

r,d is the
current position of the rth sparrow in the dth dimension
at iteration t, λ ∈ (0, 1] is a random number, VW is the
early warning value, VST is the safety threshold, and
VW ∈ [0, 1], VST ∈ [0.5, 1]. Q is a random number with a
normal distribution. L is a 1 ×D matrix in which each
element is 1. When VW <VST, the discoverer can perform
an extensive foraging search, and there are no predators
around foraging at this time. When VW ≥VST, this in-
dicates that there have been sparrows finding predators
and alerting other sparrows in the population, the dis-
coverer will lead other sparrows quickly to other safe
areas for foraging.

*e worse the foraging position of the followers in the
group, the lower the corresponding energy will be. *e
followers can always find discoverers who provide rich
resources during foraging, facilitating better food for
them. To increase the chances of getting food, the followers
will continuously monitor the discoverers and rob food
resources. *e position of the follower is updated as
follows:

X
t+1
r,d �

Q · exp
X

t
W − X

t
r,d

r
2 , if r>

R

2
,

X
t+1
p + X

t
r,d − X

t+1
p



 · A
+
L, if r≤

R

2
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

where Xp is the optimal position currently occupied by the
discoverer, and XW is the current global worst location. A is
a 1×Dmatrix in which each element is randomly assigned 1
or −1, and A+ � AT(AAT)− 1. When r>R/2, this indicates
that the rth follower in the population does not get food and
needs to fly elsewhere to get more energy. When r≤R/2, this
indicates that the rth follower will randomly seek a location
for foraging near the current optimum.

When attacked by outsiders, the individual sparrows on
the edge of searching and foraging will continuously adjust
their position and move closer toward the inner safety area,
and the individual sparrows in the inner safety area will try
to get closer to their companions to increase their safety.*e
process of individual sparrows updating the location is as
follows:

X
t+1
r,d �

X
t
B + β · X

t
r,d − X

t
B


, if fr >fB,

X
t
r,d + u ·

X
t
r,d − X

t
W




fr − fW(  + ε
 , if fr � fB,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

where XB is the current global optimal location. β is a
normal distribution of random numbers with a mean value
of 0 and a variance of 1, called the step size control
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parameter. u ∈ [−1, 1] is a random number, which controls
the direction of the sparrowmovement as well as the step. fr

is the fitness value of the present sparrow, fB and fW are the
current global best and worst fitness values, respectively. ε is
the smallest constant to avoid zero-division-error. When
fr � fB, this means that the sparrow individuals in the
middle of the population are aware of the danger of pre-
dation and immediately move closer to others to reduce their
risk.When fr >fB, this represents that the current sparrows
are located at the edge of the population and highly vul-
nerable to predation.

2.6. ;e Proposed SSA-PNN Model. *e classification per-
formance of PNN model is significantly affected by the
smoothing factor σ. If the value of smoothing factor is too
large, the network model is to convert into a linear clas-
sifier, which cannot achieve a fine discrimination for dif-
ferent types with less distinct boundaries. If the value of the
smoothing factor is too small, it is equivalent to a nearest
neighbor classifier, which only isolates the training sam-
ples. *e selection of smoothing factor in traditional PNN
often depends on manual experience, which cannot get the
optimal smoothing factor. To improve the classification
performance of the PNN network, the SSA algorithm is
used to search for the most suitable smoothing factor to
construct a SSA-PNN fault diagnosis model. *e process of
SSA-PNN model is as follows: inputting the training
sample data, setting the initial position, population size,
and maximum number of iterations, and calculating the
fitness value (i.e. the relative error between the predicted
value by PNN and the actual value) of the individual po-
sition (i.e. the smoothing factor in PNN). Comparing the
fitness value obtained for the current and the previous
iteration, if the fitness value is better than the previous
iteration, the optimal fitness value and its corresponding
position are retained.

Repeat the above process until the iteration termination
condition is satisfied and the optimal smoothing factor of the
PNN can be obtained to construct the SSA-PNNmodel. *e
optimization process of the SSA-PNN application steps are
as follows:

Step 1. Select the processed data as the training sample,
and take different fault classes as different labels to
build the dataset.
Step 2. Initialize SSA-related parameters, including the
number of population, upper and lower boundaries,
maximum number of iterations, the proportions of
discoverers and scouters in the total population, the
early warning value, and set the initial smoothing factor
of the PNN network.
Step 3. Take the error recognition rate of training
samples by PNN classification as the fitness function,
calculate and sort the initial fitness value to obtain the
global worst and best fitness value.
Step 4. Update the locations of the discoverer, follower,
and scouter according to formulas (13)–(15).

Step 5. Obtain the current fitness value based on the
new updated location and compare it with the previous
optimal value. If the new location is better than before,
update it.
Step 6. Repeat steps 3 to 5 within themaximum number
of iterations, and continuously adjust the smoothing
factor to maximize the accuracy of classification during
the optimization process.
Step 7. Output the global optimal value and optimal
fitness value, and build the SSA-PNN model by the
obtained optimal smoothing factor.

3. Fault Diagnosis Process of the Proposed
CEEMD-EE-SSA-PNN Model

Based on the above research, a novel fault diagnosis method
for rolling bearings by integrating CEEMD, EE, and PNN
optimized by SSA is proposed. *e flow chart of the pro-
posed fault diagnosis method is presented in Figure 2, and
the specific description of the corresponding steps is given as
follows:

Step 1. Collect the vibration signals of rolling bearings
under different operating conditions by acceleration
sensors.
Step 2. Use CEEMD to decompose the original vi-
bration signal of each state to obtain K IMF
components.
Step 3. Extract the EE values of the h effective IMFs with
the relatively large correlation coefficient to form a
feature vector, which is divided into a training sample
set and a testing sample set.
Step 4. Initialize the parameters of PNN classification,
and input the training samples set into the PNN
classification for training.
Step 5. Set the initial parameters of SSA, and use the
SSA algorithm to optimize the smoothing factor σ of
PNN.
Step 6. Substitute the optimized smoothing factor σ
into PNN for training to establish the SSA-PNN di-
agnosis model.
Step 7. Input the testing samples set into the trained
SSA-PNN prediction model for fault pattern
recognition.

4. Simulation Experiment

To illustrate the superiority of CEEMD over EMD and
EEMD, a simulation experiment is designed. In this ex-
periment, the simulated signal xs(t) is composed of an in-
termittent signal x1(t) and three sinusoidal signals with
different initial phases, amplitudes, and frequencies x2(t),
x3(t), x4(t), and the decomposition performance of the three
methods in dealing with mode mixing and signal recon-
struction are compared and analyzed.*e simulated signal is
constructed as follows:
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x1(t) � sin 2π × f1 × t(  e
−2000(t−0.2)2

+ e
−2000(t−0.5)2

+ e
−2000(t−0.8)2

 ,

x2(t) � sin 2π × f2 × t +
π
2

 ,

x3(t) � 2 sin 2π × f3 × t +
π
3

 ,

x4(t) � 3 sin 2π × f4 × t −
π
4

 ,

xs(t) � x1(t) + x2(t) + x3(t) + x4(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

where f1 � 150, f2 � 75, f3 � 30, f4 �10, the sampling frequency
is 1000Hz, and the sampling time is 1 s. *e time domain
diagram of the simulated signal is shown in Figure 3.

*e decomposed IMFs of the simulated signal by EMD
are shown in Figure 4. As can be seen from Figure 4, the
waveform of IMF 1 component is influenced by the inter-
mittent signal, which contains not only the intermittent
signal x1(t) but also another sinusoidal signal x2(t) with
higher frequency. Furthermore, IMF 2 affected by IMF 1 also
includes an intermittent signal x1(t) and two low-frequency
sinusoidal signals x2(t) and x3(t), which leads to a significant
mode mixing in all IMFs andmakes it difficult to identify the
real physical meaning of each IMF.

*e EEMD method was utilized to decompose the same
simulated signal, and the decomposed results are shown in
Figure 5, in which 500 ensemble members were adopted and
the RMS amplitude of the added Gaussian white noise was
0.1 times of the standard deviation of the simulated signal.
As shown in Figure 5, the phenomenon of modal mixing of
IMF components was greatly suppressed by EEMD, the

intermittent signal x1(t) was concentrated with the added
white noise in IMF 1, IMF 2 approximately agreed with
sinusoidal signal x2(t) in the original simulation signal, IMF
3 and IMF 4 corresponded to sinusoidal signal x3(t) and x4(t)
in the simulation signal, respectively, which demonstrated
EEMD can effectively solve the problem of mode mixing.

Figure 6 presents the IMFs decomposed from the sim-
ulated signal by CEEMD, where the number of total ag-
gregation times was 200 and the RMS amplitude of added
white noise was 0.1 times of the standard deviation of the
simulated signal. *e decomposition results are similar to
those obtained by EEMD. As can be seen from Figure 6, IMF
1 has a little of a mixture of the intermittent signal x1(t)
contaminated to a certain extent by the added noise, and the
sinusoidal waveforms x2(t), x3(t), and x4(t) as the compo-
nents of the original simulated signal were well recon-
structed in the corresponding IMFs.

However, in fact, there is a significant difference between
the signal reconstructed through IMFs and the original
signal. To evaluate the decomposition performance, the

Signal collection and
decomposition by CEEMD

Collect vibration signal

Perform CEEMD

Calculate the correlation
coefficient

Select the effective IMFs

Calculate the energy
entropy of each IMF as

feature vector

Calculate the
fitness values and

rank them

Initialize SSA
parameters

Initialize PNN
parameters

Training
sample set

Testing
sample set

Fault classification by PNN

Output the
classification

results

Establish trained
SSA-PNN model

Yes

No

Is the maximum
iteration reached?

Update the new
position

Get the current
optimal fitness

value

Update position of
discoverer, follower

and scouter

Select the current
best and worst values

Output PNN optimal
smoothing factor σ

Feature extraction Parameter optimization by SSA

Figure 2: Flow chart of the proposed CEEMD-EE-SSA-PNN model for fault diagnosis.

8 Computational Intelligence and Neuroscience



reconstruction error (RE) is defined as the difference be-
tween the reconstructed and the original signal and is shown
in Figure 7. As can be seen from Figures 7(a) and 7(b), the
reconstruction error derived from EEMD and CEEMD is
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very different, the average amplitude of the former is around
0.05, while the corresponding value of the latter is only 10−15.
*e results of simulation experiments indicate that CEEMD
not only solves the mode mixing problem of EMD but also
overcomes the drawback of incompleteness in signal re-
construction with added white noise in EEMD.

5. Experimental Research

5.1. Experimental Data. To validate the performance of the
proposed method for fault diagnosis of rolling bearings, the
experimental dataset is from the bearing database of Case
Western Reserve University (CWRU) [46]. *e bearing
experimental device mainly includes motor, torque sensor,
power tester, and electronic control equipment.

*e speed of the motor was 1797 r/min and the sampling
frequency of the vibration signal was set to 12 kHz, the load
was 2 hp, and the sampling time was 10 s. *e vibration
signals of the SKF6025 bearing were collected by accelerated
transducers at the driving end with two different fault di-
ameters of 7 mil and 14 mil (1 mil� 0.001 inches), respec-
tively. *ere are three kinds of bearing faults generated by
electro-discharge machining, including inner ring fault,
outer ring fault, and roller fault. In this study, the vibration
datasets under six operating conditions were collected, in-
cluding one normal bearing and five fault bearings. To fa-
cilitate classification, the six fault types with different fault
locations and fault sizes are artificially set as class labels 1 to
6: Nor, I07, O07, R07, I14, and O14. *e collected vibration
signals in each state were divided into 50 groups of samples,
each of which contained 2400 sampling points. *ese fault
samples were divided into 30 training samples for training
the network and 20 testing samples for verifying the ef-
fectiveness of the fault diagnosis model, respectively. *e
detailed description of the analysis samples in different states

and the parameters of the bearing are shown in Table 1. Take
one sample of the original vibration signal for each fault
type, and the time domain waveforms of first 0.2 s in six
working conditions of rolling bearings are shown in
Figure 8.

5.2. Signal Decomposition by CEEMD. Comparing the time
domain waveforms of vibration signals in different states of
the bearing in Figure 8, it can be seen that when the bearing
operates in the normal state, the amplitude of the vibration
signal is relatively small and the signal is relatively stable;
when the bearing is in the fault state, the vibration signal
becomes strong and the amplitude of vibration will be in-
creased; when the inner ring or outer ring of the bearing
fails, the periodic impact signals will be generated, and the
impact of outer ring fault is stronger than that of the inner
ring fault; when the roller fails, it generally shows continuous
vibration without obvious periodic impact signal. However,
it is difficult to directly determine the working state of the
bearing according to the vibration signal.

*e CEEMD method was adopted to decompose the
vibration signals to obtain a series of IMF components with
frequencies ranging from high to low, in which the ratio of
the RMS amplitude of the added Gaussian white noise to the
standard deviation of the vibration signal was 0.1 and the
number of aggregation times was set to 200. *en, calculate
the correlation coefficients between each IMF component
and the original vibration signal.

Figure 9 shows the correlation coefficients of each IMF
component with the original signal of the above six bearing
states decomposed by CEEMD. As can be seen from Fig-
ure 9, almost all correlation coefficients have a significant
decrease starting from the 6th IMF, which illustrates that the
first five IMF components have a strong correlation with the
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Figure 7: Reconstruction error derived by EEMD and CEEMD. (a) EEMD. (b) CEEMD.

Table 1: Description of the experimental dataset.

Label Fault type description Abbreviation of fault type Fault size (mil) Training sample number Testing sample number
1 Normal Nor 0 30 20
2 Inner ring fault I07 7 30 20
3 Outer ring fault O07 7 30 20
4 Roller fault R07 7 30 20
5 Inner ring fault I14 14 30 20
6 Outer ring fault O14 14 30 20
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original signal and can contain the main characteristic in-
formation in the original signal.*erefore, the first five IMFs
decomposed by CEEMD are selected as the effective com-
ponents for feature extraction. *e first five IMF compo-
nents of the six fault signals from high frequency to low
frequency after CEEMD decomposition are shown in
Figure 10.

5.3. Feature Extraction by Energy Entropy. *e EE value can
reflect the uncertainty of the signal distribution in this
frequency band, and different EE value distributions can
represent the signals of different states of bearing. To verify
that the EE value of IMF component can be used as a feature
vector of bearing fault, the difference and repeatability of the
EE value of IMF components under different operating
states of bearing are analyzed, respectively.

*e EE values can be calculated for the first five IMF
components selected by the correlation coefficient criterion;
taking the 1st group sample signal as an example, the dis-
tribution of the EE values in six different bearing states is
shown in Figure 11. As can be seen from Figure 11, the EE
value of each IMF component varies greatly when the
bearing works under different states. Among them, the EE
value of all IMF components of the bearing in normal state is
much greater than that in other fault states. Meanwhile,
compared with other fault states, the EE value distribution of
each IMF component in normal state is relatively stable. *e
reason is the fact that there is the greater randomness of the
vibration signal in the normal state. When the bearing fails
in operation, a resonance will be produced in some fre-
quencies, that is, the EE value of a certain IMF component
after the decomposition of the vibration signal under the
fault state is much larger than that of other IMF components.
As shown in Figure 11, there is always a phenomenon that
the amplitude of a certain bar of the same color (i.e., the
same fault state) is much greater than that of other bars of
the same color. *erefore, the difference of EE value of IMF
components can well reflect the characteristics of the bearing
under different operating states and can serve as a feature
vector of the bearing state.

To verify the repeatability of the EE value of IMF
components under the same operating state of the bearing,
Figure 12 presents the EE value distribution of different IMF
components obtained from 20 groups of vibration data of
the bearing under the same fault state. Figures 12(a)–12(f )
show the EE values distribution of the first five IMF com-
ponents under the fault states of Nor, I07, O07, R07, I14, and
O14, respectively. It can be seen from Figure 12 that, for the
same fault type of bearing, the EE value of the same IMF
component has relatively little fluctuation in the 20 groups of
samples, and the EE value of each IMF component has good
repeatability.

*us, it can be concluded that the EE value of the IMF
component has good difference and repeatability, which can
well reflect the different operating characteristics in different
states, and can maintain relatively consistent characteristics
under the same working state. *erefore, it is reasonable and
effective to select the EE value of IMF component as a feature
vector for bearing fault diagnosis.

Each of the six vibration signals corresponding to dif-
ferent fault conditions is divided into 50 groups of samples
with 2400 sampling points. *e energy entropies of IMF
components are extracted from each signal sample to reveal
the vibration characteristics of the bearing in different
working conditions, which are, respectively, plotted in
Figure 13. From Figures 13(a) to 13(e), the energy entropies
of IMF components of the 50 groups of vibration signal
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samples under six different operating conditions are, re-
spectively, revealed, which has roughly certain classifiable
characteristics but is more or less irregular. For example, the
EE value of the 50 groups of vibration signal samples under

O14 state were changed unsteadily and rapidly fluctuated in
IMF 3 belonging to Figure 13(c). *e EE values of the 50
groups of vibration signal samples under the four states (I07,
O07, R07, and I14) are nearly close to the same in IMF 4 and
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Figure 10: CEEMD decomposition results of different states. (a) Nor. (b) I07. (c) O07. (d) R07. (e) I14. (f ) O14.
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IMF 5 as shown in Figures 13(d) and 13(e). In addition, the
EE values of the same IMF under different bearing states are
a bit of overlap, according to which it is difficult to dis-
tinguish the different conditions of the roller bearings.
*erefore, it is necessary to adopt an intelligent classifier to
improve the accuracy of bearing fault diagnosis.

5.4. Fault Diagnosis by SSA-PNN. After completing the
feature extraction of the EE values of the IMF component of
the vibration signal of a bearing in different states, the EE
values need to be converted into the corresponding fault type
of bearing state. However, it is hard to form a direct cor-
respondence between the fault types and features of vi-
bration signal of bearings.

To further verify the superiority of the CEEMD in signal
processing and the EE value in feature extraction, the feature
vector extracted from the EE value by CEEMD decompo-
sition was inputted into the SVM classifier for classification
firstly, considering SVM is a classical machine learning
method with good ability for small sample data processing
and classification. *e SVM classification results of the
testing samples are shown in Figure 14, in which the radial
basis function is adopted for the kernel function of SVM. As
can be seen from Figure 14, there were prediction errors in
the fault states of I07, O07, R07, and I14, especially in the
R07 state. *e total prediction and classification accuracy
rate is 89.17%. It can be seen that the CEEMD-EE-SVM
model can achieve a relatively good diagnosis result, which
can verify the accuracy of the expression of vibration
characteristics using the feature vector extracted by the
energy entropy.

To improve the accuracy of bearing fault diagnosis and
classification, the PNNmodel is used as the classifier of fault
state for rolling bearing pattern recognition in this paper.
PNNmodel based on Bayesian strategy has strong nonlinear
classification ability and does not require backpropagation

optimization parameters and training weights. *e default
value of the smoothing factor in the traditional PNN model
is 1.0. During the actual calculation, the smoothing factor
was selected manually by continuously examining the
classification performance.When the value of the smoothing
factor is 0.15, the network classification effect is optimal, that
is, the value of smoothing factor in the traditional PNN
model is set to 0.15. For the 50 groups of data samples, 30
groups of samples were randomly selected as the training
samples and the other 20 groups of samples were used as the
testing samples. Figure 15 shows the training results of the
traditional PNN. As can be seen from Figure 15, the training
accuracy rate of the CEEMD-EE-PNN model is 96.67%. To
further test the classification performance of the PNN, the
remaining 20 groups of testing samples were classified and
predicted through the PNN model trained by the above 30
groups of samples. *e classification result is shown in
Figure 16. It can be seen from Figure 16 that several groups
of testing samples have made wrong predictions, and the
prediction accuracy rate of the CEEMD-EE-PNN model for
testing samples is 90.83%, which indicates that the PNN can
be applied to the fault diagnosis of rolling bearings.

In this paper, the proposed CEEMD-EE-SSA-PNN
model of fault diagnosis with powerful nonlinear approxi-
mation and self-learning ability is constructed to complete
the classification process from feature vectors to fault type.
To obtain higher-precision fault classification results, the
SSA algorithm is used to optimize the smoothing factor in
the PNN network.

*e initial parameters of SSA algorithm were set: the
population size of sparrows was 20, themaximum number of
iterations was 30, the initial positions of sparrows were
randomly generated, the proportions of discoverers and
scouters accounted for 70% and 20% of the total population,
respectively, the safety threshold was 0.6, and the smoothing
factor was the positions of individual sparrow. *e relative
error of the predicted value and the actual value of 40
training samples trained by the PNN model is used as the
fitness function to find the optimal smoothing factor. When
the relative error is the smallest, the classification result of
training samples has the highest accuracy, that is, the fitness
value is optimal. *e positions of individual sparrows at this
time can be obtained as the optimal parameter to the
smoothing factor in PNN for constructing the SSA-PNN
model.

To verify the superiority of SSA algorithm in optimizing
the smoothing factor of PNN, a performance comparison
among several optimization methods is conducted, in-
cluding SSA, PSO, and GA. Figure 17 shows the change
curve of the fitness of different algorithms in the optimi-
zation process for PNN, which can well show the optimi-
zation process of various algorithms for comparison. As can
be seen in Figure 17, the SSA algorithm reaches a local
optimal value for the first time at the 2nd iteration and then
jumps out of the local optimum at the 5th iteration to
continue the optimization search. Finally, SSA achieves the
global optimum with the fitness value of 0 at the 8th iter-
ation, which indicates the relative error between the output
value of the training sample and the actual value is 0. When
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the position of individual sparrows at this time is 0.0067, the
recognition accuracy rate of the PNNmodel can reach 100%.
*erefore, the best smoothing factor of the PNN model is
selected to be 0.0067 by using SSA, which can be used to
construct a new trained SSA-PNN model. In contrast, the
other two optimization algorithms take several iterations to
struggle to escape the local optimum. *e fitness begins to
decline at the 4th and the 5th iteration in PSO and GA,
respectively. PSO algorithm has relative quick convergence
ability and converges continuously until the 19th iteration to

the minimum. And, GA reaches the local maximum at the
5th iteration and escapes to achieve theminimum at the 18th
iteration. It can be seen that compared with PSO and GA,
SSA has strong global search ability and can quickly escape
the local optimum to achieve the global optimum.

To compare the performance of training results between
CEEMD-EE-PNN and CEEMD-EE-SSA-PNN, the same
experimental datasets are used to identify the operating state
of rolling bearings. *e classification results of training
samples of SSA-PNN are shown in Figure 18. It can be seen
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from Figure 18, after training on PNN by using the SSA
algorithm, the predicted value is consistent with the actual
value and the training accuracy rate is 100%. Figure 19 shows
the prediction results of the 20 groups of testing samples by
the CEEMD-EE-SSA-PNN network. As can be seen from
Figure 19, the classification accuracy rate of the rolling
bearing fault state predicted by the CEEMD-EE-SSA-PNN
model is 99.17%, which indicates that the improvement of
the CEEMD-EE-PNN model optimized by SSA algorithm is
effective and can improve the recognition accuracy of rolling
bearings fault diagnosis. *e SSA algorithm has strong
global optimization ability to solve the problem of falling
into a local optimum. As can be seen from Figure 19, only
one identification error occurs in the status of class label No.
5 (corresponding to fault state I14) for the testing samples
set, and its status is mistaken for that of class label No. 4

(corresponding to fault state R07). *e main reason lies in
the information extraction with the EE value as a single
feature vector in the proposed method. For feature ex-
traction, the desired feature vectors have the property that
the features of samples belonging to the same states are very
similar, while the features of samples belonging to different
states are quite different, and that the features are insensitive
to information outside the states. It can be seen from the
analysis of feature extraction by energy entropy in the
previous Section 5.3 that the EE value can well reflect the
different states with good difference and repeatability as a
feature vector, and meanwhile, it greatly reduces the number
of data dimensions that the PNN model needs to process.
But the EE values of all IMFs under fault state I14 (corre-
sponding to class label No. 5) are almost indistinguishable
from the other states, as shown in Figures 13(a)–13(e).
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Figure 13: Energy entropy distribution of IMFs in different fault states. (a) IMF 1. (b) IMF 2. (c) IMF 3. (d) IMF 4. (e) IMF 5.
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Furthermore, the EE values of I14 state and R07 state overlap
very highly in IMF 1, IMF 2, and IMF 3 from Figures 13(a)–
13(c), although those of the other states are relatively good,
which may cause identification confusion between fault state
I14 and fault state R07, and result in the classification of fault
state I14 with relatively low accuracy in the actual fault
diagnosis. Fortunately, the PNN model optimized by SSA
effectively improves the identification accuracy in fault di-
agnosis of rolling bearings. In addition, the classification
performance of CEEMD-EE-PNN model on the testing
samples set does not reach the accuracy of the training
samples set, which indicated that there may be some over-
fitting problems in the training process of PNN.

*e comparison of the fault diagnosis accuracy of testing
samples by using the PSO-PNN, GA-PNN, and SSA-PNN
combined with the same signal processing and feature ex-
traction method is shown in Table 2. It can be seen from
Table 2 that the proposed CEEMD--EE-SSA-PNNmodel has
the highest accuracy of 99.17% in the fault diagnosis of
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Figure 14: Classification results of CEEMD-EE-SVM.

0 30 60 90 120 150 180
Training sample number

1

2

3

4

5

6

Cl
as

sif
ic

at
io

n 
la

be
l

Predicted output
Actual output

Figure 15: Classification results of training samples of CEEMD-
EE-PNN.
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Figure 16: Classification results of testing samples of CEEMD-EE-
PNN.
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rolling bearings, the average classification accuracy rate of
CEEMD--EE-PSO-PNN is 95.83%, and the CEEMD--EE-
GA-PNN gets 93.33% accuracy.*ese results show that SSA-
PNN is superior to the other two PNN models optimized by
PSO and GA in fault diagnosis of rolling bearings, indicating
that the SSA algorithm can effectively overcome the problem
of parameter selection of the PNN model.

*e classification results of CEEMD-EE-SVM and
CEEMD-EE-PNN are shown in Table 2. As can be seen from
Table 2, the CEEMD-EE-SVM and CEEMD-EE-PNN
methods have many recognition errors in the fault diagnosis
of rolling bearings, and their accuracy rate is lower than that
of the CEEMD-EE-SSA-PNN method, which reaches
89.17% and 90.83%, respectively. While in the CEEMD-EE-
SSA-PNN model, only one group of diagnostic errors exists
in the I14 state, and the different fault states have achieved
accurate classification with a prediction accuracy rate of
99.17%. Compared with the two other classifiers, the rec-
ognition accuracy of the CEEMD-EE-SSA-PNN model is
significantly higher for testing samples. *ese results show
that CEEMD-EE-SSA-PNN is superior to the other two
classifiers in fault diagnosis of rolling bearings.

To further verify the classification performance of dif-
ferent signal processing methods such as EMD and EEMD
when using the same SSA-PNN classifier model, the com-
parative tests of the EMD-EE-SSA-PNN and EEMD-EE-
SSA-PNN methods were carried out. After using the EMD
and EEMD methods to decompose the original vibration

signal under six different operating states to obtain the ef-
fective IMF components, the EE values were extracted to
form a feature vector and divided into 30 groups of training
samples and 20 groups of testing samples. *e classification
results of EMD-EE-SSA-PNN and EEMD-EE-SSA-PNN
models for different fault types are shown in Table 2. It can
be seen from Table 2 that EMD-EE-SSA-PNN and EEMD-
EE-SSA-PNN have much errors in the fault diagnosis of
rolling bearings with the prediction accuracy rate of 88.33%
and 91.67%, respectively, and their accuracy is lower than
that of the proposed CEEMD-EE-SSA-PNN method. From
Table 2, it is obvious that the fault diagnosis rate by using
CEEMD is superior to the other two signal processing
methods, which further proves that CEEDM has excellent
decomposition performance for vibration signal of rolling
bearings.

*ese results all reflect that the CEEMD-EE-SSA-PNN
method is superior to other methods with higher diagnostic
accuracy and is suitable as a powerful model tool for rolling
bearing fault diagnosis.

6. Conclusions

In this paper, a novel fault classification model for rolling
bearings is proposed with a combination of CEEMD, EE,
and SSA-optimized PNN to identify different fault states of
rolling bearings accurately and efficiently. Experimental
analysis shows that the method has excellent diagnostic

Table 2: Accuracy comparison of different methods.

Methods
Fault type (group)

Accuracy (%)
Nor I07 O07 R07 I14 O14

CEEMD-EE-SVM 20/20 19/20 19/20 11/20 18/20 20/20 89.17 (107/120)
CEEMD-EE-PNN 20/20 20/20 20/20 13/20 17/20 19/20 90.83 (109/120)
EMD-EE-SSA-PNN 20/20 18/20 18/20 13/20 17/20 20/20 88.33 (106/120)
EEMD-EE-SSA-PNN 20/20 19/20 19/20 15/20 18/20 19/20 91.67 (110/120)
CEEMD-EE-PSO-PNN 20/20 20/20 20/20 17/20 18/20 20/20 95.83 (115/120)
CEEMD-EE-GA-PNN 20/20 20/20 20/20 15/20 18/20 19/20 93.33 (112/120)
CEEMD-EE-SSA-PNN 20/20 20/20 20/20 20/20 19/20 20/20 99.17 (119/120)
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Figure 19: Classification results of testing samples of CEEMD-EE-SSA-PNN.
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performance in rolling bearing fault diagnosis. In the pro-
posed method, the vibration signal is firstly decomposed by
CEEMD into a set of IMF components, and the correlation
coefficient is used as a selection criterion to determine the
effective IMF components to remove noise interference and
retain signal features. Compared with EMD, EEMD, and
VMD, CEEMD can effectively suppress the adverse effects of
noise on signal features, solve the problem of mode mixing
in signal decomposition, and overcome the difficulty of
parameter selection in VMD, which is beneficial to improve
the performance of fault diagnosis.*en, the EE value can be
used to extract the features of rolling bearing vibration signal
for the identification of different fault states with its good
difference and repeatability, and the feature set can be input
into the classifier to realize the automatic diagnosis of dif-
ferent faults. It is proved that the extraction method of fault
feature based on EE can suppress the influence of the re-
dundant information of the fault features, which is useful for
improving the classification efficiency. Finally, SSA was
introduced to optimize the smoothing factor, which is an
important parameter of PNN, to reduce the influence of
human factors on the neural network and improve the
performance of the fault diagnosis model. Compared with
other optimization algorithms, SSA can enhance the global
converge ability of the PNNmodel to prevent falling into the
local optimum. *e effectiveness and superiority of the
proposed method is verified by using the fault diagnosis of
six vibration signals collected from the CWRU bearing
dataset. *e experimental results demonstrated that the
proposed CEEMD-EE-SSA-PNN method has outperformed
other methods with better fault diagnosis performance for
rolling bearings, and the identification accuracy rate reaches
99.17%.

In the future, we will study advanced feature extraction
methods based on multi-sensor information fusion to
further improve the pattern identification results. Mean-
while, we will investigate the latest deep learning algorithms
applied to bearing failure diagnosis to improve the effi-
ciency and precision of the classification model. In addi-
tion, development of online intelligent bearing fault
diagnosis technology to realize real-time condition mon-
itoring and fault diagnosis of rolling bearings is also worth
further study.
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