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Tomato is an important and fragile crop. During the course of its development, it is frequently contaminated with bacteria or
viruses. Tomato leaf diseases may be detected quickly and accurately, resulting in increased productivity and quality. Because of
the intricate development environment of tomatoes and their inconspicuous disease spot features and small spot area, present
machine vision approaches fail to reliably recognize tomato leaves. As a result, this research proposes a novel paradigm for
detecting tomato leaf disease. The INLM (integration nonlocal means) filtering algorithm, for example, decreases the interference
of surrounding noise on the features. Then, utilizing ResNeXt50 as the backbone, we create DCCAM-MRNet, a novel tomato
image recognition network. Dilated Convolution (DC) was employed in STAGE 1 of the DCCAM-MRNet to extend the network’s
perceptual area and locate the scattered disease spots on tomato leaves. The coordinate attention (CA) mechanism is then
introduced to record cross-channel information and direction- and position-sensitive data, allowing the network to more
accurately detect localized tomato disease spots. Finally, we offer a mixed residual connection (MRC) technique that combines
residual block (RS-Block) and transformed residual block (TR-Block) (TRS-Block). This strategy can increase the network’s
accuracy while also reducing its size. The DCCAM-classification MRNet’s accuracy is 94.3 percent, which is higher than the
existing network, and the number of parameters is 0.11 M lesser than the backbone network ResNeXt50, according to the
experimental results. As a result, combining INLM and DCCAM-MRNet to identify tomato diseases is a successful strategy.

1. Introduction

Tomatoes are a globally important vegetable crop [1].
However, diseases can harm tomatoes, reducing their quality
and yield. Leaf mold, Septoria leaf spot, yellow leaf curl virus,
tomato mosaic virus, target spot, and two-spotted spider
mite are all common diseases of tomato foliage. In their early
stages, these diseases produce small irregular-shaped spots
that are dispersed and difficult to identify. In comparison,
the late stage of the disease, with its distinctive spots and
large spot areas, is easier to identify. Still, it is discovered late,
resulting in a significant loss of tomato quality and yield. As

aresult, disease detection technology for tomatoes is critical.
However, traditional manual identification and knowledge
base-based expert system methods are highly subjective and
reliant on farmers and experts [2]. Lesions on tomato leaves
vary in shape and are insufficiently characterized. Although
certain diseases have distinctive spots in terms of shape and
color, they are difficult to distinguish with the naked eye
because of the small spot area and require magnifying
equipment, such as magnifying glasses or microscopes for
observation. Thus, detecting tomato leaf diseases quickly and
accurately and implementing appropriate control measures
are critical to ensuring tomato production.
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Disease-based leaf recognition methods are a popular
research direction in computer vision and image processing
[3-5]. Numerous studies have successfully combined image
processing and traditional machine learning techniques,
resulting in significant application value [6, 7]. However, most
disease recognition algorithms extract image features via
multiple filters [8]. The extraction process is tedious and
frequently selects for recognition objects with noticeable
disease features and concentrated disease areas. As a result, this
traditional recognition method cannot extract disease features
from tomatoes. Along with the explosion in data volume and
the advancement of computer hardware, deep learning has
made significant strides in image recognition [9, 10]. Many
researchers prefer convolutional neural networks because of
their three primary features: local perception, multiple con-
volutional kernels, and parameter sharing. For instance, Bedi
and Gole [11] proposed a novel hybrid model based on a
convolutional autoencoder (CAE) network and convolutional
neural network (CNN) for automatic plant disease detection.
Reference [12] used a convolutional neural network to extract
features from a large dataset containing 14,828 images of
tomato leaves infected with nine diseases. They visualized the
results, achieving a 99.18 percent accuracy rate. Abbas et al.
[13] used GAN and transfer learning to identify and classify
tomato plant disease, achieving an average classification ac-
curacy of 99.35 percent. Su et al. [14] separately fed one-di-
mensional spectral and three-dimensional hyperspectral
images of ripe strawberries into a ResNet classification net-
work. Both inputs were more than 84 percent accurate in the
ResNet classification network. However, the error persisted
even with the prepared dataset, as the shooting environment
and equipment constrained the image quality. To ensure
successful recognition, the features of spots on tomato leaves
are compared to those of typical pests and diseases. It fre-
quently falls victim to locally optimal solutions and gradient
disappearance, resulting in low recognition accuracy. As a
result, the main problems of the study are as follows: (1) the
images in the tomato leaf disease dataset are gathered from a
variety of sources, including the internet and the demon-
stration base of Hunan Vegetable Research Institute, and they
suffer from a complex background and uneven quality. When
the network is fed the original images, it can extract features
from the training set. Nonetheless, the network may extract
blurred features from the original images (e.g., speckled ob-
jects, such as dust and dirt) as features, resulting in incorrect
extraction. (2) Common tomato leaf diseases produce subtle
differences in the appearance of leaves, such as spots and slight
yellowing, complicating disease recognition. Additionally, the
disease areas in the disease images are small and scattered,
complicating feature extraction. (3) In cases where some
disease features are not readily apparent, more subtle features
must be extracted. Increasing the number of network layers in
the model can enhance the recognition ability of the network.
Nonetheless, the resulting issue is that the network will be
more difficult to train. Given that the subject of this study is
tomato leaf disease, a prolonged training period will quickly
result in additional disease damage to tomatoes. As a result, the
network requires high accuracy, few parameters, and rapid
model convergence.
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Buades et al. [15] proposed the nonlocal mean filtering
algorithm to address the issue of tomato leaf disease images
being susceptible to background interference and blurred
features. Because of its novel comparison of local similarity,
it outperforms other traditional algorithms in terms of fil-
tering effect and better preserves image edge details. Recent
years have seen a surge in improvements based on this
classic filtering algorithm. Dore and Cheriet [16] enhanced
the denoising effect of the NL-Means algorithm by incor-
porating a robust regression with fixed smoothing param-
eters. It significantly reduces the blurring caused by weight.
To address the issue of similarity accuracy degradation of
this algorithm in the presence of harsh noise, Guo et al. [17]
incorporated the feature similarity of the multichannel filter
into the NL-means filter. The experimental results indicate
that this filtering method outperforms the more traditional
NL-means and wavelet-based filtering methods in terms of
filtering effect. On the other hand, Kanoun et al. [18]
proposed the KS-NLM filtering algorithm, which combines
the NL-Means filter with anisotropic weighting to handle the
central pixels of the patch better. The filtering algorithms
above based on NL-Means perform better than NL-mean at
denoising. Nonetheless, it does not satisfactorily address the
high computational complexity and lengthy procedure of
the NL-mean algorithm. The INLM filtering algorithm
performs admirably well in terms of filtering. Its compu-
tational complexity is significantly lower than NL-Means,
and its convergence speed is considerably faster, resulting in
a shorter filtering time.

Das et al. [19] used a more complex network architecture
to boost classification accuracy to 95.91%, resolving the issue
of neural networks having difficulty identifying features
associated with heart diseases. Brahimi et al. [12] demon-
strated that increasing the number of layers in neural net-
works improves model performance, and nine tomato
disease regions were identified as a result. However, in-
creasing the number of network layers allows for more
accurate features extraction. Nonetheless, there are two
disadvantages: (1) when the number of layers in the neural
network exceeds a certain threshold, gradient explosion and
disappearance occur. These factors jeopardize crop disease
identification. (2) To extract more detailed features, a deep
neural network must be designed. However, the number of
parameters to compute increases when training a deep
neural network, resulting in slow convergence. Based on the
aforementioned issues, this paper proposes DCCAM-
MRNet, which utilizes ResNeXt50 as the backbone network
and its unique residual mechanism to avoid gradient ex-
plosion and disappearance problems. In STAGE 1 of the
network, dilated convolution is introduced, as well as a
coordinate attention mechanism is inserted between each
3x3and 1x 1 convolution to improve feature extraction for
subtle diseases.

To address the difficulty of training deep models, Luo
et al. [20] incorporated the highway network into a bidi-
rectional gated recurrent unit. The attention mechanism is
additionally utilized in an effort to assign the weights of key
issues in the network structure. Peng et al. [21] proposed
ResNet, which uses residual shortcut connection to combine
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the output of residual components with the input and uses
the residual learning mechanism to solve the trainability
problem of deep neural networks. Lu et al. [22] proposed a
multistep linear structure based on the numerical solution of
differential equations in 2017. They built it to examine a
more efficient deep neural network called LM-ResNet, based
on ResNet. The preceding three examples show how to find
appropriate residual shortcut connections to guide the
structural design of deep neural networks and how to set the
appropriate initialization conditions for network weights
and training parameters, which can help solve network
trainability and model efficiency problems. The mixed re-
sidual connection approach proposed in this study is based
on the Adams method of numerical solution of differential
equations and comes in two flavors: RS-Block and TRS-
Block. The DCCAM-MRNet network is built in such a way
that it can continue to update the weights, achieve high
learning accuracy, and make the network effective even
when the magnitude of the gradient value update is minimal
during the later phases of network training, thanks to
ResNeXt’s residual mechanism.
The contributions of this paper are as follows:

(1) To reduce the impact of complex tomato planting
background and fuzzy features of tomato leaf dis-
eases on recognition accuracy, the INLM filtering
algorithm is proposed in this paper. The INLM fil-
tering algorithm reduces computational complexity
after integrating the images, and it effectively
overcomes the disadvantage of slow NL-Means
computation. As shown in Figure 1, the quality of the
images processed by the INLM filtering algorithm is
improved compared with the original images. As
shown in Table 1, the INLM filtering algorithm is 10
times better than the NL-means algorithm in fil-
tering speed.

(2) To extract the scattered and narrow disease spot
features of tomato, the DCCAM-MRNet is proposed
in this paper. (a) In STAGE 1 of the network, dilated
convolution is used to identify the scattered diseases
of tomato leaf to capture multiscale contextual in-
formation without changing the number of pa-
rameters. As shown in Table 2, the use of dilated
convolution improves the ability to extract the fea-
ture and detection accuracy by 1.7% to RexNeXt50.
(b) A coordinate attention mechanism, cochannel
correlation, and remote dependence are introduced
between 3x3 and 1x1 convolution for modeling,
which enhanced the extraction of tomato micro-
disease features and increased recognition accuracy
by 3.6% to RexNeXt50 (as shown in Table 3). (c) The
residual block (RS-Block) and transformation block
(TRS-Block) of the mixed residual connection
method are used in this paper to improve the
trainability of the DCCAM-MRNet structure. The
similarity is that adjacent residual blocks are
weighted and added to the current residual block,
resulting in a more accurate extraction of features
between adjacent layers. The distinction is that the

TRS-Block utilizes the channel conversion function
to match the input channel to the input channel. As
shown in Tables 4 and 5, The recognition accuracy of
DCCAM-MRNet is increased by 0.9% to
RexNeXt50, and 0.11 M reduces its parameter count
compared to the backbone network of RexNeXt50

(3) Compared to conventional deep neural networks,
the DCCAM-MRNet proposed in this paper accu-
rately recognizes tomato leaf diseases (as shown in
Table 6). Additionally, this network has fewer pa-
rameters than the backbone network ResNeXt50 and
is more trainable.

As aresult, this paper proposes a method for identifying
tomato diseases that combines the INLM filtering algorithm
and the DCCAM-MRNet. The identification principle is
depicted in Figure 2. Firstly, the expanded dataset is passed
through the INLM filtering algorithm, which reduces the
influence of complex background and blurred features on
the image, laying the groundwork for recognition and
classification using the model. The processed dataset is then
used to train and test the DCCAM-MRNet. To improve the
ability of the model to extract features from the image set,
the DCCAM-MRNet is enhanced with dilation convolution
and coordinate attention mechanisms. The mixed residual
connection method is used to increase the trainability of the
network.

2. Materials and Methods

2.1. Data Acquisition. Datasets have been critical compo-
nents of tomato leaf disease identification methods. The
tomato leaf disease dataset in the Hunan Academy of Ag-
ricultural Sciences demonstration base was compiled using
data from tomato greenhouse and the internet. We used a
Nikon camera with a resolution of 4460 x 3740 in the tomato
greenhouse. Leaf mold, Septoria leaf spot, yellow leaf curl
virus, tomato mosaic virus, target spot, and two-spotted
spider mite were included in the dataset. As illustrated in
Table 7, these diseases cause irregular, colorful, scattered
spots with indistinct margins, and disease features differ
significantly between the early and late stages.

To alleviate the strain on the computer system caused by
these images, each image in the tomato leaf disease dataset
was compressed at resolution using the Matlab 2020b
software. The compression specification for these images was
224 x 224, and they were imported into the computer in the
jpg format. To avoid model overfitting and poor general-
ization performance because of its small number of training
samples, we expanded the dataset using MATLAB by flip-
ping, cropping, scaling, highlighting the images, and saving
them in jpg format.

The expanded tomato leaf disease dataset contains 10,923
images of tomato leaf disease. This experiment separated the
dataset into the training set of 7646 tomato leaf disease images,
the validation set of 2185 tomato leaf disease images, and the
test set of 1092 tomato leaf disease images in a 7:2:1 ratio to
train and test the network. Table 8 displays the comparison of
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Original image (RGB) Original image (Gray) INLM denoising

Leaf mold

Septoria leaf
spot

Yellow leaf § :
curl virus

Original image (RGB) Original image (Gray) INLM denoising

Tomato
mosaic virus

Target spot

Two spotted
spider mite

FiGUre 1: Comparison of original images and filtered images.

TaBLE 2: The accuracy of three networks.

TaBLE 1: Time spent by NL-Means and INLM filtering method. Network model Parameters (M) Accuracy (%)
. - ResNeXt50 23.00 86.6
Denoising algorithm NL-means (s) INLM (s) ResNeXt50-DC 23.00 88.3

Average time 45.63 4.32 DCCAM-MRNet 22.89 94.3
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TasLE 3: The influence of coordinate attention on network accuracy.

Network model Accuracy (%)
ResNeXt50 86.6
ResNeXt50-SE 87.5
ResNeXt50-CMBA 88.9
ResNeXt50-CA 90.2
DCCAM-MRNet 94.3

TaBLE 4: Comparison of model parameters.

Network model ~ ResNeXt50 (M)  ResNeXt50-MRC (M)  ResNeXt50-LM (M)  ResNeXt50-CA (M) DCCAM-MRNet (M)

Parameters 23.00 22.33 22.68 23.94 22.89

TaBLE 5: Comparison of recognition accuracy and parameters of different networks.

Network model Parameters (M) Accuracy (%)
ResNeXt50 23.00 85.6
ResNeXt50-DC 23.00 88.3
ResNeXt50-CA 23.94 90.2
ResNeXt50-MRC 22.33 87.5
ResNeXt50-DC-CA 23.94 93.1
ResNeXt50-DC-MRC 22.33 89.6
ResNeXt50-CA-MRC 23.17 92.5
DCCAM-MRNet 22.89 94.3

TaBLE 6: Evaluation indexes of the networks.

Network model Recall (%) F1-score (%) Precision (%) mAP (%)
MobileNet 78 74 77 71
ResNet50 83 81 80 74
ResNeXt50 87 85 83 77
LM-ResNet 86 86 87 82
InceptionResNetV2 84 80 85 80
EM-ERNet 82 83 85 81
B-ARNet 84 82 86 81
SENet 85 84 86 82
CMBA-ResNet 86 85 88 84
DCCAM-MRNet 94 93 94 90

. . DCCAM-MRNet image recognition network
Tomato leaf image preprocessing

I 1
1 H 1
1 | 1
| J !
1 1
: : STAGE1 STAGE2 STAGE3 STAGE4 STAGES5 STAGE 6 1
————————————————— |
. | T |
I | I Leaf mold |
Image : ! ! o O Septoria leaf spot !
expansion of ! : ; Q “Q—| Yellowleaf curl virus !
tomato leaf | | | 8‘/ ~O— Tomato mosaic virus :
1 “O—>| Target spot
I ; ; og “O—>| Two spotted spider mite |
: ! Conv Conv Conv Conv b-———mmm o m 4 |
1 : layer*9 layer*12 layer*18 layer*9  Global average  Full connection :
Flip, rotate, crop, INLM-based : I pool I
re-scale, Increase image denoising 1 : :
1
i ! |

I, noise of tomato diseases
__________________________ J

Images acquisition

Denoised images
of tomato disease

FIGURE 2: Principles of tomato disease identification.
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TaBLE 7: Symptoms and image sources of 6 tomato diseases.
Disease type Disease picture Early symptoms of the disease Advanced symptoms of the disease Data sources
Irregular or elliptical yellowish spots appear .
Leaf mold on the leaf blade, with indistinct margins of The filsease spot breeds gray or Tomato
black irregular-shaped mold layer. greenhouse
the spots.
Round or nearly round spots appear on the .
Septoria leaf front and back of the leaf with dark brown The leaves are covered with sp ots,
. . .~ and the leaves turn yellow, causing  Internet
spot margins and many small ink-colored grain S
early abscission.
spots scattered.
The upper leaves are slightly yellowed and  The upper leaves and new shoots
Yellow leaf . . .
. irregularly spotted. Purple veins frequently show symptoms, with smallandred  Internet
curl virus -
appear on the abaxial leaf. opaque
Tomato Unevenly mottled shades of green, the leaves Leaf-blade shows yellow-green, Tomato
. do not become smaller, and they do not .
mosaic virus o flowering leaves are uneven. greenhouse
produce deformities.
T Subround, irregular brown spots on the leaf The color of the spot deepens, the Tomato
arget spot area of the spot becomes larger, and
blade. . : greenhouse
it leads to leaf perforation.
Two-spotted Many tiny greenish spots are scattered in the The leaves fade to grayish-yellow Internet

spider mite leaves’ middle and lower parts.

and fall off.

TaBLE 8: The recognition accuracy of the original dataset and the preprocessed tomato leaf disease dataset in the three models.

Network model

Original data set (%)

Preprocessed data set (%)

ResNeXt50 78.4
ResNeXt50-CA 84.7
DCCAM-MRNet 89.1

85.6
90.2
94.3

the accuracy before and after pre-processing. Table 9 shows the
distribution of the six disease images in the dataset.

2.2. INLM Image Filtering. As shown in Table 1, the images
of tomatoes taken in greenhouses have complex growing
environments, while diseases such as leaf mold, yellow leaf

curl virus, and target spot exhibit blurred features. Both
issues will inevitably introduce noise into the collected
images, degrading their quality. As a result, it is worthwhile
to investigate measures to eliminate noise while retaining the
images’ essential features. The INLM algorithm fully exploits
redundant information in the images, significantly preserves
the details and textures of the original images during
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TaBLE 9: Details of six tomato diseases.

Size of the data set
Disease type

Division of the data set

Original number Expanded number Percentage Training set (70%) Validation set (20%) Test set (10%)

Leaf mold 465 1858
Septoria leaf spot 436 1745
Yellow leaf curl virus 490 1961
Tomato mosaic virus 448 1790
Target spot 457 1827
Two-spotted spider mite 435 1741

17.00 1300 372 186
15.98 1222 349 174
17.95 1373 392 196
16.40 1253 358 179
16.73 1279 365 183
15.94 1219 348 174

filtering, and accelerates the filtering process by integrating
the images, thereby reducing the complexity of operations
and filtering time. Because of its efficiency and simplicity, the
INLM algorithm is used in this study.

2.2.1. NL-Means Filtering Algorithm. The core idea of the
NL-Means algorithm is to take a rectangular window of each
pixel point domain and calculate the weighted sum of the
pixel values of all the pixel points within the window, with
the weights obeying a Gaussian distribution. It is similar to
Gaussian filtering, but unlike Gaussian filtering [23], NL-
Means use the similarity between the domain block of the
current filtered point and the domain blocks of other points
in the rectangular window to calculate the weights, and the
greater the similarity, the greater the weights.

For an image, suppose v(x) = u(x) + n(x), where v(x)
is the observed image with noise, u(x) is the real image
without noise, and #(x) is the noise perturbation of pixel x.
A noisy image v = {v(x)|x € I} is given, and x represents the
position of the pixel in the image, I represents the set of
individual pixels in the image, and v (x) represents the value
corresponding to the position of the pixel x. The specific
formula of the NL-Means filtering algorithm is as follows:

NL[v(x)] =) w(x y)v(y), (1)

jel

NL[v(x)] represents the image filtered by the NL-Means
filtering algorithm. w (x, y) is the similarity between pixel x
and pixel y, and its value is the Gaussian kernel of the pixel
value between each point in a domain. The specific formula
is as follows:

w(x, y) = Z(lx)e(”v(NX)V (Ny)||z,u/h2)_ (2)

Among them,

20 = ¥ el ()
y

), 3

[v(N,)-v (N}’)”ia represents the Gaussian kernel.
v(N,,) refers to a domain in the image centered on x. h is the
attenuation factor. The smaller the value of A, the lesser the
influence of the weighted point on the current point, and the
edge is maintained well, however, the noise is serious. On the
contrary, the edge is maintained poorly, however, the image
is smoother, and the filtering level is high.

2.2.2. Tomato Disease Image Filtering Algorithm Based on
INLM Algorithm. The size of the search area must be de-
fined in the NL-Means algorithm, and the larger the search
area, the greater the possibility of discovering similar pixels,
however, the quantity of computation also increases expo-
nentially. Assume the image is Nx N pixels in size. With a
color channel number of 3, a neighborhood window size of
kxk, and a search box size of nx n, the complexity of the
algorithm is 0(3N?k*n?). Even in the original paper, the
author defined the search area as a whole image, resulting in
a few minutes of waste during the process of an image of
512 x 512 in size.

Based on the above description, it can be seen that the
calculation complexity of the NL-Means algorithm is
too high, and the program is very time-consuming,
which is not conducive to practical application. After
analyzing the formula, it was found that changing the
similarity calculation between domains can reduce the
time consumed.

If we first build an integral image for pixel differences,
the equation is as follows:

S(x)= Y S(Z),x(x1,%,), S (x) =lu(x) —ulx + ).

Z,<x,
Z,)<x,

(4)

Using this method to calculate the distance between the
two domains v(N,) and v(N J,) takes only a small amount of
time, and the calculation equation is as follows:

1
IV(x) -Vl = = (S, (3, +ds ,x, +ds) + S, (x; —ds

—1x, —ds—1)=S,(x; +ds ,x, —ds—1)

=S (x, —ds - 1,x, +ds)).
(5)

When compared to the NL-Means approach, the
overall complexity of the algorithm has been greatly
lowered. At the same time, the offset is considered a cyclic
determination condition to reduce space complexity.
Rather than computing all of the integral pictures at once,
each computation just has to get an integral image of the
offset in one direction of the offset. We must, firstly,
extend the image before filtering because each filter point
in the original image requires a whole search window and



many field blocks. The search window is typically half the
size of the neighborhood block plus half the size of the
expansion.

The INLM filtering algorithm is used in tomato disease
images, and its specific steps are as follows:

Step 1: enter the tomato disease image to be filtered and
convert it to a grayscale value

Step 2: determine the domain window, search box size,
and expand the image

Step 3: take a point in the search block, and take the
search block with the point y as the center and the
search block with the first x in the image as the center to
obtain w(x, y)

Step 4: repeatedly take the next point y of the search
block and repeat the ¢ operation until the point of the
search block is traversed

Step 5: assign the maximum weight to point x, nor-
malize the weight, and pass NL[v(x)] to get the pixel
value of the first point of the new image

Step 6: take the second point x of the original image and
repeat the ¢ operation until the entire image is traversed

Step 7: obtain an image of tomato disease after INLM
filtering

As shown in Figure 1, the filtering results reveal that the
images filtered using the INLM algorithm retain several
features of the original image while lowering the noise. In
3.3.2, the testing results indicate that the INLM algorithm
operates ten times faster than the NL-Means algorithm.

2.3. DCCAM-MRNet. Traditional convolutional neural
networks cannot quickly identify diseased spots on tomato
leaves because of their small size, lack of feature information,
and relatively dispersed feature distribution. Deep neural
networks must be utilized to extract more detailed features.
As a result, the neural network we choose must have a
sufficient number of layers to avoid the problem of gradient
disappearance. Simultaneously, it must have the advantages
of portability and quick training speed. In 2017, Pant et al.
[24] proposed ResNeXt that incorporated the repetition
strategy of ResNet and coupled it with the split-transform-
merge strategy of the inception family. The residual error
mechanism of ResNeXt can solve the problem of gradient
disappearance, and when the number of parameters is the
same, the recognition effect of ResNeXt is better than that of
ResNet. All of the inception modules in the inception family
have been meticulously designed [25]. Although the rec-
ognition result is satisfactory, several hyperparameters must
be manually modified, and portability is lacking. Because of
the topological structure of ResNeXt submodules, ResNeXt
requires fewer manual modification parameters. After
careful consideration, we proposed the DCCAM-MRNet,
and Figure 3 depicts its network architecture. DCCAM-
MRNet employs ResNeXt50 as its backbone network and
replaces the original 7 x 7 convolution kernel with dilated
convolution. It has a broader receptive field and improves
extracting features without changing the parameters.

Computational Intelligence and Neuroscience

Between each 3x3 and 1x1 convolution, a coordinate
attention mechanism is introduced. The coordinate channel
attention mechanism can evaluate the relationship between
channels and position information simultaneously and
target the diseased area more precisely, giving it more high
weight. Lastly, the DCCAM-MRNet is formed by the RS-
Block and TRS-Block of the mixed residual connection
method while retaining the RES-Block of the ResNeXt re-
siduals. This combination makes the extraction of features
between adjacent layers tighter and achieves higher learning
accuracy while compressing the network.

2.3.1. ResNeXt. The main advantage of the ResNeXt is that it
does not require deliberate construction of each portion of
the network structure details, and it finishes complex
classification jobs by the simple stacking of modules, which
is relatively concise and easy to transplant. ResNeXt absorbs
the advantages of group convolution [26]. The structure of
ResNeXt is similar to that of the inception network [27, 28],
which links contextual information spatially. It enhances
network accuracy without increasing parameter complexity
and minimizes the number of hyperparameters employed in
the network. However, unlike the inception network,
ResNeXt employs the same topology of parallel stacking,
which is the same modules as ResNet, to extract features
before merging the modules to limit the danger of
overfitting.

2.3.2. Dilated Convolution. The disease features of tomatoes
are not obvious, and disease spots are dispersed. As a result,
expanding the receptive field is critical. The distinction
between dilated and typical convolution is that dilated
convolution introduces a new parameter known as expan-
sion rate [29]. The receptive field is enlarged without af-
fecting the size of the feature map by injecting holes into the
ordinary convolution. We introduce dilated convolution on
STAGE 1 of the DCCAM-MRNet to replace the original
7 x 7 convolution, as shown in Figure 4. Assuming that the
size of dilated convolution kernel is k x k and the expansion
rate is 7, then the actual size of the convolution kernel is as
follows:

K=rx(k-1)+1. (6)

After dilated convolution, the relationship between the
size of the input and output feature maps is as follows:

_Wit2p-rx(k-1)-1

w
2 s

1. (7)

Among them, W, and W, represent the size of the input
and output feature maps, respectively, the step-sizeis s, and p
represents the patch.

2.3.3. Coordinate Attention. Attention mechanisms used in
deep neural networks can provide good performance im-
provements [30, 31]. The SENet model builds a network
model from the perspective of the correlation of feature
channels, which enhances the directivity of the features



Computational Intelligence and Neuroscience

# STAGE 1 N ‘ STAGE 2 ) r STAGE 3 \
' f ' ! | I |
| 1
(3,224,224), ) 64, 56, sej (256, 56, 56 1 (512,28, 28)
| ( | ): 1
| ! | |
‘3x3 64,/2,2,2 3x3,/2, 1 ‘64 56,64, 1, 1 256,56 256,56 512,28 4

STAGE 4 \

l ]
I
'(1024 14, 142 (2048 7,7
1 [ I —>
| ! 1
1 ' |4 4 !
) l

1024 14

Leaf mold
Septoria leaf spot
Yellow leaf curl virus

Target spot

I

I

I

I

I
‘Tomato mosaic virus |
I

I
Two spotted spider mite |
!

Dilated conv
:kernel size, Output, /Stride, Padding,
Dilation, BN, RELU

Max pool: Average pool:
kernel size, /Stride, Padding kernel_size, /Stride

(C1*4, W/S1, W/S1)

TRS-Block:
C,W

FiGUre 3: Architecture of the DCCAM-MRNet.

(a) (b)

F1Gure 4: Dilated convolution with different rate. (a) Ordinary convolution (r=1). (b) Dilated convolution (r=2).



10

extracted by the convolution layer by strengthening the
features of essential channels in feature mapping and
weakening the features of unimportant channels. Wen
et al. [32] embedded SENet into the ResNet-50 network
[33], and on this basis, they identified five tomato diseases
and achieved 89% detection accuracy. However, the
limitation of SE is that only internal channel information
is considered, and the importance of location informa-
tion is ignored. Therefore, CBAM proposed by Woo et al.
[34] tried to introduce location information by global
pooling on the channel. Still, this method only captures
local information and does not pay much attention to
location information. To take account of the location
relationship based on channel attention, Hou et al. [35]
proposed coordinate attention, which is structured as
shown in Figure 5. It decomposes channel attention into
two feature coding processes, namely vertical and hori-
zontal directions, integrating features with two spatial
directions. With this processing, remote correlation can
be captured in a spatial direction, while accurate locat-
ion information can be maintained in another spatial
direction.

The specific implementation method is as follows:

For a given input feature X = [x,x,, . .., x.] € ROHW,
two spatial extents of pooling kernels (H, 1) and (1, W) are
used to code channels along with the horizontal and vertical
directions, respectively. The output of Channel C at height H
can be formulated as follows:

=i Y xe (i ®)

O<i<w

Similarly, the output of channel C with a width of W can
be written as follows:

zo(w) 2% Z xc (j, w). (9)

0<j<H

After generating a pair of direction-aware feature
maps, the concatenation connection operation is per-
formed on the spatial dimension, and then the shared
1 x 1 convolution transformation function F; is used to
get the following:

f=8(R([".2"])). (10)

[-,-] denotes a concatenation operation along the spatial
dimension, 8 is a nonlinear activation function, and
f € RI™MHW) i an intermediate feature mapping that
encodes spatial information in the horizontal and vertical
directions. Here, r is the reduction rate that controls the
block size.

Splitting f into two independent tensors f" € R™H
and f% € R along the spatial dimension, two 1x1
convolutions are used to transform f” and f“, respectively,
so that they remain tensor with the same number of channels

as the input X.
g" = o(Fi(f")).
9" =o(F, (/)

(11)
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o is the sigmoid function. F), and F, are two 1x1
convolutions. g" and g¥ are the weights in two dimensions.

Finally, the weights g" and g* in the two dimensions are
fused with the input X to obtain the output of the coordinate
attention block Y, which is expressed as follows:

ye (i ) = xc (i ) x gie (i) x g& (). (12)

2.3.4. Mixed Residual Connection Method. The trainability
of deep neural networks has always been a significant issue.
RoyChowdhury et al. [36] were among the first to apply the
mature numerical solution of differential dynamical systems
to neural network learning. The mixed residual connection
method, based on the Adams method of the numerical
solution of differential equations, is used for network design
in this paper. Figure 6 depicts two forms of the mixed re-
sidual connection method used in this paper: RS-Block and
TRS-Block. This method enhances network performance
and increases the tightness between adjacent layers for
feature extraction by weighted summing the adjacent re-
sidual blocks with the current residual block.

In the DCCAM-MRNet, RS-Block is used in the latter
part of STAGE 2, STAGE 3, STAGE 4, and STAGE 5. TRS-
Block is used at the beginning of STAGE 3 and STAGE 4.
The difference between them is that the input channel of
TRS-Block is C and the output channel is 2C. Hence, the
number of channels is inconsistent and cannot be directly
added. Therefore, the input channel needs to be convolved
with 1x 1 to change its channel number to 2C.

Based on Adam’s method, the specific steps are as
follows:

hn+m = hn+m—1 +Ah Zﬁifn+i' (13)
i=0

In formula (13), Ah is the step-size. h, € RP is the output
at time ¢. D represents the dimension of the output. f3; is the
corresponding weight of f,,;, and it satisfies the condition of
Yi'oBi = 1. f,,; is the value entered in the layer of n +i.

In this paper, the mixed residual connection method sets
m =0 and f3,, = 0 in formula (13). Then, formula (13) be-
comes as follows:

hn+2 = hn+1 + knfn + (1 - kn)fn+l' (14)

In (14), k,, € R is the weight coefficient corresponding to
the information content in the hidden layer. Especially when
m = 1, it is the Euler method in the differential numerical
solution. In this paper, we let k,, = 0.5, which means that the
importance of information in all hidden layers is the same.

3. Results

3.1. Experimental Environment. The hardware environment
of this experiment is Windows (64bit) operating system,
Intel Core 17-9700U CPU, and NVIDIA RTX 2080Ti GPU.
The programming environment of the INLM filtering al-
gorithm is MATLAB 2020b. The programming environment
of the DCCAM-MRNet is Python 3.8.12, Pytorch 1.8.2, and
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CUDA 10.2. In this experiment, stochastic gradient descent
was used to train the DCCAM-MRNet. The batch size of
training samples was set to 32, and 8 for test samples. The
learning rate Ir was set to 1073, and the epochs was set to
140. The Adam optimizer was used during training, and the
cross-entropy loss was used as the loss function.

3.2. Effectiveness Experiment of the Module

3.2.1. Effectiveness Experiment of Preprocessing. To test if the
preprocessing of tomato leaf disease datasets can increase
recognition accuracy, we fed the original dataset and the
preprocessed data set, including the dataset expansion and
filtering process, into ResNeXt50, ResNeXt50-CA, and
DCCAM-MRNet, respectively, to conduct the experiments.
Table 8 displays the recognition accuracy of the original
dataset and the preprocessed dataset in three different types
of networks. The results reveal that the three networks’
recognition accuracy in the preprocessed dataset is greater
than that in the original data set. It is because the data set is
extended by cropping, flipping, zooming, and brightening,
which increases the diversity of the dataset while avoiding
the network coverage. The INLM filtering algorithm effi-
ciently reduces the complicated background and removes
fuzzy features, resulting in more apparent image features. As
a result, following preprocessing, the accuracy of the dataset
has increased in all three models.

3.2.2. Effectiveness Experiment of INLM Filtering Algorithm.
To demonstrate that the INLM filtering algorithm has a
faster convergence speed than the NL-means filtering al-
gorithm, we randomly select 100 disease images from the
dataset for filtering in MATLAB and calculate the average
time spent by 100 images in the NL-means filtering algo-
rithm and the INLM filtering algorithm. Table 1 shows that
the convergence speed of INLM is ten times faster than that
of NL-means.

3.2.3. Effectiveness Experiment of Dilated Convolution. In
the DCCAM-MRNet, we used dilated convolution at
STAGE 1. In the same test environment, we conducted
experiments on ResNeXt50, ResNeXt50-Dilated Conv, and
DCCAM-MRNet to validate their impact on classification
performance. Table 2 demonstrated that utilizing dilated
convolution in the ResNeXt50 could improve the accuracy
of the network.

3.2.4. The Effectiveness Experiment of Coordinate Attention.
To more intuitively understand the improvement in accu-
racy induced by coordinate attention, we trained and tested
the preprocessed dataset using ResNeXt50, ResNeXt50-SE,
ResNeXt50-CMBA, ResNeXt50-CA, and DCCAM-MRNet.
Table 3 displays the accuracy of different networks on the
test set. The experimental results showed that the three
networks using the attention mechanism improved 0.9%,
2.3%, and 3.6%, respectively, in terms of accuracy compared
to ResNeXt. The CA attention mechanism outperformed the
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other attention mechanisms in terms of improving accuracy.
The accuracy of the DCCAM-MRNet proposed in this paper
is 94.3%, which indicates that the tomato leaf disease features
are deeply extracted, and the network is effective in
identifying.

3.2.5. Effectiveness Experiment of Mixed Residual Connection
Method. We measured the number of parameters of
ResNeXt50, ResNeXt50-MRC, ResNeXt50-LM, ResNeXt50-
CA, and DCCAM-MRNet in terms of model compression.
The results are displayed in Table 4, indicating that the
number of parameters in the ResNeXt50-MRC is 0.35 M less
than that 22.68 M of ResNeXt50-LM. The experiment result
shows that MRC is superior to LM in model compression.
The number of parameters in the DCCAM-MRNet is 0.11 M
less than that of ResNeXt50.

3.3. Ablation Experiment. To thoroughly validate the ef-
fectiveness of the method proposed in this paper, we
employed the same dataset and experimental environment
in each experiment, only changing the components that
needed to be compared. The backbone network in the ab-
lation experiment is ResNeXt50, and the performance of
several schemes is compared by adding one or more of the
three methods of DC, CA, and MRC. Table 5 displays the
comparing results.

Table 10 shows that the DCCAM-MRNet has higher
accuracy than other networks, reaching 94.3 percent. When
the coordinate attention is given to ResNeXt50, it enhances
its accuracy by 3.6 percent when compared to the initial
ResNeXt50. Similarly, the ResNeXt50 with Dilated Conv or
Mixed Residual Connection outperforms the original
ResNeXt50 by 1.7 percent or 0.9 percent, respectively.
According to the evidence shown above, all three strategies
are successful at increasing accuracy.

The number of parameters in the Dilated Conv network
is the same as in the single variable network, which is
consistent with the premise that Dilated Conv does not
change the number of parameters. ResNeXt50 with mixed
residual connection technique has 0.67 M fewer parameters
than ResNeXt50 without mixed residual connection
method, suggesting that the mixed residual connection
approach aids in network compression.

3.4. Overall Evaluation of the DCCAM-MRNet. In the same
test scenario, the DCCAM-MRNet outperforms its back-
bone network ResNeXt50 in terms of learning stability in the
learning process and recognition accuracy. Figure 7 depicts
the performance of DCCAM-MRNet in each category. The
numbers 0, 1, 2, 3,4, and 5 in the confusion matrix represent
the six diseases, namely the leaf mold, Septoria leaf spot,
yellow leaf curl virus, tomato mosaic virus, target spot, and
two-spotted spider mite, respectively. The test set contains
1092 images in total, however, only 1090 of them are used in
this test and displayed in the confusion matrix. The number
of accurately predicted images, 1028 in total, is shown in the
diagonal of the confusion matrix. The overall recognition
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TaBLE 10: Performance evaluation of each disease.
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Septoria leaf spot 97 98 93
Yellow leaf curl virus 82 87 96
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Ficure 7: Confusion matrix of the DCCAM-MRNet.

accuracy of DCCAM-MRNet is 94.3%. Table 10 displays
the accuracy of disease recognition in the DCCAM-
MRNet for six different diseases. It can be seen that the
highest recognition accuracy for the network is the to-
mato mosaic virus, reaching 99%, while only 84% for the
target spot.

3.5. Comparison with Other Networks. We employ four
indexes to evaluate the performance of the network:
recall, F1-score, precision, and mAP. Table 6 displays the
results. The indexes of DCCAM-MRNet surpass 90%,
which is higher than those of other networks, showing
that this network has more advantages and a more robust
recognition effect for tomato leaf diseases than other
networks.

3.6. Performance on the Plant Village Public Dataset. As
experimental data, 1000 images of tomato leaf diseases from
the plant village public dataset [37] are used. For recogni-
tion, the disease dataset is sent into the DCCAM-MRNet.
Consequently, the recognition accuracy on the plant village
public dataset is 97.0%, while the recall and F1-score are
97.6% and 97.1%, respectively. Figure 8 depicts the confu-
sion matrix. The recognition accuracy for tomato mosaic
virus using the public dataset is 92%, which is 8% higher than
that obtained using our dataset. The recall and F1-score are
also higher than those obtained using our dataset.
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FiGgure 8: Confusion matrix of the DCCAM-MRNet.

4, Discussion

To identify tomato leaf diseases, we build a DCCAM-MRNet
in this article. In experiment 3.7, we use the DCCAM-
MRNet to identify the public dataset plant village, and the
accuracy is 97.0 percent. When we use our dataset, we get an
8% better recognition accuracy for the tomato mosaic virus.
The tests indicate that integrating the INLM and DCCAM-
MRNet for tomato leaf disease identification is effective and
capable of tackling the problem of low accuracy in tomato
leaf disease identification to some extent, while more re-
search is needed. (1) In this research, the DCCAM-MRNet is
connected using the mixed residual connection method,
with the weight coeflicient of information amount in the
hidden layer equal to 0.5. However, because the importance
of information quantity varies in different hidden layers, it
should be a floating number, and the mixed residual con-
nection method should be adjusted to accommodate for
floating, resulting in a superior network compression im-
pact. (2) Current research focuses on identifying a single
disease type on a single leaf, with less emphasis on identi-
fying many illnesses on the same leaf, which has limits.
Extracting traits and identifying mixed illnesses on tomato
leaves will require more research. (3) This paper’s data on
leaf disease is insufficient. To improve the model’s gener-
alization capacity, the image data of tomato leaf diseases
should be gradually added in the future.

5. Conclusions

For the complex tomato planting background, inconspic-
uous tomato leaf disease features, and distributed disease
spots, a method for tomato leaf disease identification based
on the INLM and the DCCAM-MRNet model is proposed.
Firstly, a tomato leaf disease classification dataset with
10,923 tomato leaf images is generated. Secondly, the INLM
filtering algorithm filters the tomato leaf disease dataset to
reduce the influence of complex tomato planting back-
ground and blurred disease features on the images and
improve image quality. The INLM filtering method is ten
times faster than the traditional NL-Means filtering
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algorithm in terms of filtering speed. Then, for tomato leaf
diseases with obscure disease features and scattered spots, a
novel neural network DCCAM-MRNet is developed using
the ResNeXt50 as the backbone network. Dilated convo-
lution and coordinate attention methods are used in the
DCCAM-MRNet to improve the extraction of subtle and
scattered feature points. The mixed residual connection
method is used to enhance the tightness between adjacent
layers for feature extraction, which reduces the number of
network parameters and improves the learning accuracy of
the network. The final experimental results demonstrate that
the DCCAM-MRNet has an accuracy of 94.3% in identifying
tomato leaf diseases. In addition, the number of parameters
decreased by 0.11 M compared to the ResNeXt50 backbone
network, which aids in network compression.

Tomato and other crop leaf disease recognition is still a
hot research area in image recognition technology. The
DCCAM-MRNet may be used for disease recognition after
capturing tomato leaf pictures, which is critical for pre-
venting and controlling tomato leaf diseases and ensuring
tomato productivity and quality. The next step in this paper’s
research will be to see how the network can handle more
types of tomato leaf illnesses and how to increase the net-
work’s disease recognition accuracy by enhancing the ex-
traction of small, scattered data. In addition, we must
investigate how to reduce the network’s size to improve the
detection of tomato leaf diseases and ensure agricultural
productivity.
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