Hindawi

Computational Intelligence and Neuroscience
Volume 2022, Article ID 4879942, 12 pages
https://doi.org/10.1155/2022/4879942

Research Article

@ Hindawi

Class-Incremental Learning on Video-Based Action
Recognition by Distillation of Various Knowledge

Vali Ollah Maraghi @ and Karim Faez

Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Correspondence should be addressed to Karim Faez; kfaez@aut.ac.ir

Received 4 February 2022; Revised 2 March 2022; Accepted 6 March 2022; Published 24 March 2022

Academic Editor: Hanliang Fu

Copyright © 2022 Vali Ollah Maraghi and Karim Faez. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Recognition of activities in the video is an important field in computer vision. Many successful works have been done on activity
recognition and they achieved acceptable results in recent years. However, their training is completely static, meaning that all
classes are taught to the system in one training step. The system is only able to recognize the equivalent classes. The main
disadvantage of this type of training is that if new classes need to be taught to the system, the system must be retrained from scratch
and all classes retaught to the system. This specification has many challenges, such as storing and retaining data and respending
training costs. We propose an approach for training the action recognition system in video data which can teach new classes to the
system without the need for previous data. We will provide an incremental learning algorithm for class recognition tasks in video
data. Two different approaches are combined to prevent catastrophic forgetting in the proposed algorithm. In the proposed
incremental learning algorithm, two approaches are introduced and used to maintain network information in combination. These
two approaches are network sharing and network knowledge distillation. We introduce a neural network architecture for action
recognition to understand and represent the video data. We propose the distillation of network knowledge at the classification and
feature level, which can be divided into spatial and temporal parts at the feature level. We also suggest initializing new classifiers
using previous classifiers. The proposed algorithm is evaluated on the USCF101, HMDB51, and Kinetics-400 datasets. We will
consider various factors such as the amount of distillation knowledge, the number of new classes and the incremental learnings
stages, and their impact on the final recognition system. Finally, we will show that the proposed algorithm can teach new classes to
the recognition system without forgetting the previous classes and does not need the previous data or exemplar data.

1. Introduction

Recognition of human activity in the video has many ap-
plications, such as human interaction with computers,
surveillance systems, and monitoring of human behavior in
industrial environments. Approaches based on deep
learning have reported excellent results in recognizing ac-
tivity, especially human activity. But using these methods in
real and dynamic environments such as urban space,
wildlife, and industrial environments faces challenges. Be-
cause it is always possible to see new activities that the
existing recognition system has not already seen, in this case,
there is a need to update the system constantly.

Deep learning has significant achievements in terms of
recognition and classification [1-3], but it also has some

constraints. Training a model with a deep learning approach
requires many annotated data and computational resources
due to its increasing depth and complexity. Most successful
methods restrict the batch setting: data are provided before
training; hence, optimizing metaparameters and model se-
lection is usually based on a complete dataset. Also, the
training can rely on the assumption that the data and its
underlying structure are static. But this is contrary to real-
world scenarios. In the actual situation, training data is not
available for all classes initially, and the number and nature
of classes are not necessarily clear. A classification system in
real environments should learn new classes incrementally
when their training data becomes available and, of course,
does not undermine the recognition of previous ones. But
the main problem is that training a neural structure using

mailto:kfaez@aut.ac.ir
https://orcid.org/0000-0002-1300-0224
https://orcid.org/0000-0002-1159-4866
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4879942

only new classes’ data leads to forgetting previous classes,
called catastrophic forgetting.

On the other hand, training a system from scratch to
learn new classes faces challenges, including the high cost of
training, storing previous class data for future training, and
perhaps privacy restrictions for maintaining some data. So,
as computer vision moves closer towards artificial intelli-
gence, more flexible approaches are needed to handle the
large-scale and dynamic situation more felt. The purpose of
this work is to learn new categories to model without the
need for previous data and without reducing the model’s
performance about previous classes, known as class-incre-
mental learning in literature.

This paper provides a class-incremental learning
method for recognizing human action in video data. The
base model is an RNN-based deep neural structure, given
the achievements of deep learning in classification, that
should learn human action classes in video data. Class-
incremental learning for RNN-based deep structures has
rarely been done. The proposed method combines two
common approaches in incremental learning (network
sharing and network knowledge distillation). Using the
proposed algorithm, we will show that new classes can be
taught to a human action recognition system without data
from previous classes. Of course, the system’s overall
performance will not be greatly impaired. We propose the
distillation of network knowledge in two levels of clas-
sification and feature. The feature section can be
decomposed into two sections of distillation of temporal
and spatial features. We also proposed using Temporal
Segment LSTM (TS-LSTM) for the temporal represen-
tation of the video instead of the usual use of LSTM. This
technique helps to better temporally represent the video
and improve the recognition system’s performance. The
proposed method will give comparable results to exem-
plar-based methods without the use of exemplar data.
Meanwhile, in the Related Works section, we show that
the class-incremental learning of action recognition in
video is rarely done without the exemplars. We evaluate
the proposed algorithm and compare it with other
methods based on exemplar data, and we show that the
proposed method has performed better. Under similar
conditions, the recognition accuracy has improved by
almost 8% and 6.5% compared to the existing methods on
the UCF101 and HMDB51 datasets.

The innovation of this work is in three cases: first,
network distillation at classification and feature levels, where
distillation at the feature level is done separately for spatial
and temporal features, second, providing class-incremental
learning in video data without storing data or exemplars, and
third, initializing new classifiers using previous classifiers to
learn new classes faster and better. Also, our base model is an
RNN-based structure, and other existing methods are not
effective for these structures.

In the rest of the paper, we review some related works in
Section 2. The proposed algorithm is presented in Section 3.
We present the experimental results and evaluations in
Section 4, discuss results in Section 5, and conclude the
paper in Section 6.

Computational Intelligence and Neuroscience

2. Related Works

2.1. Incremental Learning on Video Data.
Class-incremental learning means that a classifier archi-
tecture can accommodate new classes at any time during the
training process without requiring access to all training data
seen so far. The minor works in incremental learning in
video data are almost related to domain-incremental
learning [4]. Class-incremental learning to recognize human
action in video data is suggested using a recursive-tree
structure [5], which adds one class to the tree as each new
class’s data is added.

In deep learning, very little work has been done on class-
incremental learning in video data, especially on action
recognition in video. The adaptive RNN tree is proposed for
large-scale action recognition, adapted to new classes by
augmenting an existing model [5]. The ODN (Open Deep
Network) [6] detects new categories by applying a multiclass
triplet thresholding method and dynamically reconstructs
the classification layer. It opens the deep network by con-
tinually adding predictors for new classes. The weights of the
new classifiers are initialized from the average weights of the
previous classifiers. The new model is fine-tuned using both
new and old samples. The goal is to reduce the training
energy from scratch and still require previous data. A
temporally attentive knowledge distillation method is pre-
sented, which distills the network knowledge over the
network and intermediate layers and uses it to prevent
catastrophic forgetting [7]. Importance weights are esti-
mated during training, and knowledge is distilled from these
importance weights during incremental learning. This
method also uses the storage of exemplar data for use in
incremental learning. To improve the performance of in-
cremental learning based on network distillation, the spatial-
temporal feature decomposition into two parts, spatial and
temporal features, is presented [8]. A dual granularity ex-
emplar selection method is proposed to select exemplar data
from previous classes for use in incremental learning [8].

As mentioned, little work has been done on incremental
learning in video data. The exemplar data storage of previous
classes is also usually used. On the other hand, the deep
structures used for classification tasks in a single image are
similar to video classification’s deep systems. Therefore,
catastrophic forgetting is a common phenomenon in the
image and video domains. So, reviewing incremental
learning in single images can give us a better insight into this
issue.

2.2. Incremental Learning on Image Data. Mensink et al. [9]
showed that the nearest class mean (NCM) classifier could
do so. NCM represents each class by the average feature
vector of all examples observed for the class so far. NCM has
performed well for incremental learning and is more robust
than other standard parametric classifiers [9-11]. The
prototype-based classification idea of NCM was adapted for
incremental classifier and representation learning (iCaRL)
[12] where the average vector is computed only over a
specifically chosen subset of all examples. The dilemma of

Computational Intelligence and Neuroscience

prototype-based methods deals with complex classification
problems, where the number of classes increases and their
nature becomes more complicated.

The recent success of deep neural networks can be
mainly attributed to their suitable data representation
[13-16]. The main problem in learning representation in the
incremental learning mode is catastrophic forgetting, in-
troduced by McCloskey and Cohen in 1989 [17]. Training a
neural network with new data causes the previous data to be
forgotten. Inspired by the idea of transfer learning [18], the
previous model’s knowledge can assist in learning new re-
lated classes. It has been shown that the features extracted in
the lower layers of CNNs are general, which can be used in
various domains, similar to Gabor filters and edge or corner
detectors [19]. In contrast, the extracted features from the
end layers are more abstract and specific for a class. This
feature of CNNGs is the basis of the transfer learning and
partial sharing approach for incremental learning [20].

Much of what has been done recently for incremental
learning in neural networks is based on the freeze/growth
scenario [20-22]. Splitting the base network into various
subnetworks and creating a tree structure are proposed to
incrementally learn the new classes [23, 24]. An adaptive
hierarchical network composed of DCNNs is proposed for
incremental learning that grows and learns as new data
becomes available [25]. In [26], the Bayesian transfer
learning algorithm is proposed to avoid retraining the whole
model from scratch. Selecting a portion of the initial ex-
emplar data and storing it for training new classes are also
provided to prevent catastrophic forgetfulness [12, 27, 28].
This scenario requires additional resources to store exemplar
data. Using the generative adversarial networks (GANs) to
create fake data is proposed [29, 30]. This approach elimi-
nates the need for additional resources to store data but leads
to additional training GANs. A method based on bias
correction is proposed to solve the educational data
unbalancing issue [31].

Network knowledge distillation has been used to re-
construct previous classes’ features and train new classes to
solve the catastrophic forgetting problem [32, 33]. In [32],
the input is given to the previous model to extract the
previous classes” information in the input image. The model
responses to inputs are used as the ground truth for old
classes during training the new classes to the system [14].
Castro et al. [34] proposed that, to train the new class, use
network knowledge distillation to calculate the output of
prior categories and generate a set of logits. These logits are
then used to calculate the loss in training new classes to force
the network to retain information from previous classes. An
attentive feature distillation approach was proposed to distill
necessary knowledge using both top-down and bottom-up
attention for incremental learning object detection [35].
Incremental learning in the semantic segmentation of ob-
jects is also proposed with the same approach [36]. This
approach is also used for incrementally object detection
tasks [37] to train the class of new objects.

A review of related work suggests that if the main goal is
to classify with one output class for each input, the ap-
propriate approach is network sharing or storing and

reproducing some of the data from previous classes
[12, 20-24, 27-30]. For tasks with multiple outputs per
input, such as multiple object detection, the use of network
knowledge distillation may be a good approach, given the
possibility of having information about multiple classes in a
single input [35-37].

3. Proposed Approach

The purpose of this work is class-incremental learning for
action recognition in video. A review of related work showed
that the appropriate approach for class-incremental learning
in single-output tasks is network sharing or storing and
reproducing some of the data from previous classes
[12, 20-24, 27-30]. The network distillation approach is
more suitable for tasks where the input includes multiple
classes, such as multiple object detection and multiclass
segmentation. The new class data may consist of parts of
some previous classes in these cases. So, the distillation
network distills the information about those classes, which
helps preserve previous network information in new
training. However, these conclusions are for single-image
data and may not be entirely valid for video data.

Our work is to recognize the action in the video, which is
a single-class classification task. A specific action may consist
of several subactions, some of which may be present in other
activities. The way action recognition algorithms work in
video is usually that first low- and high-level features are
extracted from video frames (usually by a CNN). Recursive
structures represent the temporal dependence of these
features, and, finally, the classification is based on this
representation. The extracted features in the first step are
abstract visual features, and, due to a large number of frames
in the inputs, the feature extraction module becomes gen-
eral. In other words, the feature extraction module obtained
from the training of the early classes also can extract the
appropriate features from the data of the new classes.
Therefore, the network sharing technique can be used for
incremental learning in this work.

As mentioned, an action consists of its various com-
ponents, including various subactions and abstract prop-
erties. The feature extraction module obtains abstract
features in the first step. Subactions and their combinations
are calculated to represent the action by recurrent structures
in the second step. A new action may contain components
that already exist in previous classes. Therefore, if a new
action class data is applied to the model, the recurrent
section may also represent different components of previous
actions. In this case, the previous network information can
be distilled using network distillation. Thus, although this is
a one-class classification task, the network distillation ap-
proach can also be used for class-incremental learning.

3.1. Class-Incremental Learning. Our main goal in this work
is to apply class-incremental learning to recognize the action
in the video. Our proposed algorithm combines two ap-
proaches: network sharing and network distillation. After
training the basic model with the data of some classes, it is

assumed that the feature extraction section (CNN) can
extract appropriate properties of other classes. Therefore, the
feature extraction module is fixed (frozen) for subsequent
training efforts. This trick implements the concept of net-
work sharing.

Distillation of network knowledge is the extraction of
information learned from the network and applying this
information to the network during incremental learning to
prevent forgetfulness. In fact, the previously taught model as
a teacher controls training the new model (student) not to
forget the previous information. The teacher model is not
updated during incremental learning. Distillation of net-
work knowledge can be applied at the classification level
(probabilities generated by the classification layer) or at the
feature level (feature maps obtained in the middle layers). In
a simple knowledge distillation algorithm, only the output of
the classification layer is used to extract network knowledge
and remind it in incremental training. In this case, the
student network tries to preserve past information by
reproducing the values generated by the teacher model. The
last layer classifiers generate a probability for each class for
each video input. Before new training, these probabilities are
first calculated for the new class input, and, during the new
classes training, the previous classifiers are forced to re-
produce the previous probabilities. Therefore, when training
the student model to train the new classifiers, the previous
classifiers retain previous knowledge by being forced to
reproduce their corresponding values in the teacher model.
The task of preventing the forgetting of past knowledge in
these circumstances is the sole responsibility of the classi-
fication layer.

But the information recorded in the network is available
throughout the network. By extracting this information and
reminding it to the network, it is possible to help preserve the
network knowledge in new learning [7, 8]. In this situation,
the teacher model controls the training of the student model
throughout the model, not just in the classification portion.
The feature maps obtained from the middle layers in 3D
neural structures for video representation form a tensor with
T x Hx W dimensions. This tensor contains spatiotemporal
information obtained from video, including spatial infor-
mation in dimensions H and W and temporal information in
dimension T [8]. Separating spatial information and tem-
poral information and distilling them has been shown to
help improve incremental learning performance [8]. Pooling
in temporal and spatial dimensions must be performed to
decompose the tensor containing spatiotemporal informa-
tion into spatial and temporal parts, respectively.

In our case, the model used to recognize action from the
video is an RNN-based deep structure described in Section
3.2. In this type of structure, spatial features are first
extracted at the frame level, and then temporal relations are
represented by a recurrent part. Figure 1 shows this process.
Therefore, spatial information is available separately from
temporal information at the end of the first section (con-
volutional feature extraction module in Figure 1). Temporal
representation is also available at the output of the recurrent
part (LSTM module in Figure 1). Therefore, no process is
required to parse spatial and temporal information.

Computational Intelligence and Neuroscience

According to the above, the network knowledge distil-
lation technique is used to apply incremental learning by
controlling the training of the student model by the teacher
model. This control is applied at three levels: classification
layer, spatial features, and temporal features. Figure 2 shows
this control. Therefore, the knowledge of the network is
distilled at three levels of classification, spatial characteris-
tics, and temporal characteristics.

e
<_N Z ZIA?U logqi])’ (4)

i=1 j=1

LcD =

M=

f=1

The technique of distillation network knowledge and
applying it during incremental learning is done by calcu-
lating the loss function and backpropagating it. The base
network is trained using the common cross-entropy clas-
sification loss function (L;). The loss function in the in-
cremental learning phase (L;,.) consists of two parts, one
part related to classification and the second part associated
with knowledge distillation. As for the base model training,
the first part is a cross-entropy loss function (L) and the
second part is a distillation loss function (LD).

Linc = Lcl + YLD’ (1)

where y is hyperparameter. The cross-entropy loss (L) is as
follows:

Ns C

1
Ly= “Ns Z Z pijlog q;j» ()

i=1 j=1

where p; is the grand truth for sample i and g; is a softmax
score of the logits of a classifier for sample i. Ns and C denote
the numbers of samples and classes, respectively. The dis-
tillation loss function (LD) used to maintain previous
classes consists of two parts, classification and feature:

LD = Ly + o< Lgp, (3)

where L., and L, are the classification distillation loss and
the feature distillation loss, respectively. The classification
distillation loss is as follows:where p; and g; are the modified
versions of p; and g;, which are obtained by raising p; and g;
to the exponent 1/T, as described in [38], where T is the
distillation parameter. Distillation loss is calculated for all F
previous classes. Choosing T'> 1 forces the network to learn
a more fine-grained separation between classes. This pa-
rameter is set to 2 for all experiments. Feature distillation
loss can be calculated as fused spatiotemporal or separately
in two parts: spatial and temporal. Due to the superiority of
separate spatial and temporal distillation and separate access
to these two features, we use separate distillation. So the
feature distillation loss is formulated as follows:

Lip =Lysp + BLssps (5)

where L, and L, ;, are the spatial and the temporal terms
of the feature distillation loss. These losses are calculated as
follows: the Euclidean distance between the features taken
from the base model and the model under training.

Computational Intelligence and Neuroscience

Extract convolutional
features of each frame

Input Frames
(RGB/Optical flow) :>

feature
aggregation

Video representing
with LSTM

F1GURE 1: Block diagram of the process in each processing stream. At first, the convolutional features of each frame are extracted. Then, the
whole input video is represented by the LSTM block. Finally, the elements are aggregated.

Teach New classes Extract convolutional ,| Video representing R Aggregg(atlon
cacher data :> features of each frame v with LSTM 4 o

Classification

Student New classes Extract convolutional ,| Video representing R Aggresg(atlon
data :> features of each frame " with LSTM o . .

Classification

FiGure 2: Control of student model training by teacher model at three levels of classification, temporal features, and spatial features. The

teacher model is not updated during training the student model.

F
Lip = Zfib - fins (6)
i=1

where f; and f;, are the features obtained from the base
model and new model, respectively.
So, the overall loss function formed as follows:

Linc = Lcl + y(LCD + & (Lth + /SLSJ(D)) (7)

Therefore, the proposed class-incremental learning al-
gorithm is as follows:

(i) A human activity recognition system is taught from
scratch to recognize the initial classes. This trained
model is used as the teacher model for the next
training.

(ii) The new model (student model) is created by sharing
the base model and adding classifiers for new classes.

(iii) The feature extraction module of the base model,
except two last layers, freezes and is not updated
during incremental learning. This work is derived
from network sharing approaches.

(iv) The student model is taught using new class data
under the supervisor of the teacher model. During
this training, knowledge distillation is done by
supervising the teacher model by calculating the loss
function according to (7).

(v) The new taught model will be used as the teacher
model for future training. In other words, the
subsequent incremental learnings are done from
step (ii) onwards.

We introduce an excellent neural structure for action
recognition in video data in the following.

3.2. Action Recognition System. An important feature of
video data is temporal information in the video that can
efficiently represent the video and identify the target class.

But what is the best way to exploit time information? Many
previous methods, which follow a two-stream ConvNets
[39], use optical flow images to take advantage of temporal
information in one of the processing streams [40-44]. In
these methods, visual appearance in spatial and temporal
flows and their relationship are not considered, which is one
of the essential components in activity recognition tasks.
Therefore, they will not perform well for these tasks.

Therefore, we can consider a three-stream structure that
the first and second streams process on RGB images, and the
third stream includes the processing of optical flow images.
This three-stream structure was previously introduced for
action recognition in the video [45] and modified for verb
recognition through zero-shot learning on human-object
interaction (HOI) recognition [46]. We use this structure as
a base model to investigate the proposed class-incremental
learning algorithm. The operation of this structure and each
of its three streams is described in full detail in [45]. We
briefly introduce it below. Each stream has three main
processing steps shown in Figure 1. The processing flows of
the three streams are almost similar.

Patch-Based Representation. Activity-related areas are
first estimated in each RGB frame in this processing
path. These action patches are then used to extract the
convolutional properties of each frame. The extracted
feature map is given to the LSTM block to represent the
temporal relationship. The resulting output vectors are
aggregated to form the final representation vector for
estimating the action class.

Focal Representation. In this path, the activity-related
area is first estimated (like as first path), the other
regions are blurred, and a new RGB image is obtained.
The convolutional properties are extracted from each
frame’s resulting image, and the process’s continuation
is the same as the first stream.

Motion Representation. Short-term information in a
video clip can be represented by optical flow. The RNN
block can obtain long-term information. Therefore, the

third path can represent motion with optical flow. The
convolution properties of each frame are extracted
from the optical frame by a CNN network. The next
steps are exactly like the other two streams.

The long short-term memory (LSTM) module is used as
RNN to temporally represent the video. The LSTM module
does the representation of the temporal relationship in the
video. The extracted per frame CNN features are split into k-
frame chunks in each input video and fed to the LSTM
module. Each chunk fed to the LSTM module contains
feature maps extracted from F/k consecutive frames of input
video, where F is the total number of input frames and k is
chunks number. Next, the LSTM outputs are fed into a
densely connected feedforward neural network with a
Softmax output layer, giving each chunk the probability of
belonging to each C-action class. These probabilities are
added for all chunks of each video to predict the class. The
direct use of LSTM to consider temporal information is only
similar to simple temporal pooling methods, such as mean
or max pooling, due to the limited temporal dynamics of
representing ConvNet-derived features [47]. It is shown that
the features obtained from the frames of a video have similar
representations [47]. Because a large portion of the video has
the same feature representations over time, RNNs cannot
learn the temporal information well. In the TS-LSTM
method [47], the input sequence is divided into several
temporal chunks, and their distinctive feature representa-
tions are learned. Each video is sampled into N frames and
divided into M chunks. The features extracted from F input
frames are split into F/k chunks. Temporary pooling is
performed on each chunk, and then the pooled features of all
chunks are fed to the LSTM module to represent the entire
video. The output of this module will be used for recognition
in the next dense layer. The TS-LSTM module learns the
nonlinear feature combination and its segmental repre-
sentation over time.

We substitute this TS-LSTM technique for the primary
three-stream structure technique. The direct technique uses
LSTM to represent each chunk typically, performs a rec-
ognition for each, and then sums the recognition results of
all the fragments. The TS-LSTM technique, unlike the direct
technique, uses all the video space for recognition, which will
improve system performance. Due to the temporal pooling
in each chunk, the total computations for recognizing a
video are also reduced.

The results of the three introduced streams are merged to
recognize the input video action class. The integration is as
follows: A score is given to each class by a dense network in
each stream. The total score of each class is calculated by
summation of its scores in three streams. The class with the
highest score is the recognized action class.

3.3. Initialization of new Classifiers. Creating a new model
(student model) for incremental learning is done by sharing
the teacher model and adding new classifiers related to new
classes. The initialization of the weights of these new clas-
sifiers is usually done randomly. Thus, in the created student
model, the weights of the new classifiers are without any

Computational Intelligence and Neuroscience

initial training, while the previous classifiers are fully trained.
To solve this imbalance, initializing the weights of the new
classifiers with the previous weights can be helpful. The use
of previous weighted averages to initialize new classifiers is
proposed to reduce the learning time in the continuous
training of categories for the open-set problems [6]. This
work is not intended for class-incremental learning without
the previous data and only makes learning the new model
faster with more classes. Due to the nature of human action,
which can consist of several subactions, using the infor-
mation in the previous classifiers to initialize the new
classifiers makes it easier to train and converge them.

We use this trick to initialize the weights of the new
classifiers. Of course, we do not recommend the average of
all the weights of the previous classifiers. It is best to use the
average of the most similar classifiers for each new class. By
feeding the data of each new class to the teacher model, the
classifiers that produce the biggest probability for the input
data are likely to be the most similar classifiers to the new
class. Therefore, by estimating the most similar classifiers,
the new classifier weights are initialized with the average of
these weights as follows:

1 M
Wi = M Zwi’ (8)
i=1

where M denotes the M similar classifiers. The weights of the
new classifier are denoted by Wy,, and W, denotes the
weights of previous classifiers (from the teacher model).

4. Results and Experiments

We present the results of our method in this section and
compare them with those of some other class-incremental
learning methods and the static training mode (training all
classes to the model in one stage). Our proposed algorithm
does not use exemplar data storage. At the time of doing this,
there was no other similar method for comparison.
Therefore the performance of the proposed method was
compared with those of incremental learning methods based
on exemplar data storage.

4.1. Datasets. For human action understanding in videos,
several appropriate datasets have been provided and pub-
lished, such as UCF101 [48], HMDB51 [49], and Kinetics-
400 [50]. We evaluated our method using the HMDB5I,
UCF101, and Kinetics-400 datasets.

HMDB5I includes 51 action classes with 6766 videos
collected from various sources. There are three training/test
splits, like the setting in [45], and, in each evaluation stage,
the mean average accuracy is reported.

UCF101 consists of 101 action classes, 13k clips, and 27
hours of video data. This dataset contains the user’s
uploaded videos, including camera motion and cluttered
background. The videos of each category are grouped into 25
different groups based on some characteristics such as en-
vironments and camera movement. The dataset is separated
into three training/test splits; in each split, 18 groups are
used for training and seven groups for testing.

Computational Intelligence and Neuroscience

The third dataset is Kinetics-400, a large-scale video
classification dataset containing 400 human action cate-
gories. Kinetics-400 is a YouTube-type video dataset that
provides 240k and 20k 10-second videos for training and
validation, respectively.

4.2. Implementation Details. The recognizer system has
three streams: two spatial streams and one temporal stream.
The two spatial CNN streams use an AlexNet architecture
pretrained on UCF sports. The first stream inputs are the
estimated action patches, and the proposed focal repre-
sentation is fed for the second stream. For the 3rd stream as
motion representation, we used the CNN network like the
network architecture used by Wu et al. [31]. This motion-
CNN is pretrained on the optical flow images of UCF sports.
There are many options for generating optical flow images.
The two most common methods are Brox [51] and TV-L1
[52], in which TV-L1 performed slightly better based on the
evaluation in [47]. So, TV-Ll is used as input for the
temporal stream.

The FC7 layer of three CNNs extracts a 4096-dimen-
sional feature vector for each input video frame. After
obtaining feature vectors for all F frames of the input video
in three CNNs, these feature vectors are used by the RNN
module for temporal representation. For the RNN module,
an LSTM block with 256 hidden units is used. Two FC layers,
respectively, with the number of neurons equal to 256 and
the number of action classes, are used as a classifier in each
stream.

For training the base model with initial classes, the
learning rates are initially set to 5x 107 for two spatial
streams and 5 x 107 for temporal stream. These learning
rates are divided by 10 when the accuracy is saturated. The
weight decay and momentum for all ConvNets are set to
1x107* and 0.9, respectively. The batch sizes for all Con-
vNets are 8. The LSTM module is trained with an Adam
optimizer and learning rate of 5 x 107°.

The size of the input images is 224 x 224 for all streams.
The number of sampled frames in each video is N=24, and
the number of temporal segments is selected as M =6.

4.3. Experimental Results. In class-incremental learning
scenario, To evaluate the proposed method, we follow the
strategy used in [7]. First, the base model is trained with
initial classes, and then the other classes are incrementally
trained to model. For this purpose, all classes are sorted
randomly, 50% classes (51 classes for UCF101 and 26 classes
for HMDB51) are used to train the base model, and the
remaining classes are used for incremental learning. The
remaining 50 classes of the UCF dataset are taught to the
model in 5 steps of 10 classes, ten steps of 5, and 25 steps of 2
in incremental learning. For the HMDB dataset, the
remaining 25 classes are taught to the model in 5 stages of 5
classes and 25 stages of 1 class in incremental learning.
Because the nature of the classes affects the result, these
experiments are performed three times with randomly or-
dered classes. The model’s classification accuracy is

calculated on the seen classes in each step, and its average
value is calculated.

The initialization of new classifiers is performed
according to (8) with M=5. First, the five most similar
classifiers are calculated by calculating the teacher model’s
output on the new class’s data for each new class. Their
average weights are calculated and set as the initial values of
the new classifier weights.

We test three scenarios for class-incremental learning
based on using distillation knowledge and how much net-
work sharing. These three scenarios are summarized in
Table 1. The type of used distillation is depicted in the fourth
column where cD represents distillation at the classification
level and tfD and sfD represent distillation at the temporal
and spatial features, respectively.

We train the model with the first available classes in
experiments with the first scenario settings (3Stream-D).
Then, the feature extraction module and the LSTM block are
frozen, the classifiers corresponding to primary classes are
discarded, classifiers for new classes are added, and the
model is trained for new classes. During the training of new
classes, only the new classifiers are taught. This experiment is
just a network-sharing technique, and there is no distillation.

For the second scenario, as in the first scenario, the base
model (teacher) is first trained for the primary classes. The
student model is created by sharing the teacher model and
adding the new classifiers. In this scenario, during incre-
mental learning, the trained classifiers of the teacher model
are not discarded. ConvNets is frozen in all streams. The
distillation type is only a classification distillation. In other
words, in (7), the alpha parameter is equal to 0.

The third scenario is similar to the second scenario and
uses network knowledge distillation, except that, in this
scenario, the distillation loss is calculated by classification
and temporal features distillation. This increases the control
of the teacher model on the student during incremental
learning. In this case, spatial distillation is not used, and =
0 oc in (7), while oc >0 is used.

Table 2 shows the class-incremental performance on
UCF and HMDB datasets and compares the above scenarios
with three other methods. The TCD [7] is proposed for video
data, but UCIR [53] and PODNet are proposed for image
datasets that are evaluated for video in [7]. All these three
methods use exemplar data storage for incremental learning.
The proposed algorithm does not use exemplar data. Still, for
better comparison with the compared methods, the per-
formance of the proposed method using exemplar data is
also tested and is reported in Table 2.

The results of Table 2 show the efficiency of the proposed
algorithm. The proposed algorithm has a much higher
performance than other methods if it uses exemplar data. If
exemplar data are not used, the proposed algorithm still
performs better or is similar to the compared methods. Of
course, part of this better performance is due to the structure
used, which in static learning mode is more accurate than the
compared methods. In other words, the accuracy of the used
model before applying incremental learning is better than
the compared models at the same time. However, Figure 3
shows that the rate of accuracy drop is acceptable by

8 Computational Intelligence and Neuroscience

TaBLE 1: Three scenarios for class-incremental learning.

Freeze ConvNets Freeze LSTM Distillation type Update first classifiers
3Stream-D Yes Yes — No
3Stream + cD Yes No cD Yes
3Stream + cD + tfD Yes No cD +tfD Yes

TaBLE 2: Class-incremental action recognition performance on UCF and HMDB datasets.

UCF101 HMDB51
Methods Exemplar
10 x 5 stages 5x10 stages 2 X 25 stages 5x5 stages 1 x 25 stages

UCIR [53] 5 74.31 70.42 63.22 44.90 37.04
PODNet [54] 5 73.26 71.58 70.28 44.32 38.76
TCD [7] 5 74.89 73.43 72.19 45.34 40.07
3Stream + cD 5 80.65 78.33 76.84 52.35 45.63
3tream + cD + tfD 5 83.24 81.24 79.2 54.28 47.15
3Stream-D 0 69.34 64.32 59.86 45.23 —
3Stream + cD 0 74.23 69.51 67.12 48.2 —
3tream + cD + tfD 0 77.05 74.12 72.07 50.75 —

UCF101 (10x5 stages) HMDBS51 (5x5 stages)

100 80
95 75
90 70
65
85 60
§~ 80 §~ 55
§ 75 % 50
< 7 245
65 ‘3‘0
5
60 30
55 S 25
50 20
51 61 71 81 91 101 26 31 36 41 46 51
Number of classes Number of classes
-@- TCD -@- 3Stream+cD -@ TCD -@- 3Stream+cD
-® PODNet -@- 3Stream+cD+tfD -® PODNet -@- 3Stream+cD+tfD
UCIR UCIR
(a)
UCF101 (10x5 stages) HMDB51 (5x5 stages)
100 o 80 S
95 75
90 70
85 65
60
g 80 & 55
5 £
2 75 3 50
2 7 2 45
65 40
60 35
30
55 S 25
50 20
51 61 71 81 91 101 26 31 36 41 46 51
Number of classes Number of classes
-@- TCD -@- 3Stream+cD -®- TCD —@- 3Stream-+cD
~®- PODNet -@- 3Stream+cD+tfD -®- PODNet -@- 3Stream+cD+tfD
UCIR UCIR
(b)

FIGURE 3: Accuracy chart in terms of incremental learning step. The top row does not use exemplar data for the proposed method, but, in the
bottom row, the proposed method also uses exemplars. Compared methods use exemplar data in all cases. (a) 3Stream methods without
using exemplars and (b) 3Stream methods use exemplars.

Computational Intelligence and Neuroscience

applying incremental learning despite not using the previous
sample data. The curves in Figure 3 show that the final model
obtained by the proposed algorithm performs better than
other methods if the exemplar data are used. Also, if ex-
emplar data are not used, the performance of the final model
is acceptable compared to exemplar-based methods.

For the first scenario (3Stream-D), a large part of the
network (ConvNets and LSTM) is frozen. Just the param-
eters of classifiers are updated, so the network learning
capacity is reduced. Hence, the model’s accuracy on the new
classes is not very high. In the final model, the extractor
modules and the primary classifiers have not changed during
incremental learning, and the accuracy on the primary
classes has been high. Still, in the final model, the classifiers
related to the primary and secondary classes have not been
trained relative to each other. If the model with all classifiers
is considered, the error rate increases, and therefore the
overall accuracy is not very high.

For the second scenario (3Stream + cD), the base model
is precisely the same as the first one. The accuracy of the final
model on all classes is increased. This improvement is be-
cause network knowledge distillation has been used, and
primary classifiers have been updated against new classes.
Updating the LSTM block probably reduces the model
accuracy on the initial classes after incremental learning.
Still, due to the distillation of network knowledge, this
performance reduction is not expected to be very large. Of
course, it should not be forgotten that this performance
improvement is in exchange for a slight increase in training
energy during incremental learning. However, the energy of
the error backpropagation in the recursive structures is
much less than that of the convolutional structures, and, due
to the freezing of the convolutional parts, the training energy
is much less than that of the static training. More control of
the teacher model over the training of the student model in
the third scenario (3Stream + cD + tfD) causes the previous
information to be less affected by the new information, and
the accuracy of the model decreases less.

4.3.1. Evaluation for Large Dataset. The above tests and
evaluations were performed on the common UCF101 and
HMDB51 datasets. Still, these two datasets do not have a
large number of classes, and a larger dataset is needed to
conclude situations with a large number of classes. The
Kinetics-400 dataset is a large dataset that contains 400
action classes. The evaluation of the presented algorithm on
this dataset can be useful for examining conditions with a
large number of classes. However, since other methods have
not been evaluated on this dataset and their performance has
not been reported, we evaluate the results only with the
proposed method and the degree of the models’ accuracy
with incremental learning steps.

In this case, 300 classes have been randomly selected and
used to train the base (teacher) model. The remaining 100
classes are taught in incremental learning in various steps to
the model. The final models of incremental learning results
are also compared with the results of static training in which
all classes are taught in one step. The experiments were

performed three times, and the average results were re-
ported. Table 3 shows the evaluation results of the proposed
method on this dataset.

The important columns in Table 3 are the results of the
final models and their comparison with the base model and
the static mode training. These results show that the use of
knowledge distillation outperforms network sharing
methods. Also, the knowledge distillation from different
levels of the network reduces the attenuation of the model
and increases the final accuracy. Reducing system perfor-
mance is reasonable if the exemplar data are not used, but,
given the knowledge distillation, the accuracy of the final
model is not disappointing. Also, the results of Table 3 show
that the number of incremental learning stages and the
number of classes in each stage affect the performance of the
final model. In general, the fewer incremental learning stages
and the fewer new classes added to the model in fewer stages,
the better the performance of the final model.

4.3.2. Effect of Initialization. To initialize the new classifiers,
we propose using the average weights of the most similar old
classifiers. In this experiment, we evaluate the effect of this
technique on system performance with equal epochs in
training. We used the UCF101 dataset for this evaluation.
Table 4 shows the recognition accuracy of the final model.
The results of Table 4 show that using the average weights
of the most similar classifiers to initialize the new classifiers
makes the final performance of the model better than the
random initialization mode in equal training epochs.

4.3.3. Spatial Features Distillation. In experiments per-
formed so far, we have not used distillation of spatial fea-
tures, and we have used distillation at the level of
classification and distillation of temporal features. Here we
also evaluate the impact of using spatial features on incre-
mental learning. The exemplar data are not used in incre-
mental learning. The results of recognition accuracy are
reported in Table 5.

As expected, the results of Table 5 show the positive effect
of spatial feature distillation on the system’s final perfor-
mance. Distillation of spatial features is applied only to the
first part (CNNs), and its training is separate from the rest of
the network. On the other hand, the spatial part of the
system includes the convolution structure, which is costly to
train. Therefore, it is not unjustifiable to put it aside by
accepting the slight decline in final accuracy.

5. Discussion

This work’s primary goal is to train new classes to a rec-
ognizing system, provided that the system’s performance is
not impaired for the previous classes. We tested three dif-
ferent scenarios and compared them with some other
methods. Experiments and comparisons with other methods
have shown that adding distillation of network knowledge at
the feature level helps increase class-incremental learning
accuracy. Distillation of knowledge at the feature level at
both temporal and spatial feature levels increases

10 Computational Intelligence and Neuroscience

TaBLE 3: Class-incremental action recognition performance on Kinetics-400 dataset. Mean-named columns show the average recognition
accuracy (%) of all incremental learning steps. The other values report the recognition accuracy of one model.

20 x5 stages 10 x 10 stages 5x 20 stages

Exemplar Base model] . Static mode)
Methods Mean Final Mean Final Mean Final
3Stream + cD 15 73.5 64.42 60.26 63.02 58.34 60.74 55.23 69.84
3Stream + cD + tfD 15 73.5 68.25 65.78 66.83 63.36 64.86 61.73 69.84
3Stream-D 0 73.5 55.3 46.32 52.26 43.54 48.73 39.6 69.84
3Stream + cD 0 73.5 60.4 56.86 58.7 54.21 55.38 51.63 69.84
3Stream + cD + tfD 0 73.5 63.9 61.42 62.43 60.12 60.9 58.35 69.84

TaBLE 4: Effect of initialization on class-incremental action recognition accuracy on UCF101 dataset.

Random Similar classifiers mean
Exemplar Methods
10 x5 stages 5x10 stages 10 x 5 stages 5x10 stages

3Stream + cD 5 70.14 67.23 71.32 68.86
3Stream + cD + tfD 5 75.31 72.7 76.47 73.76
3Stream-D 0 52.67 49.0 53.24 49.63
3Stream + cD 0 61.45 57.36 62.56 58.5
3Stream + cD + tfD 0 65.27 62.64 66.84 63.74

TaBLE 5: Effect of spatial features distillation on class-incremental action recognition accuracy. Only the accuracy of the final model has been

reported.

Methods UCF101 Kinetics-400 HMDB51
10 x 5 stages 20 x 5 stages 5X5 stages

3Stream + cD 62.56 56.86 36.43

3Stream + cD +tfD 66.84 61.42 40.26

3Stream + cD + tfD + sfD 68.17 62.97 41.14

recognition accuracy (see Table 5). In the absence of ex-
emplar data, our evaluations show that the proposed method
can still have results comparable to exemplar-based methods
(Tables 2-4).

We also investigated the effect of classifier initialization
and showed that using the most similar classifiers is helpful
for initialization (see Table 4).

Evaluation on large Kinetics-400 dataset showed that the
fewer incremental learning stages and the fewer new classes
added to the model in fewer stages, the better the perfor-
mance of the final model. Although more classes in incre-
mental learning lead to a greater decline in system accuracy,
several incremental learning also increase system decline.

Experiments have shown that distillation from different
model parts can help retain prior information during the
training of new classes and reduce the model performance
drop. Of course, this may increase the cost of training.
Comparing the proposed method with other methods that
use exemplar data, it has been observed that the proposed
method has a similar or even better performance without
using exemplar data.

6. Conclusion

In this research, we proposed an algorithm for class-in-
cremental learning to an action recognition system based on
deep learning that does not greatly impair the recognition
accuracy of previous classes by training new classes to the

system. The importance of this work is reflected in the re-
duction of system retraining energy for all classes and the
lack of need to maintain data from previous classes for future
training. In this research, a three-stream structure is used,
swhere each stream includes the feature extraction section, a
recurrent section, and classifiers. The main idea in this work
is to maintain the network knowledge related to the previous
classes and also to use this knowledge in training new classes,
which helps the network not forget the previously learned
information. Extracting network knowledge and reminding
it to the model are done in different network parts and levels.

Our focus in this research is the distillation of network
knowledge, during which the network knowledge is
extracted using the training data of new classes. While
learning new classes, this extracted knowledge is used to
prevent the network from forgetting previous classes. Dis-
tillation of network knowledge is done at the level of clas-
sification and feature, which at the feature level can be
decomposed into two parts, spatial and temporal. We also
suggest that the average weights of the most similarly trained
classifiers be used instead of random values to initialize new
classifiers. We have shown that this low-cost work improves
system performance.

Other basic structures that perform better for incre-
mental learning for future work can be used. In this work,
the classes added in the incremental learning phase are from
the same dataset of classes used for initial training. Incre-
mentally learning classes from one dataset to a system taught

Computational Intelligence and Neuroscience

with another dataset is a challenge that needs to be
addressed. Also, we intend to integrate this work with our
previous work in the field of zero-shot learning recognition
of human-object interaction (HOI) recognition [46].

Data Availability

The datasets used to support the findings of this study are
included in the article [48-50].

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] S. Sadiq, M. Zmieva, M. L. Shyu, and S. C. Chen, “Reduced
residual nets (red-nets): low powered adversarial outlier de-
tectors,” in Proceedings of the 2018 IEEE International Con-
ference on Information Reuse and Integration (IRI), July 2018.

[2] K. Kato, Y. Li, and A. Gupta, “Compositional learning for
human object interaction,” in Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany,
September 2018.

[3] Y. Qian, M. Bi, T. Tan, and K. Yu, “Very deep convolutional
neural networks for noise robust speech recognition,” IEEE/
ACM Transactions on Audio, Speech, and Language Process-
ing, vol. 24, no. 12, pp. 2263-2276, 2016.

[4] J. Cheng, H. Liu, F. Wang, H. Li, and C. Zhu, “Silhouette
analysis for human action recognition based on supervised
temporal t-SNE and incremental learning,” IEEE Transactions
on Image Processing, vol. 24, no. 10, pp. 3203-3217, 2015.

[5] W.Li, L. Wen, M. C. Chang, S. N. Lim, and S. Lyu, “Adaptive
RNN tree for large-scale human action recognition,” in
Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, October 2017.

[6] Y. Shu, Y. Shi, Y. Wang, Y. Zou, Q. Yuan, and Y. Tian, “Odn:
opening the deep network for open-set action recognition,” in
Proceedings of the 2018 IEEE International Conference on
Multimedia and Expo (ICME), July 2018.

[7] J. Park, M. Kang, and B. Han, “Class-incremental learning for
action recognition in videos,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, Montreal,
Canada, October 2021.

[8] H. Zhao, X. Qin, S. Su, Y. Fu, Z. Lin, and X. Li, “When video

classification meets incremental classes,” in Proceedings of the

29th ACM International Conference on Multimedia, Chengdu,

China, October 2021.

T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka, “Metric

learning for large scale image classification: generalizing to

new classes at near-zero cost,” in Proceedings of the European

Conference on Computer Vision, October 2012.

T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka, “Dis-

tance-based image classification: generalizing to new classes at

near-zero cost,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 35, no. 11, pp. 2624-2637, 2013.

M. Ristin, M. Guillaumin, J. Gall, and L. V. Gool, “Incre-

mental learning of ncm forests for large-scale image classi-

fication,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Columbus, OH, USA, June

2014.

[12] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert,

“icarl: incremental classifier and representation learning,” in

[9

[10

(11

11

Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, July 2017.

[13] Y. Bengio, A. Courville, and P. Vincent, “Representation
learning: a review and new perspectives,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 8,
pp. 1798-1828, 2013.

[14] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE
transactions on pattern analysis and machine intelligence,
vol. 40, no. 12, pp. 2935-2947, 2017.

[15] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-
stitch networks for multi-task learning,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, USA, June 2016.

[16] S. Saxena and J. Verbeek, “Convolutional neural fabrics,”
Advances in Neural Information Processing Systems, vol. 29,
pp. 4053-4061, 2016.

[17] M. McCloskey and N. J. Cohen, “Catastrophic interference in
connectionist networks: the sequential learning problem,”
Psychology of Learning and Motivation, Elsevier, vol. 24,
pp. 109-165, 1989.

[18] S.J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22,
no. 10, pp. 1345-1359, 2009.

[19] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How
transferable are features in deep neural networks?,” 2014,
https://arxiv.org/abs/1411.1792.

[20] S. S. Sarwar, A. Ankit, and K. Roy, “Incremental learning in
deep convolutional neural networks using partial network
sharing,” IEEE Access, vol. 8, pp. 4615-4628, 2019.

[21] T. Xiao, J. Zhang, K. Yang, Y. Peng, and Z. Zhang, “Error-
driven incremental learning in deep convolutional neural
network for large-scale image classification,” in Proceedings of
the 22nd ACM International Conference on Multimedia,
Mountain View, CA, USA, June 2014.

[22] A. A. Rusu, N. C. Rabinowitz, G. Desjardins et al., “Pro-
gressive neural networks,” 2016, https://arxiv.org/abs/1606.
04671.

[23] D. Roy, P. Panda, and K. Roy, “Tree-cnn: A deep convolu-
tional neural network for lifelong learning,” vol. 3, 2018,
https://arxiv.org/abs/1802.05800.

[24] R. Istrate, A. C. I. Malossi, C. Bekas, and D. Nikolopoulos,
“Incremental Training of Deep Convolutional Neural Net-
works,” 2018, https://arxiv.org/abs/1803.10232%20.

[25] D.Roy, P. Panda, and K. Roy, “Tree-CNN: a hierarchical deep
convolutional neural network for incremental learning,”
Neural Networks, vol. 121, pp. 148-160, 2020.

[26] L. Li Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of
object categories,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 28, no. 4, pp. 594-611, 2006.

[27] D. Lopez-Paz and M. A. Ranzato, “Gradient episodic memory
for continual learning,” Advances in Neural Information
Processing Systems, vol. 30, pp. 6467-6476, 2017.

[28] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, “Lifelong
learning via progressive distillation and retrospection,” in
Proceedings of the European Conference on Computer Vision
(ECCV), Munich, Germany, September 2018.

[29] Y. Wu, Y. Chen, L. Wang et al., “Incremental Classifier
Learning with Generative Adversarial Networks,” 2018,
https://arxiv.org/abs/1802.00853.

[30] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual Learning
with Deep Generative Replay,” 2017, https://arxiv.org/abs/
1705.08690.

[31] Y. Wu, Y. Chen, L. Wang et al.,, “Large scale incremental
learning,” in Proceedings of the IEEE/CVF Conference on

https://arxiv.org/abs/1411.1792
https://arxiv.org/abs/1606.04671
https://arxiv.org/abs/1606.04671
https://arxiv.org/abs/1802.05800
https://arxiv.org/abs/1803.10232%20
https://arxiv.org/abs/1802.00853
https://arxiv.org/abs/1705.08690
https://arxiv.org/abs/1705.08690

12

Computer Vision and Pattern Recognition, Long Beach, CA,
USA, June 2019.

[32] O. Tasar, Y. Tarabalka, and P. Alliez, “Incremental learning for
semantic segmentation of large-scale remote sensing data,”
Ieee Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 12, no. 9, pp. 3524-3537, 2019.

[33] A. Rannen, R. Aljundi, M. B. Blaschko, and T. Tuytelaars,
“Encoder based lifelong learning,” in Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy,
October 2017.

[34] F. M. Castro and M. J. Marin-Jiménez, N. Guil, C. Schmid,
and K. Alahari, End-to-end incremental learning,” in Pro-
ceedings of the European Conference on Computer Vision
(ECCV), Munich, Germany, September 2018.

[35] X. Liu, H. Yang, A. Ravichandran, R. Bhotika, and S. Soatto,
“Multi-task incremental learning for object detection,” 2020,
https://arxiv.org/abs/2002.05347.

[36] U. Michieli and P. Zanuttigh, “Incremental learning tech-
niques for semantic segmentation,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision
Workshops, Seoul, Korea (South), Ocotober 2019.

[37] L. Guan, Y. Wu, J. Zhao, and C. Ye, “Learn to detect objects
incrementally,” in Proceedings of the 2018 IEEE Intelligent
Vehicles Symposium (IV), June 2018.

[38] G.Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge
in a Neural Network,” 2015, https://arxiv.org/abs/1503.02531.

[39] K. Simonyan and A. Zisserman, “Two-stream convolutional
networks for action recognition in videos,” 2014, https://arxiv.
org/abs/1406.2199.

[40] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan,
O. Vinyals, R. Monga, and G. Toderici, “Beyond short
snippets: deep networks for video classification,” in Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA, June 2015.

[41] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional
two-stream network fusion for video action recognition,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Las Vegas, NV, USA, June 2016.

[42] S. Zha, F. Luisier, W. Andrews, N. Srivastava, and
R. Salakhutdinov, “Exploiting image-trained CNN architec-
tures for unconstrained video classification,” 2015, https://
arxiv.org/abs/1503.04144.

[43] L. Sun, K. Jia, D. Y. Yeung, and B. E. Shi, “Human action
recognition using factorized spatio-temporal convolutional
networks,” in Proceedings of the IEEE International Confer-
ence on Computer Vision, Santiago, Chile, December 2015.

[44] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri,
“Learning spatiotemporal features with 3d convolutional
networks,” in Proceedings of the IEEE International Confer-
ence on Computer Vision, Santiago, Chile., December 2015.

[45] V. Adeli, E. Fazl-Ersi, and A. Harati, “A component-based
video content representation for action recognition,” Image
and Vision Computing, vol. 90, p. 103805, 2019.

[46] V. O.Maraghiand K. Faez, “Scaling human-object interaction
recognition in the video through zero-shot learning,” Com-
putational Intelligence and Neuroscience, p. 2021, 2021.

[47] C.-Y. Ma, M.-H. Chen, Z. Kira, and G. AlRegib, “TS-LSTM
and temporal-inception: exploiting spatiotemporal dynamics
for activity recognition,” Signal Processing: Image Commu-
nication, vol. 71, pp. 76-87, 2019.

Computational Intelligence and Neuroscience

[48] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: a dataset of
101 human actions classes from videos in the wild,” 2012,
https://arxiv.org/abs/1212.0402.

[49] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre,
“HMDB: a large video database for human motion recog-
nition,” in Proceedings of the 2011 International Conference on
Computer Vision, November 2011.

[50] J. Carreira and A. Zisserman, “Quo vadis, action recognition?
a new model and the kinetics dataset,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, July 2017.

[51] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High
accuracy optical flow estimation based on a theory for
warping,” in Proceedings of the European Conference on
Computer Vision, May 2004.

[52] C. Zach, T. Pock, and H. Bischof, “A duality based approach
for realtime tv-1 1 optical flow,” in Proceedings of the Joint
Pattern Recognition Symposium, Springer, Heidelberg, Ger-
many, September 2007.

[53] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, “Learning a
unified classifier incrementally via rebalancing,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Long Beach, CA, USA., June 2019.

[54] A. Douillard, M. Cord, C. Ollion, T. Robert, and E. Valle,
“Podnet: pooled outputs distillation for small-tasks incre-
mental learning,” in Proceedings of the Computer Vision-
—-ECCV 2020: 16th European Conference, Springer, Glasgow,
UK, August, 2020.

https://arxiv.org/abs/2002.05347
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1406.2199
https://arxiv.org/abs/1406.2199
https://arxiv.org/abs/1503.04144
https://arxiv.org/abs/1503.04144
https://arxiv.org/abs/1212.0402

