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Based on Rusch’s creep constitutive relation, di�erential equations for the redistribution of shrinkage internal force and creep of
the composite beam are derived and solved. �e closed solution is cumbersome and is inconvenient to be applied practically. It is
hard to solve the accurate solution for coupled di�erential equations.�erefore, a simpli�ed approach is given. However, it ignores
the in�uence of the redistribution of bending moment of the concrete slab on the axial strain and removes the coupling re-
lationship of di�erential equations so that it makes the solution become convenient. �e comparison of the results calculated by
the two approaches shows that their calculated errors are small, within 3%, when the sti�ness ratio of the concrete slab and the
steel beam are less than 0.185. It also shows that the greater the sti�ness of the steel beam, the greater the constraint on the creep of
the concrete slab, so is the redistribution of internal force.

1. Introduction

Steel-concrete composite beam (hereinafter referred to as
“composite beam”) is a member compounded by shape steel
and concrete slab through shear joints [1] with good bearing
capacity, rigidity, and constructive performance, which is
used more and more extensively [2]. �e concrete slab in the
composite beam has long-term e�ects that are the shrinkage
and creep. However, there are no shrinkage or creeping
e�ects for the steel beam. �erefore, along with changes in
time, the interaction force will be generated between the steel
beam and the concrete slab, leading to the redistribution of
internal force of the composite beam. �e redistribution of
internal force is a factor that must be considered while the
composite beam is designed. �e support condition of the
composite beam will a�ect the initial internal force of the
section of the composite beam and the internal force of the
full section. In this paper, the composite beam (the simple
structure) under the condition of simple support is studied.
E�ects of shrinkage and creep of the concrete slab only cause
the internal force to be generated inside some sections, such
as the concrete slab and the steel beam, and the internal force

of the full section of the composite beam cannot be changed
[3–5].

Based on Rusch’s creep constitutive equation, this paper
deduces the analytical exact solution equation of the
redistributed internal force of the composite beam. In order
to make the calculation formula more concise and more
suitable for engineering practice, the simpli�ed analytical
equation is rederived by ignoring the e�ect of redistributed
bending moment in the concrete slab on the axial strain.
Finally, it is proved that the accuracy of the simpli�ed
method can meet the requirements of use through an
example.

2. Constitutive Relation and Basic Assumptions

2.1. Constitutive Relation. �e creep constitutive relation is
the basis for calculating the e�ect of creep. Di�erent creep
constitutive relations lead to di�erent methods of calcula-
tion. Dischinger proposed the relationship of creep time [6]
(see Figure 1(a)) that the creep rate and loading age are
irrelevant. �e creep curve of the subsequent loading can be
obtained by moving the initially loaded creep curve
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downward in parallel, thereby making the integral consti-
tutive equation be transformed into the differential con-
stitutive equation, which is called the rate of the creep
method [7–9]. However, Dischinger’s creep constitutive
equation does not contain hysteresis elastic deformation. All
of these creep deformations are plastic deformations. And it
is quite different from the actual measured results. In order
to overcome this deficiency, Rusch improved Dischinger’s
relationship of creep time and decomposed the creep co-
efficient into two, which are the plasticity strain that is creep
plasticity and deformation and hysteresis elastic strain that is
the hysteresis elastic deformation (see Figure 1(b)). -e
creep constitutive equation obtained thereout is called the
improved Dischinger method, and the result obtained by
Rusch’s constitutive equation is closer to the reality.

2.2. Basic Assumptions and Symbolic Rules. Results obtained
from a large number of tests and numerical calculations have
proved that both the steel beam and the concrete slab are in
the elastic working stage under the normal use of composite
beam [5, 10, 11]. At the same time, the following as-
sumptions are made to simplify the process of calculation
and analysis:

(1)-e bending moment and axial force of the member
do not change as the change of time.
(2) -e slip between the concrete slab and the steel
beam is neglected.

(3) -e sectional deformation of the composite beam
satisfies the assumption for flat section.
(4) -e crack of the concrete slab is not considered.
(5) It is assumed that the process of shrinkage is the
same as that of creep.
(6) -e influence of reinforcement steel bar is ignored
in the analysis of creep.

For the convenience of calculation, the plus sign and
minus sign in this paper are defined as follows: (1) in terms of
the deformation, the plus sign is for the internal force, so is
the corresponding deformation, and vice versa; (2) in terms
of the internal force, the plus sign is for the axial force
making the member be pulled, so is the bending moment
making the bottom of beam be pulled, and vice versa.

3. The Analysis for the Accurate Algorithm
(Exact Method)

Under the premise of basic assumptions, the exact method is
to incorporate all parameters into the calculation and can
obtain relatively accurate calculation results, which is suit-
able for most situations. -e disadvantage is that the cal-
culation process is cumbersome and not suitable for hand
calculation. In this paper, the Lüxiu constitutive relation is
used to calculate the internal force redistribution of com-
posite beams accurately.

Rusch’s creep constitutive equation is as follows:

(a)

(b)

Figure 1: (a) Dischinger’s creep coefficient. (b) Rusch’s creep coefficient.
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dε(t) �
1
E

dσ(t) 1 + φd( 􏼁 +
1
E

dσ(t)dφf(t) + dεsh(t), (1)

where φf � φt − φd, where φt are creep coefficients, φf is the
plastic creep coefficient, and φd is the hysteretic elastic creep
coefficient, and the final value is 0.4. In Rusch’s method, only
the creep plasticity and creep deformation change with the
change in time, and the hysteretic elastic strain can take the
final value and be superimposed with the elastic strain.

When the creep problem of the composite beam is
solved, the internal force at three moments (see Figure 2), t0
(before creep), t (any moment after creep), and the internal
force (the time increment at the t moment), need to be
considered. -ere is initial internal force M0 and N0 on the
section at t0 moment, which includes the initial internal
force Mc0, dt, and Nc0 on the section of concrete slab (I
represents the concrete slab) and the initial internal force
Ms0 and Ns0 on the section of steel beam (s represents the
steel beam). Due to the shrinkage and creep at the t moment,
the redistribution of internal force Mcr, Ncr, Msr, and Nsr

inside the section occurs, which is self-phase balanced and is
the unknown to be sought. -e increments for the redis-
tribution of internal force are dMcr, dNcr, dMsr, and dNsr.
-e internal force of the full section at the t0 moment can be
distributed according to the stiffness, which is carried out as

Nc0 �
Acr

Ai

N0 −
Si

Ii

M0, Mc0 �
Icr

Ii

M0

Ns0 �
As

Ai

N0 +
Si

Ii

M0, Ms0 �
Is

Ii

M0

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (2)

-e parameters in the equation are Acr � Ac/n,
Icr � Ic/n, n � Es/Ecd, Ecd � Ec/1 + φd, Ii � Icr + Is + Sid,
Ai � Acr + As, and Si � AsAcr/As + Acrd.

-e redistribution of internal force at the t moment is
self-phase balanced. Equations (3) can be obtained thereout
as

Ncr � − Nsr − Mcr + Ncr · d � Msr􏼉. (3)

-e increment for the redistribution of internal force
occurred within the time increment dt is also self-phase
balanced, and incremental equations can be obtained as

dNcr � − dNsr − dMcr + dNcr · d � dMsr􏼉. (4)

Because there are four unknown parameters Mcr, Ncr,
Msr, and Nsr to be solved, four equations need to be found.

Only relying on existing equations (3) and (4) cannot meet
requirements for the solution so that two equilibrium
equations need to be found. According to the assumption
that the sectional deformation of the composite beam meets
the flat section, two deformation-coordination [12–14]
equilibrium equations can be found, in which the strain
increment [15–17] and the curvature increment [18, 19] for
the steel beam and the concrete slab are equal at any fiber:

dεc(t) � dεs(t)

dϕc(t) � dϕs(t)
􏼩. (5a)

Equation (5a) is the deformation-coordination equilib-
rium equation of the strain increment, which is developed at
the core of the concrete slab. -e left side of the equation is
the total strain increment for the concrete slab, including the
free strain that is caused by the initial force of the section and
constrained strain which is caused by the redistribution of
internal force [20–22]. Equation (5b) can be obtained
according to Figure 2. -e right side of the equation is the
total strain increment for the steel beam which is composed
by elastic strain only. Equation (5c) can be obtained
according to Figure 2. -e second equation (5a) is the de-
formation-coordination equation of curvature increment.
Its composite method is similar to the composition of the
first equation. Refer to Equations (5d) and (5e).

dεc(t) � 1 + 2 + 3 + 4

�
εsh

φc∞
dφf,d +

Nc0

EcdAc

dφf,d +
Ncr

EcdAc

dφf,d +
dNcr

EcdAc

.

(5b)

In the equation, εsh is the final value of shrinkage strain
and φc∞ is the final value of creep strain.

dεs(t) � 5 − 6 �
dNsr

EsAs

−
dMsr

EsIs

d, (5c)

dϕc(t) � (I) +(II) +(III)

�
Mc0

EcdIc

dφf,d +
Mcr

EcdIc

dφf,d +
dMcr

EcdIc

,
(5d)

dϕs(t) � (IV)

�
dMsr

EsIs

.
(5e)

Substituting Equations (5b)∼ (5d) into Equation (5a), we
obtain

εsh

φc∞
dφf,d +

Nc0

EcdAc

dφf,d +
Ncr

EcdAc

dφf,d +
dNcr

EcdAc

�
dNsr

EsAs

−
dMsr

EsIs

d,

Mc0

EcdIc

dφf,d +
Mcr

EcdIc

dφf,d +
dMcr

EcdIc

�
dMsr

EsIs

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5f)
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In Equation (5b), four unknown parameters Ncr, Mcr,
Nsr, and Msr are contained. Ncr, Nsr, dNcr, and dNsr in the
equilibrium equations (3) and (4) are substituted into

Equation (5b). -e differential equations (6) can be obtained
after the arrangement. -e equations contain only two
unknowns Mcr and Msr:

Ai

As

·
dMcr

dφf,d

+ Mcr +
Ai Is + Sid( 􏼁

AsIs

·
dMsr

dφf,d

+ Msr � − Nsh + Nc0( 􏼁d,

dMcr

dφf,d

+ Mcr −
Icr

Is

·
dMsr

dφf,d

� − Mc0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(6)

In the equation, Nsh � εsh/φc∞EsAcr. -e solution of
equation (6) can be obtained from the initial condition t � 0,
φf,d � 0, and Mcr � Msr � 0:

Mcr � − Mc0 1 +
ρas

c1 − c2

c1(1 + ρ) + 1
ρc1

e
c2φf,d

−
c2(1 + ρ) + 1

ρc2
e

c1φf,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

− Nsh + Nc0( 􏼁d
ρas

c1 − c2
e

c1φf,d − e
c2φf,d( 􏼁, (7)

Msr � Mc0 1 +

c2 + as( 􏼁

c1 − c2

c2(1 + ρ) + 1
ρc2

e
c1φf,d

−
c1 + as( 􏼁

c1 − c2

c1(1 + ρ) + 1
ρc1

e
c2φf,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

− Nsh + Nc0( 􏼁d 1 +

c2 + as( 􏼁

c1 − c2
e

c1φf,d

−
c1 + as( 􏼁

c1 − c2
e

c2φf,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (8)

Ncr � Nsr �
Mcr + Msr

d
. (9)

Parameters in the equation are c1,2 � 1/2

[− (1 + αs − αc) ±
����������������

(1 + αs − αc)
2 − 4αs

􏽱

], αs � AsIs/AiIi,
and αc � AcrIcr/AiIi, ρ � Icr/Ii.

It can be seen that equations (7) and (8) are too prolix
and inconvenient to use so that a simplified method of
calculation need to be found. In addition, it is relatively

Figure 2: -e initial internal force and the redistribution of internal force of the section at the moment of t0, t, and dt.
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difficult to solve the coupled differential equations above. If
the differential equations can be decoupled [23, 24], the

solution will be much easier. -e approach to the simplified
approximation is described in the following.

4. Simplified Method

Because the calculation process of the exact method is very
cumbersome, this method is not easy to apply. Under the
premise of satisfying the necessary accuracy, in order to
improve the calculation efficiency, the precise calculation
process can be simplified.-e simplificationmethod is based
on the exact method, ignoring individual parameters that
have little influence on the calculation results so that the
calculation process is simplified to the greatest extent.

-e following equation can be obtained by substituting
the second equation of Equation (4) into Equation (5f):

dNcr

dφf,d

1
EcdAc

+
1

EsAs

+
d
2

EsIs

􏼠 􏼡 +
Ncr

EcdAc

+
Nc0

EcdAc

+
εc∞
φc∞

−
dMcr

dφf,d

·
d

EsIs

� 0. (10)

-e thickness of the concrete slab in the composite
beam is much smaller than the height of the steel beam
usually, which is more obvious in the bridge. -erefore,
compared to the steel beam, the concrete slab has a small
antibending rigidity so that the redistribution of bending
moment Mcr will be small. Equation (10) contains two
unknown functions Ncr and Mcr. Its last one item is the
axial deformation caused by dMcr (the increment for Mcr

in dt) with small axial strain. In order to simplify equation
(10), please ignore this item in the process of calculation so
that you can obtain

dNcr

dφf,d

1 +
EcdAc

EsAs

+
EcdAcd

2

EsIs

􏼠 􏼡 + Ncr + Nc0 + Nsh � 0. (11)

Now, equation (11) contains one unknown function
only, which can be solved independently. -e solution for
differential equation (9) can be obtained from the initial
conditions, t � 0, φf,d � 0, and Ncr � 0:

Ncr � Nsh + Nc0( 􏼁 e
− as/a( )φf,d − 1􏼒 􏼓, (12)

where α � Ii − Icr/Ii.
-e derivation operation for Ncr solved is performed,

substituted into the second equation of equations (4), and
then connected with the second equation of equations (5c)
so that the following equation can be obtained:

dMcr

dφf,d

1 +
Icr

Is

􏼠 􏼡 + Mcr +
αs

a
e

− αs/a( )φf,d
Icr

Is

d Nsh + Nc0( 􏼁 + Mc0 � 0.

(13)

Equation (11) also becomes a differential equation that
can be solved independently with only one unknown
function. -e corresponding solution can be obtained
below from the initial conditions, t � 0, φf,d � 0, and
Mcr � 0:

Mcr � Mc0 e
− aMφf,d − 1( 􏼁 +

AsIcrd Nc0 + Nsh( 􏼁 e
− aNφf,d − e

− aMφf,d( 􏼁

Ai Icr − Ii( 􏼁 + As Icr + Is( 􏼁
,

(14)

where αN � AsIs/Ai(Ii − Icr) and αM � Is/Is + Icr.
Now, two unknowns Ncr and Mcr in the concrete slab

have been solved and then are substituted into equation (3)
so that the two unknowns Ncr and Mcr in the steel beam can
be solved. So far, four unknowns for the redistribution
internal force of the composite beam have been solved with
the simplified method.

Simplifications made in the process of calculation will
inevitably cause the error for the result of the calculation.
How big is the error? Is there any change regularities in the
error? Tests and analysis can be performed by some
examples.

5. Example

In order to obtain the internal regularities, some examples
were selected, which are eight combined sections in Figure 3
with different heights of steal beams. -e initial internal
force on the full section is M0 � 2.0∗103 kNm, N0 � 0,
φt � 4.0, φd � 0.4, φf,d � 2.57, and other parameters which are
shown in Figure 3.

-e detailed parameters of eight sections are shown in
Table 1. Table 2 shows the initial internal force, the redis-
tribution of internal force (with accurate method and
simplified method), and the final internal force of eight
sections. It can be observed in the combination of Table 1
that if the stiffness of the steel beam (under the axial di-
rection and bending) increases, so does the redistributed
internal force of the section of the steel beam gradually,
along with the increase in height of the section of the steel
beam. While the redistributed internal force of the concrete
section reduces gradually, so does the total stress in the
concrete slab. -is indicates that the constraint of the steel

300 × 20

1800
1600
1400
1200
1000
800
600
400

4000

200

500 × 40

12
hs =

ϕt = 4.0, ϕd = 0.4, ϕf,d = 2.57
εsh = 20×10–5

Ec = 30000N/mm2

Es = 210000N/mm2

unit : mm

Figure 3: Composite beam section.
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beam to the creep of the concrete slab is more. �e phe-
nomenon above indicates that if the sti�ness of the concrete
keeps constant while the sti�ness of the steel beam increases,
the constraint of the steel beam to the creep of the concrete
slab increases, the total sectional internal force of the steel
beam increases, and the total sectional internal force of the

concrete slab decreases. Because the total sectional internal
force remains unchanged, the reduced internal force in the
section of the concrete slab is transferred to the section of the
steel beam.

�e eighth column in Table 2 is the ratio of the
redistributed bending moment of the section of the

Table 1: Detailed parameters of eight sections.

Sections hs
(cm)

Acr
(cm2)

Icr
(cm4)

As
(cm2) Is (cm

4) Ai
(cm2) Ii (cm

4) Si
(cm3) αs � AsIs/AiIi αc � AcrIcr/AiIi αcs � AcrIcr/AsIs

1 40 816.3 27210.9 300.8 71261.3 1117.1 416583.2 836.2 0.046 0.048 1.036
2 60 816.3 27210.9 324.8 179012.0 1141.1 826907.0 1200.9 0.062 0.024 0.382
3 80 816.3 27210.9 348.8 344291.3 1165.1 1398481.2 1584.2 0.074 0.014 0.185
4 100 816.3 27210.9 372.8 573334.4 1189.1 2140161.0 1985.0 0.084 0.009 0.104
5 120 816.3 27210.9 396.8 872029.5 1213.1 3060480.9 2402.2 0.093 0.006 0.064
6 140 816.3 27210.9 420.8 1246016.2 1237.1 4167685.4 2835.0 0.102 0.004 0.042
7 160 816.3 27210.9 444.8 1700753.1 1261.1 5469756.7 3282.3 0.110 0.003 0.029
8 180 816.3 27210.9 468.8 2241563.9 1285.1 6974439.6 3743.4 0.117 0.002 0.021

Table 2: Internal forces of cross section (exact and approximate method).

Section
Initial internal force
(t � 0 and φt � 0)

Redistributed internal forces
(t � t and φf,d � 2.57) Mcr/Mcr +Msr

Final internal force� initial internal
force +Redistributed internal forces Mst/Ms0

Nc0 Mc0 Ms0 Ncr Mcr Msr Nct Mct Mst

1 − 4014.55 130.64 342.12 466.99
(636.49)

− 85.94
(− 80.52)

263.59
(322.66)

− 0.484
(− 0.333)

− 3547.56
(− 3378.06)

44.70
(50.12)

605.72
(664.78)

1.770
(1.943)

2 − 2904.57 65.81 432.97 582.95
(640.43)

− 42.72
(− 41.77)

344.02
(372.78) − 0.142 (− 0.126) − 2321.62

(− 2264.14)
23.09
(24.04)

776.98
(805.75)

1.795
(1.861)

3 − 2265.62 38.91 492.38 607.57
(632.50)

− 24.55
(− 24.28)

418.41
(434.31)

− 0.062
(− 0.059)

− 1658.05
(− 1633.12)

14.37
(14.63)

910.79
(926.69)

1.850
(1.882)

4 − 1855.01 25.43 535.79 613.85
(626.43)

− 15.47
(− 15.38)

491.59
(501.25)

− 0.032
(− 0.032)

− 1241.16
(− 1228.58)

9.96
(10.05)

1027.37
(1037.04)

1.918
(1.936)

5 − 1569.84 17.78 569.86 616.54
(623.57)

− 10.39
(− 10.35)

565.08
(571.36) − 0.019 (− 0.018) − 953.30

(− 946.28)
7.39
(7.43)

1134.95
(1141.23)

1.992
(2.003)

6 − 1360.45 13.06 597.94 619.19
(623.40)

− 7.30
(− 7.28)

639.48
(643.77) − 0.012 (− 0.011) − 741.26

(− 737.04)
5.76
(5.78)

1237.42
(1241.71)

2.069
(2.077)

7 − 1200.15 9.95 621.88 622.57
(625.24)

− 5.30
(− 5.29)

715.04
(718.07)

− 0.007
(− 0.007)

− 577.58
(− 574.91)

4.64
(4.66)

1336.91
(1339.95)

2.150
(2.155)

8 − 1073.46 7.80 642.79 626.77
(628.53)

− 3.95
(− 3.95)

791.85
(794.06)

− 0.005
(− 0.005)

− 446.68
(− 444.92)

3.85
(3.85)

1434.64
(1436.85)

2.232
(2.235)
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concrete slab to the full-sectional redistributed bending
moment of the concrete slab section. As the sectional
height of the steel beam increases gradually, the ratio
becomes smaller gradually while the influence of redis-
tributed bending moment of the section of the concrete slab
on the axial deformation is also getting smaller and smaller.
-e ratio of the fifth section is only 1.9%, which is neglected
in the simplified method and is very close to the ratio
obtained with the exact method. Refer to the 5th to 8th
sections in Table 2.

ws0 � BMs0

EsIs

dx
2
, wst � BMst

EsIs

dx
2
,
wst

ws0
�

Mst

Ms0
. (15)

In the equation, ws0 and wst are the deflections [25–27]
of the steel beam before and after the creep. It can be seen
from equation (13) that the stiffness of the steel beam is
constant before and after the creep of the composite beam,
and the deflection of the steel beam is proportional to the
bending moment of the steel beam. -e last column in
Table 2 is ratios of bending moment of the steel beam before
and after the creep. It can be seen that the deflection of the
composite beam increases by 1.770–2.232 times, corre-
sponding to the 1 ∼ 8 section, before and after the creep,
when φt � 4 and φf,d � 2.57.

It can be seen intuitively from Figure 4 that Mcr and Ncr

in the one concrete slab grows nonlinearly with fast speed
(with large slope) in the area where the height of the steel
beam is small, while they grow linearly with lower speed
(with small slope) in the area where the height of the steel
beam is large. Msr is the redistribution of bending moment
in the steel beam which is increasing linearly.

-e axial direction and bending stiffness of steel beam
and concrete slab will affect the redistribution of internal
force of the section. In order to further investigate the
changing regularity of the redistribution of internal force,
this paper selects αcs as the product ratio of two kinds of
stiffness as the parameter to be investigated. Meanwhile, the

method of comparing the precision and the simplified
method are used to investigate errors of these two methods.
-e stress obtained by the calculation with the exact method
and the simplified method is given in Table 3. -rough
comparison, it can be seen that the calculated errors of the
two methods decrease with the decrease in αcs which is the
ratio of the axial direction of the concrete slab and the steel
beam to the bending stiffness products of the concrete slab
and the steel beam. -e maximum error of two methods in
the four edge stresses σt

ct, σ
b
ct, σ

t
st, and σ

b
st with superscripts of

t and b to indicate the top and bottom of the section, re-
spectively, is the stress σb

ct at the lower edge of the concrete
slab.When αcs ≤ 0.185, themaximum error is 1.027, less than
3%, at this time. -e calculated result of the simplified
method can fully meet requirements for the accuracy of
calculation.

-e analysis for data in Tables 2 and 3 is based on the
premise of the constant creep coefficient to investigate the
change regularity of the redistribution of internal force as the
sectional height of the steel beam is changed. How will the
internal force of the redistribution on the section of the steel
beam and the concrete slab change if the height of the section
of the steel beam is a fixed value under the conditions of the
constant stiffness of the steel beam, the unchanged con-
straints to the concrete slab, and the change in creep co-
efficient? In this case, Section 6 that is shown in Table 1 is
selected as the object of calculating analysis, and the creep
coefficient is changed only. -ese changes are φt � 0, 1, 2, 3,
4, while the corresponding φf,d � 0, 0.43, 1.14, 1.86, 2.57.
Results are shown in Table 4.

It can be seen in Table 4 that, as the creep coefficient
increases, the redistribution of internal force increases while
the axial force of concrete and steel beams decreases. Besides,
the bending moment increases, especially the bending
moment of steel beams. And the deflection after creep is
1.685–2.069 times than that before the creep. -is shows the
same phenomenon as increasing the height of the section of
the steel beam. It shows the same phenomenon as that

Table 4: Stresses and internal forces of cross section.

Section internal force
Creep coefficient

φt � 0 and φf,d � 0 φt � 1 and φf,d � 0.43 φt � 2 and φf,d � 1.14 φt � 3 and φf,d � 1.86 φt � 4 and φf,d � 2.57

Nc0 (kN) − 1398.7 − 1360.45 − 1360.45 − 1360.45 − 1360.45
Ncr (kN) 0.00 403.57 479.76 551.76 619.19
Nct (kN) − 1398.70 − 956.88 − 880.69 − 808.69 − 741.26
Nst (kN) 1398.70 956.88 880.69 808.69 741.26
Mc0 (kNm) 17.00 13.06 13.06 13.06 13.06
Mcr (kNm) 0.00 2.71 − 2.56 − 5.53 − 7.30
Mct (kNm) 17.00 15.77 10.50 7.53 5.76
Ms0 (kNm) 555.00 597.94 597.94 597.94 597.94
Msr (kNm) 0.00 409.33 492.38 568.87 639.48
Mst (kNm) 555.00 1007.27 1090.32 1166.81 1237.42
Mst/Ms0 1.000 1.685 1.823 1.951 2.069
σt

ct (N/mm2) − 2.39 − 1.79 − 1.49 − 1.29 − 1.14
σb

ct (N/mm2) − 1.11 − 0.60 − 0.71 − 0.73 − 0.71
σt

st (N/mm2) − 40.99 − 74.43 − 80.57 − 86.23 − 91.45
σb

st (N/mm2) 21.37 38.75 41.94 44.88 47.59
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happening when the sectional height of the steel beam in-
creases.-is phenomenon indicates that there are two major
factors affecting the redistribution of internal force, which
are the stiffness of the steel beam (to constrain the creep
stiffness) and the creep coefficient.

6. Conclusion

Rusch’s exact approach and the simplified approach to
solving the problem of the redistribution of the shrinkage
and creep internal force of composite beam are analyzed and
derived in this paper. After eight examples are elected for the
calculation and analysis, three conclusions are obtained as
the following:

(1) Rusch’s exactmethod is used to solve the problemof the
redistribution of shrinkage and creep internal force of
composite beams, and it is necessary to solve the
coupled differential equations [28–30]. -e volume of
calculation is large with the complicated process. So, the
practical applications are inconvenient and limited.-e
simplified method can be used to simplify the coupled
differential equations into two independent differential
equations with the simple process and simple calculated
results. -e error between the exact solution and the
approximate solution shrinks as the parameter de-
creases. When αcs ≤ 0.185, the error between the two is
already small, within 3%, which can meet requirements
for the accuracy of calculation. In addition, the ratio of
the stiffness product [31] of the concrete slab to that of
the steel beam in most composite beams is consistent,
especially in the composite beam in the bridge structure,
and the sectional height and stiffness of the steel beam
are great.

(2) Compared to the stiffness of the concrete slab, the
greater the stiffness of the steel beam is, the more the
constraints on the concrete slab are and the greater
the redistribution of internal force caused by the
shrinkage and the creep are. In other words, the
stronger the final internal force of the steel beam is,
the weaker the final internal force of the slab is.

(3) If the stiffness of the steel beam and the concrete slab
is constant, the larger the creep coefficient is, the
greater the redistribution of internal force caused by
the creep is. It means that the axial force of the
concrete slab and the steel beam becomes smaller
while the bending moment becomes larger, espe-
cially with the significant increase of steel beam. In
addition, the increase in the stress of lower edge of
the steel beam along with the change of creep co-
efficient is much smaller than that of the upper edge,
which does not benefit the stability of the steel beam.
-erefore, it should be paid attention to in engi-
neering practice.

(4) -e premise of the simplified method in this paper is
that the flexural stiffness of the concrete slab is
obviously smaller than that of the steel beam, and the
redistributed bending moment of the concrete slab

will be relatively small. If the stiffness of the concrete
slab is close to that of the steel beam, the redis-
tributed bending moment is large and cannot be
ignored, and this method is no longer applicable.
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