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Digital twin (DT) is an important method to realize intelligent manufacturing. Traditional data-based fault diagnosis methods
such as fractional-order fault feature extraction methods require su�cient data to train a diagnosis model, which is unrealistic in a
dynamically changing production process. �e ultrahigh-�delity DT model can generate fault state data similar to the actual
system, providing a new paradigm for fault diagnosis. �is paper proposes a novel digital twin-assisted fault diagnosis method for
denoising autoencoder. First, in order to solve the problem of limited or unavailable fault state data for machines in dynamically
variable production scenarios, a DT model of the machine is established. �e model can simulate a dynamically changing
production process, thereby generating data for di�erent failure states. Second, a novel denoising autoencoder (NDAE) withMish
as the activation function is proposed and trained using the source domain data generated by DT. Finally, in order to verify the
e�ectiveness and feasibility of the proposed method, the method is applied to a fault diagnosis example of a triplex pump, and the
results show that the method can realize intelligent fault diagnosis when the fault state data are limited or unavailable.

1. Introduction

As intelligent manufacturing becomes increasingly auto-
mated, digitized, and intelligent, more attention is paid to
manufacturing process reliability and safety [1–3]. Minor
failures in the production process can cause irreparable
damage. �erefore, fault diagnosis is an important aspect of
intelligent manufacturing [4–6]. Among the current ma-
chine learning methods, support vector machines, decision
trees, and fractional order have been successfully applied in
the �eld of fault diagnosis [7, 8]. In recent years, deep
learning methods such as Bayesian networks, long short-
termmemory, and convolutional neural networks have been
very popular in fault diagnosis due to their powerful
modeling and representation capabilities [9–12]. �e
methods mentioned above can signi�cantly improve the
accuracy and e�ciency of fault diagnosis under certain
conditions. However, in order to obtain high fault diagnosis
accuracy for deep learning methods, the primary condition

is that the source domain data should be su�cient and
contain comprehensive fault diagnosis information. In
practical industrial applications, machines are often in a
dynamically changing production environment, and the
health and fault information collected at this time are un-
certain. �erefore, in the dynamically changing production
process, it is di�cult to collect a large amount of labeled fault
data [13]. In addition, the machine is time-consuming and
laborious to complete the degradation process, and the cost
of marking a large amount of fault data is high. In order to
prevent catastrophic accidents, many enterprises and fac-
tories do not allow machines to run to failure. �erefore, the
above intelligent fault diagnosis methods are di�cult to play
a role in the dynamic changing production process [14].

In order to solve the above problems of insu�cient
training data and incomplete diagnostic information, some
scholars have thought of transfer learning methods. �is
method can transfer a large amount of diagnostic infor-
mation collected on a speci�c experimental platform to
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dynamically changing production scenarios, solving the
problem of insufficient training data [15]. For example,
Zhang et al. proposed a first-layer wide convolutional deep
neural network (WDCNN), the key of which is to use large
convolution kernels in the first layer of convolution to ex-
tract short-term features.)e convolution kernel parameters
of the remaining convolutional layers except the first layer
are reduced, which is conducive to deepening the network
and suppressing overfitting [16]. Zhang et al. proposed a new
CNN model, the advantage of which is that it does not
require signal denoising preprocessing, which can realize
fault diagnosis in noisy environments and variable working
conditions [17]. Ren et al. proposed a new fault detection
and classification method (DRCNN), which designed an
important module “multiscale summation” for deep feature
extraction. )is method can combine features of multiple
scales and different levels from unequal layers, which en-
sures the completeness of information [18]. However, the
robustness of the diagnostic performance of transfer
learning suffers in scenarios where working conditions and
system characteristics are not fixed. Parameter transfer
learning methods can assume that some parameters are
shared between source tasks and target tasks, or the prior
distribution of model hyperparameters is shared. )en, we
use a small number of samples in the target domain to fine-
tune the pretrained model, improve the overall performance
of the model, and achieve a more robust fault diagnosis
effect. However, the parameter transfer learning method also
faces the problem of incomplete diagnostic information in
the source domain [19].

With the rapid development and application of infor-
mation technology, in recent years, digital twin (DT)
technology has received more and more attention in various
fields, such as product design and manufacturing, medical
analysis, engineering construction, process optimization,
and job shop scheduling. [20–22]. Also in the field of in-
telligent manufacturing, DT technology has also played a
pivotal role and has become a powerful weapon to promote
the development of intelligent manufacturing. It makes full
use of physical model, sensor update, operation history, and
other data, integrates multidisciplinary, multiphysical,
multiscale, multiprobability simulation process, and com-
pletes the mapping in virtual space, thereby reflecting the full
life cycle process of the corresponding physical equipment.
DT technology can not only reduce design and maintenance
costs but also improve manufacturing efficiency and quality.
Ultrahigh-fidelity DT models can generate simulated data
close to real systems, providing new opportunities for in-
telligent fault diagnosis. Wang et al. proposed a DTreference
model for rotor system fault diagnosis. )e requirements for
building a digital twin model are discussed, and a model
update scheme based on parameter sensitivity analysis is
proposed to improve the adaptability of the model [23]. Jain
et al. constructed a digital twin that can estimate the
measurable characteristic output of a photovoltaic energy
conversion unit (PVECU) in real time. A PVECU consists of
a photovoltaic source and a source-level power converter
[24]. Qin et al. proposed a full life cycle rolling bearing DT
model driven by a combination of data andmodels.)rough

an improved CycleGAN neural network, the simulated data
in the virtual space are mapped to the physical space, and the
results of the DT model are compared with the measured
signals in the time and frequency domains to verify the
effectiveness and feasibility of the proposed model [25]. Xu
et al. proposed a two-stage DT fault diagnosis method
(DFDD) based on deep transfer learning, which realizes fault
diagnosis in the development and maintenance stages [26].
Qin et al. proposed a digital twin convolutional neural
network model with multidomain input (DTCNNMI) in
order to realize the misfire diagnosis of the diesel engine in a
strong noise environment and different operating conditions
[27]. However, most of the current research focuses on the
conceptual model and key technologies of DT, and few
people conduct more specific research on the fault diagnosis
framework, mechanism, and algorithm to overcome the
practical problem of limited diagnostic data.

In this paper, a novel digital twin-assisted fault diagnosis
method for denoising autoencoder is proposed for the
problem of machine intelligence fault diagnosis. )e DT
model can simulate a dynamically changing production
process, thereby generating data of different fault states, and
solving the problem of limited or unavailable fault state data
for machines under dynamically variable production con-
ditions. )e main contributions of this paper are as follows:

(1) A DT-assisted deep transfer learning fault diagnosis
method is proposed, which is mainly used for fault
diagnosis experiments of triplex pumps. A DTmodel
of the machine is established to simulate the dy-
namically changing production process, thereby
generating data for different failure states. )e DT
model is continuously updated during this process.
)e method solves the problem that the fault state
data are limited or not used when the working state
of the machine changes and the system characteristic
changes.

(2) A novel denoising autoencoder (NDAE) with Mish
as the activation function is proposed, which has the
properties of no upper bound, lower bound,
smoothness, and nonmonotonicity compared with
other activation functions.

(3) A sparse penalty term is introduced to fully combine
the advantages of sparse autoencoders and denoising
autoencoders to effectively learn sparse feature
representations from noisy samples.

2. Theoretical Background of Autoencoders

Convolutional neural network (CNN) is a commonly used
network structure in deep learning methods and is currently
widely used in the field of intelligent fault diagnosis of
mechanical systems. However, the structure of CNN is
relatively complex, and the amount of computation is rel-
atively large compared with other deep learning methods.
Compared with CNN, autoencoder has a simpler structure
and stronger operability, which can train the model more
easily and effectively. A type of neural network, after
training, attempts to copy the input to the output. At
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present, many improved forms have been derived from the
autoencoder. On the basis of the autoencoder, the noise
reduction autoencoder adds noise to the input data of the
input layer in order to prevent the overfitting problem, so
that the learned encoder is more robust. A sparse autoen-
coder is a special three-layer neural network with sparse
constraints added to the general neural network. From the
input layer to the hidden layer, the high-dimensional data
are mapped to the low-dimensional data, and the projected
low-dimensional data are restored to the original high-di-
mensional data from the hidden layer to the output layer
[28]. Assuming that x � [x1, x2, ..., xm] is a labeled m-di-
mensional real sample, the formula for noise sample 􏽥x �

[ 􏽥x1, 􏽥x2, ..., 􏽥xm] is defined as follows:

􏽥x � x + N 0, δ2Ι􏼐 􏼑, (1)

where N(0, δ2Ι) represents Gaussian noise with noise level δ.
)en, the formulas of the feature vectors

􏽥h � [􏽥h1,
􏽥h2, ..., 􏽥hn] and reconstruction vectors

􏽥z � [􏽥z1, 􏽥z2, ..., 􏽥zm] of the noise samples are as follows:

􏽥h � fH w(1)
􏽥x + b(1)

􏼐 􏼑,

􏽥z � fO w(2)􏽥h + b(2)
􏼐 􏼑,

(2)

where fH and fO are the activation functions of the hidden
layer and the output layer. (w(1), b(1)) is the weights and
biases of the input and hidden layers. Similarly, (w(2), b(2)) is
the weight and bias of the hidden layer and the output layer.

)e formulas of the loss function l1, sparse penalty term
l2, and weight decay term l3 of MSE are expressed as follows:
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where β is the sparse penalty factor. r is the sparse constant. λ
is the weight decay factor. w

(1)
ji is the connection weight

between the ith input unit and the jth hidden unit. Similarly,
w

(2)
ji is the connection between the jth hidden unit and the

ith output unit connection weight.
)en, the overall loss function can be expressed as

follows:

LS � l1 + l2 + l3( 􏼁. (4)

3. Proposed Method

3.1. NDAE Method. )e NDAE method proposed in this
paper is inspired by reference [28]. Based on the combi-
nation of sparse autoencoder and denoising autoencoder
into sparse denoising autoencoder, a sparse penalty term is
introduced, which can effectively learn the sparse features of

noise samples. In addition, inspired by reference [29], the
Mish activation function with stronger learning ability is
adopted. )e ReLU activation function is the most widely
used activation function in neural networks, and it mainly
has the characteristics of having no upper bound and having
a lower bound, which greatly limits its learning ability.
Compared with ReLU, the Mish activation function has the
characteristics of smoothness and nonmonotonicity. )e
smooth characteristics can make the network easier to
optimize and improve the generalization performance, and
the nonmonotonicity characteristics can improve the in-
terpretability of the network. Comparison results on several
datasets verify that Mish’s metrics outperform ReLU and
other activation functions for most tasks [29]. )e waveform
of theMish function is shown in Figure 1. It can be seen from
the figure that it allows a small negative gradient to flow in
when it is negative, thereby ensuring information transfer
and eliminating the dying ReLU phenomenon. )e math-
ematical expression of the Mish activation function is as
follows:

fM(x) � x tanh(softplus(x))

� x tanh ln 1 + e
x

( 􏼁( 􏼁,
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e
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− e

− x
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+ e
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( 􏼁
,

softplus(x) � log 1 + e
x

( 􏼁.

(5)

Mish is unbounded above and bounded below, and its
first derivative can be defined as follows:

f′(x) �
e

xω
δ2

, (6)

where (ω � 4(x + 1) + 4e2x + e3x + ex(4x + 6)), (δ � 2ex+

e2x + 2).
)e Mish activation function adds smoothness and

nonmonotonicity to the ReLU activation function. )ese
features can effectively retain the negative information of the
data, make up for the deficiencies of ReLU, help information
transfer, and have better expressiveness. It can be seen from
formula (6) that the first derivative of the Mish activation
function is differentiable; that is, the Mish activation
function is continuously differentiable. )is feature avoids
singularities and thus avoids unwanted side effects when
performing gradient-based optimization problems using the
Mish activation function. In order to make the reconstructed
output of the NDAE method infinitely close to the original
input, a sigmoid activation function is selected at the output
layer to normalize the input to the range of [0, 1] into
account. So the hidden and reconstructed outputs using the
Mish activation function are

􏽥h � fM w(1)
􏽥x + b(1)

􏼐 􏼑,

􏽥z � fS w(2)􏽥h + b(2)
􏼐 􏼑,

(7)

where fM and fS are the Mish and sigmoid activation
functions, respectively.
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To ensure that the real samples and the samples gen-
erated by the NDAE reconstruction are as similar as possible,
the difference between the real samples and the recon-
structed samples is reduced. To further measure the local
similarity between the two, use the maximum correlation
entropy instead of MSE, and use the gradient descent al-
gorithm to adjust w and b, the correlation formula is as
follows:

wq+1 � wq − ξq

zLN

wq

􏼠 􏼡 + ε wq − wq−1􏼐 􏼑,

bq+1 � bq − ξq

zLN

bq

􏼠 􏼡 + ε bq − bq−1􏼐 􏼑,

(8)

where q is the current number of iterations. LN is the total
loss function of the proposed method NDAE. ξq is the
current learning rate. ε is the momentum factor. )en, the
NDAE total loss function is as follows:

LN � −l4 + l2 + l3( 􏼁, (9)

where l4 is the formula of maximum correlation entropy,
which is more effective in local similarity measurement of
complex signals than MSE. )e formula for l4 is as follows:

l4 �
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,

(10)

where τ is the kernel width adjustment parameter. ρ is the
decay factor. Using multiple NDAEs with softmax classifiers
can be constructed to stack NDAEs to improve learning
ability.

3.2. DT-Assisted NDAE Method. To solve the problem of
limited or unavailable fault state data for machines under
dynamically variable production conditions, a DT-assisted
NDAE method is proposed in this paper. )e overall
framework of the method is shown in Figure 2. )e green

part is the construction part of the DTmodel of the triplex
pump. First, the simulation model of the real machine needs
to be established, and then, the simulation model needs to be
continuously updated to adapt to the dynamic and variable
production environment. )is paper updates the simulation
model by minimizing the difference in system response
between the simulation model and the measured data. )e
adaptively updated DT model is then used to simulate the
fault state of the machine, generating comprehensive fault
data required for fault diagnosis. )e blue part in Figure 2 is
the parameter transfer learning part of the new denoising
autoencoder. First, the stacked NDAE model is constructed
using the Mish activation function and maximum correla-
tion entropy in 3.1, and then, a large amount of fault state
data generated by the DTmodel are used as the training data
in the source domain, which is input into the stacked NDAE
model for pretraining. Finally, parameter transfer learning
can greatly improve the training efficiency of stacked NDAE,
so the parameter transfer learning method is used to realize
machine fault diagnosis. It is worth noting that this paper
selects a sample in the target domain to fine-tune the pre-
trained stacked NDAE to further adjust the model
parameters.

)e shared parameters for parameter transfer learning in
this paper are all hyperparameters, weights, and biases. It is
worth noting that all weights and biases are pretrained
before fine-tuning to ensure the effectiveness of parameter
transfer learning.

4. Case Analysis

4.1. Experimental Description. In order to evaluate the ef-
fectiveness and feasibility of the proposed method, the
method is applied to a fault diagnosis example of a triplex
pump. )e DT model of the triplex pump is shown in
Figure 3. Inspired by reference [30], this paper imitates
reference [30] and uses the Simscape module in Matlab to
create a simulation model of a triplex pump. Triplex pumps
have a crankshaft driving three plungers. Compared to
single-piston pumps, one air chamber of the plunger is
always vented, resulting in smoother flow and less pressure
variation, thereby reducing material strain. )e parameter
values were then automatically tuned using Simulink design
optimization so that the model produced results that
matched the measured data to simulate the system behavior
of a triplex pump in a dynamically variable production
environment. Simulink design optimization selects param-
eter values for simulation, calculates the difference between
the simulation curve and the measured curve to update the
simulation model, and generates a simulation model with
the system response function of modifying model param-
eters. Based on this difference, new parameter values are
selected for a new simulation. )e gradient of the parameter
value is calculated to determine the direction in which the
parameter should be adjusted. )e DTmodel update of the
triplex pump in this study is implemented through Simulink
design optimization and automatically tunes the parameter
values so that the model generates results that match the
measured data.
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Figure 1: Mish activation function waveform.
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)e DT model of the triplex pump can simulate three
typical pump failures, including seal leakage from the
plunger, inlet blockage, and increased friction due to bearing
wear. )ese fault conditions can be configured and toggled
through the pump module dialog or commands. )is paper
collects data for seven fault states, including healthy state,
three single faults, and three composite faults. Dataset A and
dataset B are collected by simulating two scenarios. Dataset
A is simulation data with original parameters. Dataset B is

simulation data collected when working conditions and
system characteristics change, that is, actual situation data.
Table 1 shows the detailed description of dataset A and
dataset B, 125 samples are selected for each fault state, and
each sample contains 1200 data points. Table 2 shows the
detailed settings of the DT-assisted NDAE parameter
transfer learning task. Table 3 shows the hyperparameter
settings for stacked NDAE. )e size of the first, second, and
third hidden layers and other network structures are
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determined by experiments and experience. )e number of
iterations, initial learning rate, decay factor, and momentum
are determined empirically, respectively. )e selection of
other hyperparameters is mainly based on reference [25].

4.2. Comparison Method. To verify the effectiveness and
feasibility of the proposed method, it is compared with
several state-of-the-art methods. Both the comparison
method and the proposed method are tested using the fault
data generated by the DT model.

(1) SVM. )e SVM algorithm is used to realize the fault
classification of the triplex pump. SVM is a binary
classification model that maps feature vectors to
points in space, and its purpose is to find a line to
better distinguish these points. Before the advent of
deep learning, SVM was considered to be the better-
performing algorithm in machine learning.

(2) Stacked SDAE method. Stacked denoising autoen-
coders with ReLU as activation function.

(3) LeNet-5 CNN. Fault classification of triplex pumps
using a classic LeNet-5 convolutional neural network.

4.3. Experimental Results and Analysis. In this experiment,
the effectiveness and feasibility of the proposed NDAE
method are verified by the parameter transfer learning

method. First, 75 samples are randomly selected from the
125 samples of dataset A as training samples in the
source domain, and these 75 samples are input into the
NDAE network for pretraining. )en, one sample is used
from dataset B to fine-tune the pretrained network. )is
is because the DTmodel of the triplex pump can generate
the data of the fault state,so just select a sample from the
target domain to fine-tune the pretrained stacked NADE,
and further construct the deep structure NADE to obtain
better fault diagnosis results. Finally, 50 samples are used
from dataset B for testing. In order to reduce the in-
fluence of random factors, the experiments were repeated
six times; that is, six independent experiments were
carried out using random samples for each method. )e
fault diagnosis accuracy of six experiments is shown in
Figure 4. It can be seen from Figure 4 that the diagnostic
accuracy of the six experiments exceeds 90%, and the
average fault diagnosis accuracy is 92.4%.

To verify the effectiveness and feasibility of the pro-
posed method, it is compared with SVM, stacked SDAE
method, and LeNet-5 CNN method. To reduce the in-
fluence of random factors, the experiments were repeated
six times; that is, six independent experiments were
performed using random samples for each method. )e
experimental results are shown in Figure 5. )e average
accuracy of the SVM method, stacked SDAE method, and
LENet-5 CNN method is 76.5%, 87.8%, and 88.6%, re-
spectively. It can be seen from the experimental results
that the proposed method has higher fault diagnosis ac-
curacy and is more conducive to the fault classification of
the triplex pump.

5. Conclusion

In this paper, a DT-assisted NDAE parameter transfer
learning fault diagnosis method is proposed, which is mainly
used in the fault diagnosis experiment of the triplex pump.

Table 2: Detailed settings of parameter transfer tasks.

Method Source domain
training/test samples

Number of training/
testing samples

Parameter transfer
learning Dataset A/B 75/50

Table 3: Hyperparameter settings for stacked NDAE methods.

Hyperparameters Value Hyperparameters Value
)e size of the first hidden
layer 450 Kernel width 1.2

)e size of the third hidden
layer 100 Sparse penalty

factor 5

Number of iterations 60 Initial learning rate 0.01
Weight decay coefficient 0.004 Decay factor 1.1
Noise level 0.08 Momentum 0.8

0.94

0.93

0.92

0.91

0.9
1 2 3 4 5 6

Number of experiments

Te
xt

 ac
cu

ar
y

Figure 4: )e fault diagnosis accuracy of the proposed method in
ten experiments.

Table 1: Seven working states of triplex pump.

Datasets Working status Number of
samples Labels

A/B

Healthy 125 1
Seal leak 125 2

Blocked inlet 125 3
Bearing wear 125 4

Seal leak and blocked inlet 125 5
Seal leak and bearing wear 125 6
Blocked inlet and bearing

wear 125 7
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)is method is designed to achieve high-accuracy fault
classification when measurement data are insufficient or
unavailable. We use the digital twin model of the machine to
generate fault state data similar to the actual system to make
up for the lack of data. In addition, the stacked autoencoder
is improved, and the Mish activation function has no upper
bound, lower bound, nonmonotonicity, and smoothness to
increase the generalization performance of the network and
the interpretability of the network. )is ensures information
transfer and eliminates the dying ReLU phenomenon. Fi-
nally, by generating simulation data of the triplex pump
under various fault conditions, the effectiveness of fault
diagnosis of the proposed NDAE method is verified. )e
results show that the ultrahigh-fidelity DT model can gen-
erate simulated data close to the real system, providing new
opportunities for intelligent fault diagnosis. )e DT-assisted
NDAE parameter transfer learning fault diagnosis method
can realize intelligent fault diagnosis of mechanical systems
in dynamically changing production environments.

Although the DT-assisted NDAE parameter transfer
learning fault diagnosis method can effectively improve the
fault diagnosis accuracy of the model, the construction of the
machine’s DTmodel is a difficulty of this method.)erefore,
the following research focuses onmaking full use of themain
mechanism of DT to build DT models of other basic
components such as bearings and combining deep transfer
learning methods to improve fault diagnosis performance.
How to further combine DTand deep transfer learning is the
focus and difficulty of the next research.
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