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e power system is evolving from a single energy system to an integrated energy system. In order to further improve the power
generation and consumption balance capacity of the park integrated energy system (PIES), the park integrated energy system is
gradually transitioning from the single park energy system operation mode to the multipark energy system operation mode. e
design of multipark integrated energy system (MPIES) collaborative control strategy will become an important part to improve the
power generation and consumption balance ability of the integrated energy system. In order to fully tap the regulation capacity of
each PIES, we propose a coordinated control strategy for the integrated energy system in multiple parks considering the �exible
substitution interval of multiple types of energy. Firstly, we analyze the in�uence of the types of regulation resources and the
regulation incentive mechanism of the PIES on the regulation �exible range of the PIES. en, based on the Markov decision
process, a distributed cluster regulation model of MPIES considering regulation demand and regulation �exible interval is
established. Finally, using multilayer deep Q networks (MLDQN), the distributed cluster regulation optimization algorithm of
MPIES is given. e simulation results show that the proposed method can coordinate the regulation ability of each park
integrated energy system in the MPIES, give full play to the large-scale advantage of the interconnection of the park integrated
energy system, and improve the overall stability of the multipark integrated energy system.

1. Introduction

e �exibility and security requirements of the society for
energy demand are constantly improving, which makes the
traditional centralized large-scale power system change to
the distributed integrated energy system [1]. e develop-
ment of combined heat and power plants, gas turbines, and
other multienergy conversion technologies is accelerating
the transformation of the energy structure [2, 3]. Park in-
tegrated energy system has become a bearing platform for
e�cient utilization of clean energy [4].e �exible resources
in the integrated energy system of a single park have high
uncertainty, and the combination of multiple PIES can
realize the complementary coordination of di�erent parks
and di�erent energy sources and reduce the overall un-
certainty. With the goal of improving system economy,
safety, reliability, and environmental protection, �exibly
adjusting MPIES operation mode and promoting the safe

consumption of clean energy in the power grid has become a
research hotspot in academia and industry in recent years.

e park integrated energy system achieves the cross-
energy response of power system demand through energy
coupling equipment [5–7]. In the regulation process, it is
necessary to balance the relationship between the economy
and security of the park integrated energy system, and
comprehensively consider the operation status of subsys-
tems and the overall operation status of the system. In
Reference [8], a multiobjective optimization model for the
design of integrated electric, thermal, and cooling energy
system is established from the aspects of economy and
environment, and the selection and con£guration of various
components of the system are carried out. In Reference [9],
PIES is divided into three modules for analysis based on hub
model, and a PIES day ahead optimal scheduling model is
established considering the economy target and security
constraints. Reference [10] points out that the static
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programming strategy of PIES reduces the economy and
reliability of the system. A two-stage robust model is pro-
posed to reduce the impact of uncertainty in PIES. To solve
the optimization model, the column and constraint gener-
ation algorithm is adopted. Reference [11] studies the risks
brought by the uncertainty of natural gas price and elec-
tricity price to PIES planning and establishes a PIES plan-
ning risk assessment model considering the uncertainty of
energy price. Conditional value-at-risk is used as a risk index
to quantify the impact of uncertainty on PIES planning.
When evaluating the benefits of an integrated energy system,
because the selected benefit evaluation indicators are in-
complete, the expected benefit evaluation results are dis-
torted, resulting in large economic losses. ,erefore, many
scholars have conducted in-depth research on benefit
evaluation index information and benefit evaluation
methods [12–15]. Reference [16] proposes a distributed
energy system evaluation index system from the four di-
mensions of technology, economy, environment, and society
and used the principle of maximum entropy and an im-
proved grey correlation method to evaluate the benefits of
integrated energy systems. ,ese studies have laid a foun-
dation for the study of the coordinated regulation of the park
integrated energy system.

,e multiobjective optimization solution of the park
integrated energy system has an important impact on the
collaborative optimization of the integrated energy system
[17–19]. Reference [20] establishes a multiobjective opti-
mization model for building integrated energy system and
solves the above model by analytical method and heuristic
method. According to the operation structure of energy
storage device, electrothermal conversion equipment, and
demand response mechanism, the authors in Reference [21]
establish a multiobjective model of electric thermal water
energy system by introducing user comfort and solving it by
using integer programming theory. Reference [22] adopts
the multiobjective optimization model generation scheme
and portfolio constraint method to solve the multiobjective
optimization model of urban integrated energy system. For
the large-scale renewable energy access operation system,
Bravo et al. [23] designed a hybrid solar power plant
considering thermochemical energy storage devices,
established the corresponding multiobjective optimization
model, and used the multiobjective solution method to
solve it.

Reinforcement learning can effectively solve the optimal
scheduling problem. In Reference [24], an optimal sched-
uling model based on automated reinforcement learning is
proposed to address the error accumulation issue. Authors
in Reference [25] introduce the reinforcement learning
model to solve the charging station optimal scheduling
problem. It can be learned that the reinforcement learning
model can be used to compensate for the resource re-
quirements mismatch on the energy scale. In Reference [26],
the authors define energy storage systems usage standards
for an adaptive power transaction plan based on rein-
forcement learning. ,e author decomposes the life cycle
cost into four variables to make the model meet the model
requirements of reinforcement learning. It can be seen that

in the reinforcement learning framework, the optimal
scheduling problem can be effectively solved.

Although the current research has made a lot of research
results in the field of park integrated energy coordinated
regulation strategy, there are still deficiencies in the fol-
lowing aspects:

(1) When analyzing the regulation capacity of the park
integrated energy system, the impact of resource
types, subsidy policies, and time changes on the
regulation flexibility range in the park integrated
energy systemwere not comprehensively considered.

(2) When studying the coordinated regulation strategy
of multipark integrated energy system, the influence
of the flexible regulation range of the integrated
energy system in the lower park on the allocation of
regulation tasks by the upper regulation center was
not considered.

In view of the above problems, this paper proposes a
distributed cluster regulation strategy of multipark inte-
grated energy system considering the regulation of flexible
intervals. ,is paper analyzes the regulation demand of
multipark integrated energy system, the time cost attribute
of flexible regulation resources, and the demand regulation
task allocation method considering the regulation flexible
interval. ,emultilayer deep Q network is used to realize the
coordinated regulation of multipark integrated energy
system, reduce the regulation pressure under the typical
problem scenario of multipark integrated energy system,
and give play to the interconnection advantage of multipark
integrated energy system.

,e main contributions of the paper are three-fold,
which are as follows:

(1) ,e flexible range of the regulation ability of the
flexible resources in PIES under the time scale is
analyzed, which provides the basis for formulating
the timing regulation instructions of PIES.

(2) ,e decision-making method of flexible interval
allocation of regulation tasks by the upper control
center combined with the regulation ability of the
lower PIES is studied.

(3) Under the reinforcement learning framework, the
regulation state and decision-making behavior
models of upper MPIES and lower PIES are estab-
lished, and a two-level regulation optimization
model considering the flexible range of PIES regu-
lation is realized. On this basis, the multilayer deep Q
network is used to realize the optimization solution
method of the MPIES double-layer collaborative
regulation strategy.

,e scope of the paper is shown as follows: first, the two-
level coordinated regulation model of MPIES is discussed in
this paper; then, the cooperative regulation strategy of
MPIES considering the regulation flexible interval is studied;
finally, the optimization algorithm of the proposed MPIES
regulation model is proposed based on multilayer deep Q
network.
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,e remaining parts of the paper are organized as fol-
lows: in Section 2, the two-level coordinated regulation
model of MPIES is discussed. In Section 3, the cooperative
regulation strategy of MPIES considering the regulation
flexible interval is studied. In Section 4, the optimization
algorithm of the proposed MPIES regulation model is
proposed based on multilayer deep Q network. In Section 5,
simulation results are carried out to verify the proposed
regulation strategy. Finally, Section 6 states conclusions.

2. Two-Level Coordinated Regulation
Model of MPIES

2.1. Basis ofMPIES RegulationModel. As shown in Figure 1,
the MPIES double-layer collaborative regulation model
studied in this paper is mainly composed of the upper
control center and multipark integrated energy systems. ,e
PIES includes electric energy system, thermal energy system,
and gas system. Each energy system has resources that can be
flexibly adjusted, and each energy system can use energy
conversion equipment to realize energy substitution. ,e
flexibility of the integrated energy system is mainly reflected
in the following two aspects:

Energy convertibility: compared with the previous
independent energy supply subsystems divided by
energy types, the advantage of the integrated energy
system is that it can break the independent state of
each energy subsystem to realize multienergy coupling
and cross-energy supply, and each energy subsystem
can be regarded as a whole. In order to achieve overall
management and collaborative optimization, the in-
tegrated energy system couples and associates dif-
ferent energy flow paths through conversion
equipment. Compared with the traditional indepen-
dent energy flow system, it provides more redundant
energy flow conversion paths and provides more space
for multienergy system optimization. For example, for
thermal energy, gas can be converted into heat by the
combined equipment of combined heat and power
(CHP) unit and waste heat exchanger, electricity can
be converted into heat by electric furnace, and gas can
be directly converted into heat by gas boiler. On the
grid source side, due to the existence of energy con-
version equipment such as CHP units and electric
heating furnaces, the energy flow is convertible. For
thermal energy, it can be converted to heat by gas or
electricity.
Energy substitutability: in terms of energy consump-
tion, users have room to choose among different en-
ergy flows, that is, there are alternatives among energy
flows for energy supply when the load is used. If a load
can choose two or more energy flows and can meet its
own load requirements, it means that the load is re-
placeable, which is called a substitute load. ,e more
energy types a load can choose from and the larger the
capacity of the load-side consumer equipment, the
higher the substitutability of the load, which means
that the user has more choices. Generally speaking, the

load of the integrated energy system can be divided
into four categories: cooling load, heat load, electrical
load, and gas load. Here, the heat load is used as an
example to illustrate the substitutability of the load. If
the user can freely choose heating network heating
(such as central heating), grid heating (such as electric
water heater), gas network heating (such as gas water
heater), and other methods to meet the heat demand,
and the energy consumption of each method is also
with selectivity, it means that the heat load has certain
substitutability.

,e above two characteristics of the integrated energy
system provide the basis for the coordinated regulation of
multi-PIESs.

In the process of MPIES regulation, the lower-level PIES
will upload the operation status information of the energy
systems in the area under their jurisdiction to the upper-level
regulation center. According to the overall regulation ob-
jectives of the current MPIES, the upper-level control center
considers the regulation uncertainty interval of each PIES,
formulates an effective and economic regulation plan, and
issues it to each control center of PIES. According to the
overall task issued by the upper control center, the lower-
level PIES disassembles the overall regulation task with the
minimum cost on the premise of ensuring the completion of
the regulation task, combined with the flexible range of
regulation resources in the region under its jurisdiction. ,e
disassembled adjustment task will be allocated to various
types of flexible resources for adjustment.

2.2. Flexibility Analysis of Regulating Resources in PIES.
In the process of regulation, the regulation ability of various
types of regulatory resources in PIES will show dynamic
characteristics with the change of time.,e regulating ability
of regulating resources at the current time is affected by both
the current time and the historical time. Accordingly, the
regulation behavior of flexible resources at the current time
will also affect the regulation ability in the future time. In
order to record the cumulative changes of the flexible in-
terval of regulation resources over time, this paper defines
the cumulative regulation state of regulation resources in
PIES, which is given below:

Fs
i,t � 

t

0
a

s
i,tdt. (1)

It can be seen that Fs
i,t can represent the change in the

adjustment range of flexible resources in the remaining
period, thus affecting the formulation of adjustment in-
structions at the current time.

At the same time, the subsidy strategy for regulating
resources will also affect the regulation flexibility range of
flexible resources in PIES. When the adjustment subsidy for
flexible resources reaches a certain amount, users in PIES
will be willing to respond to the upper-level control in-
structions by changing the energy consumption mode. ,is
paper establishes a model of the flexible range of PIES
flexible resources and subsidy strategy, as given below:

Computational Intelligence and Neuroscience 3



G
ra
i,t s

ra
i,t  �

0, s
ra
i,t < s

low
i,t ,

ηra ln s
ra
i,t − s

low
i,t + ε , s

low
i,t ≤ s

ra
i,t ≤ s

up
i,t

⎧⎪⎨

⎪⎩
. (2)

When the subsidy amount sra
i,t for the regulated resources

is less than the minimum subsidy amount slowi,t that the
flexible resource subject is willing to participate in the
regulation, the flexible resource regulated resources in PIES
are 0.When sra

i,t ≥ slowi,t , the flexible resource subject will adjust
its flexible adjustment ability according to the subsidy
amount. ,e model of subsidy cost is given below:

C
s
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ra
i,t , p
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i,t , a

s
i,t . (3)

3. Cooperative Regulation Strategy of
MPIES Considering the Regulation
Flexible Interval

3.1. Collaborative Regulation Task Allocation Mechanism.
For PIES-i in MPIES, at time t, its adjustment flexibility
interval Rr

i,t can be expressed as given below:

R
r
i,t �

R
r,up
i,t − R

r,low
i,t ,

R
r,up
i,t � S

cut,u
i,t + S

swift,u
i,t + S

es,d
i,t ,

R
r,low
i,t � S

cut,l
i,t + S

swift,l
i,t + S

es,c
i,t ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

,e regulation plan of PIES-i in regulation cycle k can be
expressed as given below:

Shi,t � Sh
up
i,t

R
r
i,t


nmg

i�1 R
r
i,t

. (5)

Considering the problems of exploration and utilization,
reward sparseness, and local optimization that may exist in
the decision-making process, compared with completely
random assignment of peak shaving tasks, the scheduling
control center considers the peak shaving task allocation
decision made by the state information of the elastic am-
plitude of each region at the current moment, and further.
Using the system elastic resource information, the local
optimum can be avoided to a certain extent. Use the elastic
range to guide the assignment of peak shaving tasks, take a
more logical and realistic initial assignment task as a starting
point, and then carry out learning optimization and cor-
rection, to a certain extent, more optimal (or suboptimal)
peak shaving can be obtained. In addition, the compre-
hensive energy system of the park with large flexibility has a
larger peak-to-valley electricity price difference. Combined
with the time-of-use electricity price, it is more conducive to
peak shaving and valley filling and stable and economic
operation of the system.

3.2. Regulation Model Based on Markov Process

3.2.1. Control Center Optimization Model of MPIES. In this
section, a regulation cycle is divided into k decision cycles.

,e state scl
k of the control center of MPIES at the decision-

making time tk can be expressed as given below:

s
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k � tk, r
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k , s

e,1
k , s

e,2
k , s

e,i
k , s

e,nmg

k . (6)

Let scl
total be the state space of the control center of the

MPIES, then there is scl
k ∈ scl

total. ,e number of states of
MPIES can be expressed as given below:
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(7)

At time t, the control task assigned by the control center
of MPIES to PIES i is as follows:

C
task
i,t �

Pt
max

n
dis a

mg
i,t . (8)

a
mg
i,t is the task allocation behavior of the MPIES to PIES i

at time t, and satisfies the expression, which is given below:



nmg

i�1
a

mg
i,t � n

dis
. (9)

For the MPIES, the evolution process of the regulation
model can be controlled by task allocation behavior a

mg
i,t �

Scl
str(scl

t ) based on the decision strategy Scl
str in combination

with the state scl
t of time t.

,e operation cost Ccl
k of the MPIES at the decision-

making time t is set as the superposition of the operation
costs of each PIES, specifically:

C
cl
k � 

nmg

i�1
C

mg

i,k . (10)

On the other hand, considering the multiperiodicity of
the regulation ofMPIES, that is, the regulation strategy tends
to make the regulation capacity of the energy storage device
in the initial state of the regulation cycle and the transferable
load as consistent as possible with the end state of the
regulation cycle, so as to provide sufficient regulation re-
sources for the next regulation cycle. ,erefore, this paper
further considers the transfer cost of flexible resource reg-
ulation capability. ,e transfer cost of flexible resource
regulation capability of MPIES is expressed as the sum of the
transfer cost of each PIES energy storage device (Ces

i,k) and
the transfer cost of transferable load (Csw

i,k ).
For the MPIES control center, under strategy Scl

str, the
optimization performance criterion with the initial state of
ssta0 is strupI , then there is

strup
I � E

up
str,0 

K−1

k�0
c

cl
k + 

nmg

i�1
C

es
i,k + 

nmg

i�1
C

sw
i,k

⎡⎣ ⎤⎦. (11)

,en the optimization objective of the MPIES control
center can be expressed as given below:

S
cl,o
str � arg  min strup

I . (12)
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,at is, the optimization goal of the MPIES is to find the
optimal strategy in the available strategy set of the MPIES
control center so that the overall operation cost of theMPIES
is the lowest, and the regulation capacity of the energy
storage device and the transferable load at the end of the
regulation cycle is restored to the initial level as far as
possible.

3.2.2. Regulation Model of PIES. Similar to the state of
MPIES, the state s

mg

k of PIES i at decision time t can be
expressed as given below:

s
mg,i

k � tk, l
task,i
k , s

e,i
k . (13)

Let s
mg,i

total be the state space of PIES i, then there
issmg,i

k ∈ s
mg,i

total . ,e number of states nmg,i
max of the PIES can be

expressed as given below:

nmg,i
max

� kn
dis 2n
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i + 1(  2n

swift
i + 1 . (14)

,e action aun
i,t of PIES i at time t consists of the action of

energy storage system aes
i,k, the action of flexible resources a

fr

i,k

and the action of subsidy strategy are
i,k. aun

i,t can be written as
follows:

a
un
i,k � a

es
i,k, a

fr

i,k , a
re
i,k , (15)

where the regulation methods of the energy storage device
include discharge, standby, and charging; ,e adjustment
methods of flexible resources include reduction action and
transfer action; ,e subsidy strategy includes a variety of
optional subsidy amounts.

4. Optimization Algorithm of the Two-Level
MPIES Regulation Model

Each PIES in the MPIES has a variety of flexible resources
that can be used to participate in regulation. Accordingly,
the PIES state action set composed of the states and actions
of these flexible resources presents a large-scale feature. For
the MPIES control center, these PIESs with large-scale state
action sets will bring more complex matrix dimensions to
the overall control model of the MPIES. To solve this

problem, this paper constructs the optimization solution
model of MPIES regulation model based on multilayer deep
Q network.

,e interaction model of MPIES regulation is shown in
Figure 2. Based on the status and regulation demand of each
PIES in the current system, the MPIES selects the decision-
making behavior in the decision-making behavior set and
sends the regulation instructions to each PIES. After
obtaining the overall regulation instructions of the PIES
allocated, each PIES will split the regulation instructions
into specific regulation resources in combination with the
regulation ability of its own various regulation resources
and summarize the decision rewards in this round of
decision-making cycle to the MPIES to form the
overall decision rewards of the MPIES, so as to guide the
decision-making behavior of the next decision-making
cycle.

,e specific steps of optimizing the regulation model of
MPIES based on multilayer deep Q network are as follows:

Step 1. Initialize the parameters of the MPIES model. It
mainly includes the number of decision-making cycles,
the number of discrete levels of MPIES regulation, the
number of discrete levels of maximum power of each
PIES energy storage system, the number of discrete
levels of maximum power that can reduce the load, the
electricity price in the decision-making cycle, and the
flexible range of each PIES regulation.
Step 2. Initialize the depth Q network parameters.
Including various parameters of Q network, PIES
group, and Q value table of each PIES.
Step 3. Select the regulation behavior from the MPIES
decision-making behavior set and distribute it to each
PIES.
Step 4. Select the regulation behavior from the decision
behavior set of each PIES and distribute it to each
regulation resource to form the decision reward of each
PIES in the current decision cycle and summarize it to
the regulation center of the MPIES.
Step 5. Update the Q value table of each PIES.
Step 6. Update the Q value table of MPIES.

Control center of MPIES

Control center

Electric
 energy system

Thermal
energy system Gas system

PIES-1 PIES-2 PIES-n

Figure 1: Schematic diagram of MPIES hierarchical collaborative regulation structure.
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Step 7. If the decision-making process is not completed,
return to step 3; If the decision-making process is
completed, the optimization decision-making process
ends.

,e flowchart of the optimization model is shown in
Figure 3.

5. Simulations and Analysis

,e Simulation considered in this section is: the MPIES
composed of three PIESs performs collaborative peak shaving
in the intraday scenario. It is considered that the daily
scheduling cycle is divided into 24 decision-making periods.

Among the loads of PIES1, the load that cannot be
flexibly converted accounts for about 85.3%, and the load
that can be flexibly converted accounts for about 14.7%, of
which the load that can be reduced and the load that can be
transferred account for 9% and 5.7%, respectively. In PIES2
and PIES3, the load that cannot be flexibly converted ac-
counts for about 85%, and the load that can be flexibly
converted accounts for about 15%. ,e capacity of VRB
energy storage devices equipped in different areas is as
follows: PIES1 has 6MWh energy storage, PIES2 has 5MWh
energy storage, and PIES3 has 3MWh energy storage. ,e
overall regulation instructions of the MPIES control center
are shown in Figure 4.

Figure 5 shows the load curve of the MPIES based on the
collaborative optimization strategy proposed in this paper.
,e peak valley difference of the overall load of the MPIES
before optimization is large, reaching 6481 kW. ,e coor-
dinated regulation strategy of MPIES based on multilayer
deep Q network regulates the flexible resources in theMPIES
as a whole so that the fluctuation of the overall power load in
the MPIES tends to be stable, and the intraday peak valley

difference is reduced to 2513 kW, which greatly reduces the
peak regulation pressure of the MPIES.

Figure 6 shows the proportion of peak shaving time and
peak shaving volume of flexible resources of each PIES in the
MPIES before and after optimization, respectively. It can be
seen that before optimization, the MPIES control center
assigned more control tasks to PIES 1, whereas PIES 3 was
only assigned less control tasks. ,is allocation result is
determined by the flexible resource characteristics of each
PIES. When the regulation center of the MPIES tends to
consider the PIES with stable and flexible resources first
(such as PIES 1), it will directly assign more regulation tasks
to it, and there is a possibility that the flexible resources of
the current PIES may be exhausted in a certain period of
time. ,e collaborative regulation strategy of MPIES con-
sidering flexible interval proposed in this paper compre-
hensively considers the flexible interval of flexible resources
of each PIES in the MPIES, searches for the optimal allo-
cation behavior under the overall flexible interval and can
dynamically update the allocation behavior according to the
iterated state of the MPIES, so as to activate the potential of
flexible resources with uncertainty. ,e stable and flexible
resources are partially released from a single implementation
and regulation task to improve the stability of the overall
regulation of the MPIES.

Figures 7–9 show the decision-making behavior of each
PIES in each period of the dispatching day. Among them, the
blue histogram cut indicates the resources that can be
flexibly reduced, and when it is greater than zero, it indicates
that the reduction behavior of the corresponding instruc-
tions is executed. ,e orange histogram swift indicates the
flexible resources that can be transferred in the time series.
When it is greater than zero, it indicates the reduction
behavior of the corresponding instructions, and when it is
less than zero, it is the recovery behavior.,e grey histogram

State of MPIES

Action of MPIES Reward of MPIES

State of
PIES-1

Action of
PIES-1

Reward of
 PIES-1

State of
PIES-2

Action of
PIES-2

Reward of
 PIES-2

State of
PIES-n

Action of
PIES-n

Reward of
 PIES-n

Figure 2: Schematic diagram of interaction between upper and lower levels in the process of scheduling optimization.
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energy store indicates the behavior of the energy storage
device.When it is greater than zero, it indicates the discharge
behavior, and when it is less than zero, it indicates the

charging behavior. Each PIES calls flexible resources in the
PIES based on the task collaborative allocation instruction of
the control center of the MPIES.

Figure 7 shows the action selection of PIES 1 in each
period under the optimization strategy. For the resources
that can be flexibly reduced, the reduction action will not be
taken during the low power consumption period. In the
period of demand for reduction, the total load of the current
PIES will be reduced in accordance with the overall regu-
lation task of the PIES and with the transfer of flexible
resources and energy storage devices. ,ere will be a large
reduction during the peak period of power consumption.
For transferable flexible resources, they will cooperate with
other types of flexible resources to reduce during some peak
periods of power consumption, but usually, the adjustment
amount is not large, because it is necessary to arrange
transferable flexible resources to restore during the peak
period of power consumption.,e regulation characteristics
of the energy storage device are similar to the regulation
characteristics of flexible resources that can be transferred. It
will discharge during the peak period of power consumption
and charge during the low period of power consumption
with low electricity price.

Figures 8 and 9 show the regulation behavior of flexible
resources in PIES 2 and PIES 3. Compared with the regu-
lation behavior of each flexible resource in PIES 1 shown in
Figure 6, the flexible resources under PIES 2 and 3 partic-
ipate in the overall peak shaving task of the MPIES to a
certain extent. Although the overall regulation is smaller
than that generated by the flexible resources of PIES 1, it can
still play an important role in regulation. Considering the
high uncertainty of flexible resources in PIES 3, part of the
regulation actions of PIES 1 and PIES 2 are used to make up
for the uncertainty of flexible resources in PIES 3 in the
process of MPIES coordination, which makes PIES 1 and
PIES 2 call more energy storage devices than PIES 3, thereby
increasing the stability of the overall regulation of MPIES.

Initialize the parameters of the
MPIES model

Initialize the depth Q network
parameters

Select the regulation behavior from the
MPIES decision-making behavior set

Distribute regulation behavior to each PIES

Select the regulation behavior from the
PIES decision-making behavior set

Distribute regulation behavior to regulation resource

Update Q value table of each PIES

Update Q value table of MPIES

Is decision-making process
completed?

Start

Start

N

Y

Figure 3: Flowchart of the optimization model.
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Figure 5: Collaborative optimization curve of load in MPIES.
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6. Conclusion

,is paper studies the distributed cluster regulation tech-
nology of MPIES considering the flexible interval of regu-
lation resources. First, the flexible range of the regulation
capability of the flexible resources in the PIES under the time
scale is analyzed, which provides a basis for formulating the
PIES time sequence regulation instructions. ,en, the de-
cision-making method of the upper-layer MPIES controller
combined with the regulation ability of each lower-layer
PIES to allocate regulation tasks flexibly is studied. Finally,
under the framework of reinforcement learning, the regu-
lation status and decision-making behavior models of the
upper-layer MPIES and the lower-layer PIES are established,
and a two-layer regulation optimization model considering
the flexible range of PIES regulation is realized. On this basis,
a multilayer deep Q network is used to realize the optimal

solution method of the two-layer coordinated regulation
strategy of the MPIES. ,e simulation results show that the
two-layer coordinated regulation architecture of the MPIES
proposed in this paper has good regulation performance.

From the perspective of practical application, although
the algorithm proposed in this paper has good solution
performance, the convergence of optimization solution is
difficult, and it is difficult to obtain the optimal solution in
some scenarios. In the following research, it is necessary to
consider appropriately relaxing some constraints on vari-
ables to make the model robust.
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Figure 8: Action selection of PIES 2 in each period under the optimization strategy.
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Figure 9: Action selection of PIES 3 in each period under the optimization strategy.
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sra
i,t : Subsidy amount for the regulated resources

slowi,t : Minimum subsidy amount
ηra: Subsidy-response coefficient; ε Constant number for

calculating Gra
i,t

p
gr
i,t : Time of use price of PIES

R
r,up
i,t : Upper bounds of the flexible range

Rr,low
i,t : Lower bounds of the flexible range

Scut,ui,t : Upper bounds of resources that can be reduced
Scut,li,t : Lower bounds of resources that can be reduced
Sswift,ui,t : Upper bounds of transferable resources
Sswift,li,t : Lower bounds of transferable resources
Ses,d

i,t : Discharge margin of energy storage device
Ses,c

i,t : Charge margin of energy storage device
nmg: Number of PIES in MPIES
i: Index of PIES
t: Regulation time
rtaskk : Real-time adjustment demand
se,i

k : System status information of PIES
Pt

max: Maximum regulation demand of the MPIES
ndis: Discrete quantity of the maximum demand
CHP: Combined heat and power
PIES: Park integrated energy system
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