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�is paper proposes a newmeta-heuristic algorithm, named wild geese migration optimization (GMO) algorithm. It is inspired by
the social behavior of wild geese swarming in nature. �ey maintain a special formation for long-distance migration in small
groups for survival and reproduction.�emathematical model is established based on these social behaviors to solve optimization
problems. Meanwhile, the performance of the GMO algorithm is tested on the stable benchmark function of CEC2017, and its
potential for dealing with practical problems is studied in �ve engineering design problems and the inverse kinematics solution of
robot.�e test results show that the GMO algorithm has excellent computational performance compared to other algorithms.�e
practical application results show that the GMO algorithm has strong applicability, more accurate optimization results, and more
competitiveness in challenging problems with unknown search space, compared with well-known algorithms in the literature.�e
proposal of GMO algorithm enriches the team of swarm intelligence optimization algorithms and also provides a new solution for
solving engineering design problems and inverse kinematics of robots.

1. Introduction

�e rapid development of informational and intelligent
technology has spawned many new intelligent application
requirements. It has also led to many new optimization
problems with nonlinearity, complexity, and constraints in
engineering, science, economics, management, and other
�elds. Traditional optimizationmethods have been unable to
meet the needs of computing, and seeking e�cient opti-
mization algorithms has become a research hotspot in re-
lated disciplines [1–3]. �e meta-heuristic algorithms are
widely used to solve optimization problems due to the
advantages of simplicity, �exibility, and derivation-free
mechanism [4–6]. �e algorithm is based on mathematics
and �nds the best possible solution from all candidate so-
lutions through an iterative calculation mechanism [7, 8].

Most of the meta-heuristic algorithms are inspired by the
social nature of biological swarms, the laws of natural

phenomena, and human intelligence. In general, the algo-
rithms are mainly divided into three categories. �e algo-
rithms based on the laws of natural phenomena can be
divided into evolutionary laws and physical laws. �e
evolution-based algorithms mainly include genetic algo-
rithm (GA) [9], di�erential evolution algorithm (DE) [10],
black hole algorithm (BH) [11], natural aggregation algo-
rithm (NAA) [12], barnacles mating optimizer (BMO) [13],
biogeography-based optimization (BBO) [14], bird mating
optimizer (BMO) [15], and so on. Among them, GA al-
gorithm is inspired by Darwin’s theory of evolution. Each
individual in the algorithm is assigned a speci�c gene, and
the iterative optimization process is achieved by the genetic
evolution of individual genes. NAA algorithm is inspired by
the collective decision making intelligence of the group-
living animals. Individuals will make decisions about en-
tering/leaving a subpopulation by the quality and crowding
of the subpopulation to achieve localization and
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generalization search for the problem space. ,e physics-
based algorithms mainly include simulated annealing al-
gorithm (SA) [16], central force optimization algorithm
(CFO) [17], electromagnetic field optimization algorithm
(EFO) [18], water evaporation optimization algorithm
(WEO) [19], gravitational search algorithm (GSA) [20], and
so on. ,e algorithms based on human social behavior
mainly include teaching-learning-based optimization algo-
rithm (TLBO) [21], student psychology-based optimization
algorithm (SPBO) [22], social-based algorithm (SBA) [23],
and so on. ,e kho-kho optimization (KKO) algorithm [24]
and battle royale algorithm (BRO) [25] are inspired by
players’ rules in the games.

At present, the most studied algorithm is based on bi-
ological swarm behavior, which is also called swarm intel-
ligence optimization algorithm. ,e algorithms mainly
include particle swarm optimization algorithm (PSO) [26],
bat-inspired algorithm (BA) [27], artificial bee colony al-
gorithm (ABC) [28], fruit fly optimization algorithm (FOA)
[29], migrating birds optimization (MBO) [30], cuckoo
search algorithm (CS) [31], cuttlefish algorithm (CFA) [32],
ant colony optimization algorithm (ACO) [33], moth-flame
optimization algorithm (MFO) [34], mayfly optimization
algorithm (MA) [35], chicken swarm optimization algo-
rithm (CSO) [36], naked mole-rat algorithm (NMR) [37],
and so on. Among them, the PSO algorithm is inspired by
the social behavior of bird swarm. Each particle continu-
ously explores the solution space in this algorithm to find the
global optimum.,e position update strategy is based on the
historical optimal position and the global optimal position of
each particle. ,e inspiration of the MBO algorithm comes
from the V flight formation during the migration of birds.
,e position update is implemented sequentially from the
optimal value, and the position of current individual is
compared with its neighbors. If the fitness of the neighbor is
better, the current individual will be replaced. ,e CS al-
gorithm is a meta-heuristic algorithm based on the cuckoo’s
brood parasitic behavior and the bird’s Lévy flight behavior.
,e algorithm is to search for the global optimal solution
through the strategy of Lévy flight and random walk. ,e
CFA algorithm is inspired based on the colour changing
behavior of cuttlefish. ,e population will be divided into
four independent groups in the algorithm, and an inde-
pendent search strategy is designed for each group by
simulating the two processes of reflection and visibility.

,e meta-heuristic algorithm is proposed not only for
theoretical research in the laboratory, but more importantly,
it is hoped to achieve satisfactory results in different practical
application fields. ,e research of many algorithms is based
on specific practical applications and explores their excellent
computational performance. For instance, Taymaz proposed
the BRO algorithm [25] and applied it to solve the inverse
kinematics problem of the PUMA560 robot. ,e research
shows that the BRO algorithm achieves excellent results in
the position solution. Amir et al. proposed the CS algorithm
[31] and verified its excellent performance through 13 en-
gineering design problems. Seyedali proposed the ant lion
optimizer (ALO) [38] and applied it to the design of ship
propellers. ,e smooth blade shape is found through the

ALO algorithm to improve the propeller efficiency. Mirjalili
et al. proposed the grey wolf algorithm (GWO) [39] and
applied it to optimize the BSPCW structure in the optical
buffer design problem. ,e optimized structure has a good
bandwidth and does not require any frequency mixing.
Seyedali proposed the sine cosine algorithm (SCA) [40] and
applied it to the two-dimensional design of aircraft wings.
Minimal drag is the goal of structural optimization. ,e
optimization results show that the drag is reduced from
0.009 to 0.0061, and the effect is pronounced. Li et al.
proposed the slime mold algorithm (SMA) [41] and verified
the algorithm’s performance on multiple benchmark
functions and five practical engineering design problems.
,e SMA algorithm exhibits satisfactory computational
performance in solving engineering problems. Kaur et al.
proposed the tunicate swarm algorithm (TSA) [42] and
applied it to the solution of constrained and unconstrained
engineering problems. ,e applicability of the TSA algo-
rithm is verified.

In order to mimic nature more effectively and improve
the search performance of the algorithm [43], fitness-dis-
tance balance (FDB) proposed by Kahraman et al. [44] has
made significant contributions, which combines FDB with
the symbiotic organisms search algorithm (FDB-SOS).
Compared with 13 meta-heuristic search (MHS) techniques,
the excellent performance of the FDB-SOS algorithm is
verified on 90 benchmark functions. Aras et al. [45] pro-
posed an FDBSFS algorithm, which uses the FDB mecha-
nism to optimize the stochastic fractal search algorithm.
Compared with 39 MHS algorithms, it verifies the powerful
search performance and the competitiveness of the FDBSFS
algorithm, on 89 unconstrained benchmark functions and 5
constrained engineering problems. Ozkaya et al. [46]
redesigned the mutation operator of the improved adaptive
differential evolution (LSHADE) algorithm by the FDB
mechanism, which is defined as the FDB-LSHADE algo-
rithm. Compared with other 8 MHS algorithms, the FDB-
LSHADE algorithm shows excellent performance on
CEC14, CEC17, and energy hub economic dispatch prob-
lems. To achieve higher performance goals, the application
range is wider. ,e researchers consider combining swarm
intelligence algorithms with other deep learning methods.
For instance, Ghasemi-Darehnaei et al. [47] proposed a
swarm intelligence ensemble deep transfer learning method
(SI-EDTL) and used the whale optimization algorithm
(WOA) to select the optimal hyperparameters of SI-EDTL.
Meanwhile, SI-EDTL is applied to multiple vehicle detection
in unmanned aerial vehicle (UAV) images. Basha et al. [48]
proposed an improved Harris hawks optimization algorithm
to optimize the convolutional neural network (CNN) ar-
chitecture. Compared with other similar methods, the
network achieves superior performance in classifying vari-
ous grades of brain tumors. Singh et al. [49] proposed a
multistage particle swarm optimization (MPSO) algorithm
to explore the CNN architecture and its hyperparameters
(MPSO-CNN), which achieved better performance on 5
benchmark datasets. Hilal et al. [50] studied a remote
sensing image classification model (FCMBS-RSIC) based on
fuzzy logic and bird swarm algorithm and performed
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performance verification on benchmark open-access data-
sets. ,e FCMBS-RSIC model has enhanced results com-
pared to other state-of-the-art methods. Zivkovic et al. [51]
proposed a framework to improve the prediction accuracy of
COVID-19 cases, which is an adaptive neuro-fuzzy inference
system trained by an improved beetle antenna search al-
gorithm. Kumar and Jaiswal [52] proposed a cognitive-
driven analytics model (CNN-WSADT) for real-time data
classification. It combines three deep learning methods of
CNN, wolf-search algorithm, and decision tree.

With the efforts of the researchers, new meta-heuristic
algorithms are proposed every year and applied to solve
complex optimization problems in different fields. Each
algorithm balances its exploitation and exploration process
by setting up a unique search mechanism, which may be
intrinsic to the success of the new algorithm [53–55].
However, no single meta-heuristic algorithm satisfies all
optimization problems, as explained by the no-free-lunch
theorem [56]. In other words, the same algorithm may
achieve satisfactory results on one optimization problem but
may exhibit poor computational performance on another.
,erefore, with the continuous innovation of science and
technology, the complexity and challenge of optimization
problems continue to increase. While improving traditional
algorithms, researchers also need to propose new algorithms
and theories. ,is motivates us to propose a new meta-
heuristic algorithm, inspired by wild geese migration. ,ere
is no prior study on this topic in the optimization algorithm
literature to the authors’ knowledge.

,is paper describes a new meta-heuristic optimization
algorithm (GMO). ,e algorithm simulates the social be-
havior of wild geese migration and designs multiple mi-
gration groups. ,e iterative process of the GMO algorithm
mainly refers to the behavior of randomly establishing
migration groups, synchronous migration, and free forag-
ing.,e random establishment of the migration group in the
algorithm is that its members are randomly generated with
the head goose (the best individual in the migration group)
as the center. ,e synchronous migration means that in-
dividuals in each migration group update their positions in
equal steps. ,e free foraging refers to individuals moving
within a small random range. To evaluate the performance of
the GMO algorithm, the simulation experiments are carried
out by 29 stable benchmark functions in CEC2017. At the
same time, the algorithm is applied to solve five engineering
design problems and the inverse kinematics problem of 7R
6DOF robot and is compared with other algorithms reported
in the literature. ,e results show that the computational
performance of the GMO algorithm is more competitive,
and it effectively solves practical engineering problems.

,e main contributions of this paper are as follows:

(1) ,e development and latest research results of meta-
heuristic algorithms are analyzed through literature,
which provides more theoretical basis and reference
value for the new algorithm proposed in this paper.

(2) ,is paper proposes a new swarm intelligence al-
gorithm, named GMO algorithm, which is inspired
by the social behavior of long-distance migration of

wild geese swarm. In the algorithm, the search
mechanism of randomly establishing migration
groups, synchronous migration, and free foraging is
designed, which effectively balanced the exploitation
and exploration process in the search space.

(3) Simulation experiments are carried out in the 29
stable benchmark functions of CEC2017, and each
function is tested on 10, 30, 50, and 100 dimensions.
,e experimental results of GMO algorithm and 5
other algorithms are compared in detail. It is shown
that the GMO algorithm has good convergence
accuracy and speed, strong stability, and short
running time.

(4) ,e GMO algorithm is applied to five engineering
design problems in this paper. Compared with the
results reported in other studies, the GMO algorithm
has shown good results in the face of practical
problems in different search spaces. ,e applicability
and feasibility of the algorithm to solve engineering
optimization problems are verified.

(5) ,e GMO algorithm is used to solve the inverse
kinematics problem of the 7R 6DOF robot. ,e
results show that the GMO algorithm is better than
other comparative algorithms in the solution of the
inverse kinematic pose problem and has a higher
solution accuracy. ,e algorithm provides a new
method for solving the inverse kinematics problem
of the robot.

,e rest of this paper is organized as follows. Section 2
presents the GMO algorithm and introduces its primary
sources of inspiration and design principles. Section 3 gives
the simulation experiment of the GMO algorithm by
benchmark functions, comparing it with other algorithms to
verify its computational performance. Section 4 is devoted to
solving five engineering optimization problems using the
GMO algorithm and proving the algorithm’s applicability.
Section 5 successfully solves the inverse kinematics problem
of the 7R 6DOF robot through the GMO algorithm. Finally,
the conclusion of this paper and directions for possible
future research are given in Section 6.

2. GMO Algorithm

In this section, the inspiration for the GMO algorithm is first
introduced to better understand the proposed methodology.
,en, the mathematical model of the algorithm is provided,
and its implementation flow and pseudocode are described.
Finally, the time complexity analysis of the GMO algorithm
is carried out.

2.1. Inspiration. ,e wild goose is a general term for birds of
the genus goose, and it is also an excellent air traveller. Every
autumn, they fly in droves from Siberia to the south for the
winter.,e following spring, they will return to Siberia to lay
eggs and breed after a long journey. In themigration process,
each migration group consists of many geese, and the ex-
perienced head geese lead them to fly in line-shaped or
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V-shaped arrangement, as shown in Figure 1. ,is is a
miraculous natural phenomenon.

During the flight of the wild geese, wild geese generate
vortices and updrafts by constantly flapping their wings. ,e
wild geese that follow closely will fly in these air currents,
saving a lot of energy. However, the head geese have no
available updraft resources, and their physical energy will be
consumed the fastest. ,erefore, to ensure the continuity of
the air flight, each wild geese migration group needs to
change formation and head geese frequently on long-dis-
tance flights. Meanwhile, the wild geese group migration is
also conducive to exchanging information and avoiding
natural enemies [57].

2.2. Algorithm Principles and Mathematical Models. ,e
GMO algorithm’s initial population is randomly generated
in the solution space, and a certain number of wild geese are
selected as the initial head geese. ,e wild geese swarm
migrate under the leadership of the head geese. ,e pop-
ulation size of the wild geese in the GMO algorithm isN, and
the number of the head geese is M. ,e migration group
initial radius size is set to L (L � u d − l d/N).

2.2.1. Formation of Migration Groups. In each iteration
process, the migration groups are reestablished according to
the position of the head geese. ,e members of each group
are randomly distributed within the radius L with the head
goose as the center. Its purpose is to realize the replacement
of the head geese and the transformation of the formation.
,e mathematical model is as follows:

x
t
i � x

t
j, ifi � b∗ (j − 1) + 1,

x
t
i � x

t
j − L + 2L∗ ran d(1, di m), else,

⎧⎪⎨

⎪⎩
(1)

where xt
i represents the position of the i-th individual at the

t-th iteration (i� 1, 2, . . ., N). T is the maximum number of
iterations (t� 1, 2, . . ., T). xt

j represents the position of the j-
th head goose individual at the t-th iteration (j� 1, 2, . . .,M).
b represents the number of migration groups (b�N/M).

2.2.2. Synchronized Flight. During the migration process of
the wild geese, the head geese in nature mainly rely on
environmental information, historical memory, and flight

experience to guide the migration. Meanwhile, each mi-
gration group member maintains a relatively fixed position
to fly with the head goose. ,e synchronous flight strategy is
used in the GMO algorithm to simulate the flight charac-
teristics of wild geese, and the flight steps in the migration
group members are set to be equal. ,e individuals’ position
update information in the migration group is derived from
the head goose, which is mainly based on the optimal po-
sition and refers to the position information of other head
goose. ,e schematic diagram of the flight process of a
migration group is shown in Figure 2, and the mathematical
model is as follows:

x
t+1
i � x

t
i + c1 x

t
best − x

t
j  + c2 x

t
k − x

t
j  (2)

where xt
best represents the global optimal individual and xt

k is
the randomly selected head goose individual. xt

i and xt
j

represent the members and the head goose in a migration
group, respectively. ,e flight step size c1 ∈ [0, 1], and c2 is
calculated by

c2 � exp
fit(j) − f itave
f itworse − f itbest

, f it(j)≤ f itave,

c2 � exp
fit(j) + f itave − 2fitbest

f itworse − f itbest
, f it(j)> f itave,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

where fit(j) is the fitness value of the head goose, f itworse,
f itave, and fitbest represent the worst, average, and best fitness
value of the head geese, respectively, and c2 is mainly used to
control the proportion of other head geese’s experience
information. If f it(j)≤ f itave, it indicates that the value of
fit(j) is small and means that xt

j is an excellent head goose
and does not need to learn more information from other
head goose. ,e exact opposite is true when fit(j)> f itave.

2.2.3. Free Foraging. Resting and foraging are inevitable for
migratory groups during long-distance flights. Wild geese
often choose lakes or larger bodies of water in nature as the
foraging area. During the free foraging process, the mi-
gration group members will randomly explore according to
the information of the head goose and maintain a certain
connection in a small area. At the same time, the migration
group maintains the movement trend by the optimal lo-
cation information. After finishing foraging, the wild geese

(a) (b)

Figure 1: Flight formation of wild geese. (a) Line-shaped arrangement. (b) V-shaped arrangement.
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will regroup andmigrate. A schematic diagram depicting the
free foraging process is shown in Figure 3, and the math-
ematical model is as follows:

x
t+1
i � x

t
i + c3 x

t
j − x

t
i + L  + c4 x

t
best − x

t
j , (4)

where c3 and c4 are random numbers between [0, 1], re-
spectively, used to control the movement step size of in-
dividuals during the foraging process. L is the radius of the
group range, which is used to control the distance between
the migration group members and the head goose.

2.2.4. Selection of the Head Geese. During the long-distance
migration of wild geese, the head geese are the most crucial
individuals, and they are the leaders of the entire wild geese
swarm. ,e head geese must be replaced frequently to
achieve high flight durability. ,erefore, the optimal indi-
viduals in each migration group will be selected as the head
geese of the new generation after each location update of the
GMO algorithm. ,is selection strategy not only allows the
head geese to carry excellent location information but also
ensures the dispersion of the head geese’s positions, so that
the algorithm has an excellent ability to balance exploitation
and exploration.

After the head geese are all replaced, the migration group
radius (L) is reduced by equation (5). ,e purpose is to
increase the density of members in the group and improve
the exploration accuracy of the algorithm.

L � L∗ 1 − 0.1
t

T
  , (5)

where T is the maximum number of iterations and t is the
current number of iterations.

2.3. Implementation of GMO Algorithm. ,e GMO algo-
rithm is a new stochastic optimization algorithm. Multiple
random positions within the solution space are chosen as
initial solutions, and then all solutions are iterated and

optimized continuously to find the optimal solution. ,e
flowchart and pseudocode of the GMO algorithm are pre-
sented in Figure 4 and Algorithm 1, respectively.

2.4. Time Complexity. In practical engineering applications,
the computational efficiency and computational perfor-
mance of an algorithm are equally important. ,e time
complexity analysis method is one of the essential means to
evaluate the algorithm’s efficiency. ,is method can analyze
the algorithm’ complexity under the condition that the
population numberN and the number of iterations Tremain
unchanged, and the computational efficiency of the algo-
rithm can be accurately verified. ,e calculation process of
the GMO algorithm mainly includes three parts: population
initialization O(N), the establishment of migration groups
O(N ∗ T), and synchronized flight or free foraging
O(N ∗ T). ,erefore, the time complexity of the GMO al-
gorithm is O(GMO)�O(N) +O(N ∗ T) +O(N ∗ T). ,e
complexity formula has no exponentiation operation and is
mainly affected by the basic parameter N ∗ T. From the
above analysis, it can be seen that the GMO algorithm has a
lower time complexity.

3. Experimental Results and Analyses

3.1. Benchmark Functions and Parameter Setting. For a new
meta-heuristic algorithm, it is necessary to test the ability in
terms of exploitation and exploration through a large
amount of quantitative data. In this work, the performance
of the GMO algorithm is tested on 29 stable benchmark
functions in the CEC2017 technical report (F2 function is
deprecated in this paper because of its instability) [58]. ,e
specific function names, variable feasible regions, and
minimum values are recorded in Table 1, and the detailed
function models can be obtained from [58]. In addition, 4
different types of benchmark functions are provided in this
table, including unimodal, multimodal, hybrid, and

Optimal
Position

Foraging
Range

Figure 3: ,e foraging process of migratory group members.

Optimal Position

Head
Goose Members Synchronized

Flight

Figure 2: ,e flight process of a migration group.
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composition functions. ,e test results of these benchmark
functions can infer the potential ability of the GMO algo-
rithm to solve practical problems.

In order to clearly illustrate the excellent computing
performance of the GMO algorithm, the five optimization
algorithms are selected as the comparison targets, including
the PSO, BRO, CSO, ABC, and WOA algorithms. ,e
common parameters of all algorithms are set as follows: the
population number N� 100, the maximum number of it-
erations T� 500, and the dimension D� 10, 30, 50, and 100,
and other related parameters are shown in Table 2. Windows
10 operating system is the processing environment for the
experimental process, and the PC processor is Inter(R)
Core(TM) i5-3470M CPU @3.20GHz.

3.2. Experimental Results. In the calculation process of the
meta-heuristic algorithm, the random numbers in the so-
lution space are generally used as the initial values. ,e
calculation result of the algorithm may be different due to
the difference in the initial values. ,erefore, to avoid the
influence of special data on the overall results, 50

independent experiments are performed for each bench-
mark function, and the same initial values are used for each
independent experiment. ,is section gives the test results
data of 6 algorithms on 29 benchmark functions in different
dimensions, and the experiment dimensions include D� 10,
D� 30,D� 50, andD� 100.,e specific experimental results
are shown in Tables 3–14. Among them, the experimental
results of unimodal andmultimodal benchmark functions in
4 different dimensions are recorded in Tables 3, 6, 9, and 12,
respectively. Similarly, the experimental results of the hybrid
functions are recorded in Tables 4, 7, 10, and 13, respectively.
,e experimental results of the composition benchmark
functions are recorded in Tables 5, 8, 11, and 14, respectively.

In order to verify the performance of the GMO algo-
rithm, the mean, standard deviation, and running time of
each benchmark function in 50 independent experiments
are selected as evaluation indicators. Among them, the mean
can evaluate the computing power and accuracy of the al-
gorithm, the standard deviation can evaluate the compu-
tational stability of the algorithm, and the running time can
judge the complexity of the algorithm. In addition, in order
to display the experimental results more clearly and

selected

Set up the migration group by Eq.(1)

M head goose individuals are randomly

If (rang>0.5)

N

Y

�e optimal individual in each migration groups
is selected as the new head goose

Update radius L by Eq.(5)

N

Y

End

Termination
criterion is met

Synchronous updates of 
migration groups by Eq.(2)

Free foraging of individuals 
in a small range by Eq.(4)

Start 

Initialize the population, and set the 
algorithm’s parameters

Figure 4: ,e flowchart of GMO algorithm.
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Initializing the positions of all individuals and the related parameters. Selecting the initial head geese.
For t� 1: T
For j� 1: M

For i� 1: N
,e migration groups will be rebuilt with the head geese as the center by equation (1).

End for
End for
If rand> 0.5

For j� 1: M
For i� (b ∗ (j− 1) + 1) : (b ∗ j)
,e members of the migration groups fly synchronously by equations (2) and (3).

End for
End for

else
For j� 1: M
For i� (b ∗ (j− 1) + 1): (b ∗ j)
,e migratory groups forage freely by equation (4).

End for
End for

End if
Update the migration group range radius by equation (5). ,e fitness values are recalculated, and the optimal individual in each

migratory group is selected as the new head goose.
End for
Recording the optimal fitness value and its individual location information data.

ALGORITHM 1: ,e pseudocode of GMO.

Table 1: Benchmark functions.

Function type Function name Range Fi ∗

Unimodal functions F1 Shifted and rotated bent cigar function [−100, 100] 100
F3 Shifted and rotated Zakharov function [−100, 100] 300

Multimodal functions

F4 Shifted and rotated Rosenbrock’s function [−100, 100] 400
F5 Shifted and rotated Rastrigin’s function [−100, 100] 500
F6 Shifted and rotated expanded Schaffer’s F6 function [−100, 100] 600
F7 Shifted and rotated Lunacek Bi_Rastrigin function [−100, 100] 700
F8 Shifted and rotated noncontinuous Rastrigin’s function [−100, 100] 800
F9 Shifted and rotated Lévy function [−100, 100] 900
F10 Shifted and rotated Schwefel’s function [−100, 100] 1000

Hybrid functions

F11 Hybrid function 1 (N� 3) [−100, 100] 1100
F12 Hybrid function 2 (N� 3) [−100, 100] 1200
F13 Hybrid function 3 (N� 3) [−100, 100] 1300
F14 Hybrid function 4 (N� 4) [−100, 100] 1400
F15 Hybrid function 5 (N� 4) [−100, 100] 1500
F16 Hybrid function 6 (N� 4) [−100, 100] 1600
F17 Hybrid function 6 (N� 5) [−100, 100] 1700
F18 Hybrid function 6 (N� 5) [−100, 100] 1800
F19 Hybrid function 6 (N� 5) [−100, 100] 1900
F20 Hybrid function 6 (N� 6) [−100, 100] 2000

Composition functions

F21 Composition function 1 (N� 3) [−100, 100] 2100
F22 Composition function 2 (N� 3) [−100, 100] 2200
F23 Composition function 3 (N� 4) [−100, 100] 2300
F24 Composition function 4 (N� 4) [−100, 100] 2400
F25 Composition function 5 (N� 5) [−100, 100] 2500
F26 Composition function 6 (N� 5) [−100, 100] 2600
F27 Composition function 7 (N� 6) [−100, 100] 2700
F28 Composition function 8 (N� 6) [−100, 100] 2800
F29 Composition function 9 (N� 3) [−100, 100] 2900
F30 Composition function 10 (N� 3) [−100, 100] 3000

Computational Intelligence and Neuroscience 7



Table 2: Parameters of all algorithms.

Algorithms Parameters
GMO M� 20, L� (ud− ld)/N
WOA a is linearly decreased from 2 to 0, b � 1
PSO ,e inertia is 0.8, the two learning factors are 0.5
BRO ,e damage threshold is 3
CSO Nr � 0.2N, Nh � 0.6N, Nc � N − Nr − Nh, Nm � 0.1N, G � 10, FL ∈ [0.4, 1]

ABC ,e number of food sources is 50, the limit is 20

Table 3: ,e results of the algorithms on unimodal and multimodal functions in D� 10.

Function GMO WOA PSO BRO CSO ABC

F1

Mean 1778.537 1070535 8.64E+ 08 1.56E+ 09 1.22E+ 10 595859.2
Std. 1847.493 1327311 6.69E+ 08 3.77E+ 08 2.76E+ 09 447757.2
Time 0.183993 0.189141 0.150858 2.233721 0.275354 0.089319
Rank 1 3 4 5 6 2

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18
h — 1 1 1 1 1

F3

Mean 5.01E− 13 402.1686 8723.172 1314.335 12339.67 14.95538
Std. 2.11E− 12 258.4504 5231.26 404.7079 2742.961 10.33418
Time 0.182382 0.189662 0.149261 2.244138 0.278865 0.089135
Rank 1 3 5 4 6 2

Test p — 2.95E− 18 2.95E− 18 2.95E− 18 2.95E− 18 2.95E− 18
h — 1 1 1 1 1

F4

Mean 2.714653 74.34308 86.33005 120.5624 796.107 11.22363
Std. 1.691115 1.738098 56.63311 27.75917 309.0472 17.91742
Time 0.183079 0.190755 0.148013 2.260358 0.27832 0.090793
Rank 1 3 4 5 6 2

Test p — 1.21E− 131 7.07E− 18 2.49E− 33 2.13E− 23 1.6E− 11
h — 1 1 1 1 1

F5

Mean 19.64816 60.35007 48.12616 56.69372 108.7148 30.34673
Std. 8.114833 20.74515 7.503261 13.57173 12.00771 6.384102
Time 0.202584 0.20961 0.169415 2.268328 0.285728 0.100563
Rank 1 5 3 4 6 2

Test p — 1.88E− 19 3.10E− 33 1.37E− 27 2.55E− 60 6.72E− 11
h — 1 1 1 1 1

F6

Mean 1.090706 37.46023 29.75035 32.48941 45.93866 5.483345
Std. 1.452416 11.4719 14.76915 7.580359 5.717901 2.554292
Time 0.25974 0.266008 0.223852 2.303247 0.352943 0.129438
Rank 1 5 3 4 6 2

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18 2.38E− 14
h — 1 1 1 1 1

F7

Mean 31.09322 87.20033 97.05758 61.33053 144.8 47.98111
Std. 8.94308 26.17437 14.06498 17.80283 12.16385 5.388259
Time 0.211016 0.214148 0.177618 2.269094 0.293629 0.103522
Rank 1 4 5 3 6 2

Test P — 4.27E− 21 4.75E− 44 1.31E− 16 7.77E− 70 1.53E− 18
H — 1 1 1 1 1

F8

Mean 21.27218 69.84663 55.49274 34.09814 57.225 23.67172
Std. 6.95421 13.90796 8.125503 11.40441 5.135724 5.611597
Time 0.203695 0.208884 0.170855 2.321535 0.301693 0.099989
Rank 1 6 4 3 5 2

Test p — 8.97E− 17 1.08E− 40 1.71E− 09 5.35E− 48 0.0605
h — 1 1 1 1 0
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Table 3: Continued.

Function GMO WOA PSO BRO CSO ABC

F9

Mean 1.319961 698.5982 239.4674 248.3575 976.1072 2.508042
Std. 2.956793 387.5305 140.1229 165.4117 234.7014 2.497579
Time 0.216275 0.217557 0.179534 2.251371 0.294001 0.105641
Rank 1 5 3 4 6 2

Test p — 7.8E− 18 6.92E− 18 6.92E− 18 6.92E− 18 2.54E− 07
h — 1 1 1 1 1

F10

Mean 678.6022 1015.777 1101.43 1236.56 2209.537 1401.925
Std. 256.9167 407.7181 234.8599 256.3246 266.9975 148.902
Time 0.220632 0.226075 0.184279 2.267796 0.304015 0.111241
Rank 1 2 3 4 6 5

Test p — 3.90E− 06 1.38E− 13 1.57E− 18 7.5E− 18 3.32E-17
h — 1 1 1 1 1

Average rank 1 3.88 3.88 4 5.88 2.38
Overall rank 1 3 3 5 6 2

Table 4: ,e results of the algorithms on hybrid functions in D� 10.

Function GMO WOA PSO BRO CSO ABC

F11

Mean 3.42E+ 01 9.19E+ 01 2.86E+ 02 6.46E+ 01 2.65E+ 03 3.62E+ 01
Std. 2.56E+ 01 7.95E+ 01 1.21E+ 02 2.95E+ 01 1.34E+ 03 2.19E+ 01
Time 1.98E− 01 2.04E− 01 1.62E− 01 2.29E+ 00 2.89E− 01 9.63E− 02
Rank 1 4 5 3 6 2

Test p — 2.14E− 06 1.14E− 17 3.42E− 08 7.07E− 18 0.371991
h — 1 1 1 1 0

F12

Mean 4.58E+ 03 2.18E+ 05 7.36E+ 06 2.97E+ 05 8.37E+ 07 2.69E+ 05
Std. 4.23E+ 03 1.32E+ 05 5.20E+ 06 1.70E+ 05 6.02E− 08 2.62E+ 05
Time 1.98E− 01 2.05E− 01 1.66E− 01 2.24E+ 00 2.86E− 01 9.87E− 02
Rank 1 2 5 4 6 3

Test p — 1.84E− 17 7.07E− 18 7.07E− 18 3.31E− 20 8.99E− 17
h — 1 1 1 1 1

F13

Mean 9.08E+ 02 1.08E+ 04 7.46E+ 04 1.00E+ 04 1.69E+ 07 8.89E+ 03
Std. 5.52E+ 02 3.63E+ 03 6.05E+ 04 1.27E+ 03 9.81E+ 06 3.48E+ 03
Time 2.03E− 01 2.08E− 01 1.68E− 01 2.24E+ 00 2.94E− 01 1.01E− 01
Rank 1 4 5 3 6 2

Test p — 7.07E− 18 7.07E− 18 7.97E− 18 6.23E− 18 1.27E− 21
h — 1 1 1 1 1

F14

Mean 5.86E+ 01 1.53E+ 02 4.70E+ 02 1.09E+ 02 6.92E+ 03 5.95E+ 01
Std. 1.32E+ 01 1.32E+ 02 6.31E+ 02 8.12E+ 01 1.41E+ 03 1.14E+ 01
Time 2.14E− 01 2.20E− 01 1.78E− 01 2.26E+ 00 2.90E− 01 1.07E− 01
Rank 1 4 5 3 6 2

Test p — 9.46E− 10 7.97E− 18 1.03E− 08 3.5E− 19 0.7158
h — 1 1 1 1 0

F15

Mean 1.73E+ 02 4.54E+ 03 6.38E+ 03 4.36E+ 03 4.04E+ 04 2.54E+ 02
Std. 6.84E+ 01 2.63E+ 03 3.26E+ 03 2.60E+ 03 2.60E+ 04 1.90E+ 02
Time 1.91E− 01 1.95E− 01 1.57E− 01 2.24E+ 00 2.87E− 01 9.21E− 02
Rank 1 4 5 3 6 2

Test p — 7.5E− 18 4.19E− 18 7.07E− 18 6.38E− 18 0.055744
h — 1 1 1 1 0

F16

Mean 9.29E+ 01 3.07E+ 02 1.41E+ 02 2.38E+ 02 6.86E+ 02 1.20E+ 02
Std. 7.72E+ 01 1.20E+ 02 7.74E+ 01 1.03E+ 02 1.16E+ 02 5.80E+ 01
Time 2.06E− 01 2.10E− 01 1.70E− 01 2.27E+ 00 2.96E− 01 9.97E− 02
Rank 1 5 3 4 6 2

Test p — 9.42E− 14 0.000925 3.02E− 10 7.07E− 18 0.008367
h — 1 1 1 1 1
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Table 4: Continued.

Function GMO WOA PSO BRO CSO ABC

F17

Mean 5.24E+ 01 4.84E+ 01 9.59E+ 01 5.38E+ 01 2.27E+ 02 6.57E+ 01
Std. 1.42E+ 01 1.31E+ 01 1.78E+ 01 1.32E+ 01 4.60E+ 01 7.36E+ 00
Time 2.56E− 01 2.59E− 01 2.24E− 01 2.37E+ 00 3.38E− 01 1.27E− 01
Rank 2 1 5 3 6 4

Test p — 0.1386 4.30E− 24 0.6165 1.92E− 33 1.11E− 07
h — 0 1 0 1 1

F18

Mean 1.75E+ 02 1.57E+ 03 9.77E+ 04 1.35E+ 03 2.67E+ 07 4.63E+ 03
Std. 1.11E+ 02 4.87E+ 03 8.29E+ 04 2.27E+ 03 1.17E+ 07 4.39E+ 03
Time 2.04E− 01 2.08E− 01 1.69E− 01 2.27E+ 00 2.94E− 01 9.96E− 02
Rank 1 3 5 2 6 4

Test p — 5.98E− 17 7.07E− 18 1.84E− 17 2.76E− 18 3.32E− 17
h — 1 1 1 1 1

F19

Mean 7.40E+ 01 3.27E+ 04 8.06E+ 03 5.59E+ 03 1.21E+ 06 8.46E+ 01
Std. 4.43E+ 01 2.87E+ 04 1.70E+ 04 2.72E+ 03 1.29E+ 06 8.30E+ 01
Time 5.31E− 01 5.33E− 01 4.94E− 01 2.60E+ 00 5.83E− 01 2.67E− 01
Rank 1 5 4 3 6 2

Test p — 7.07E− 18 7.07E− 18 3.36E− 19 7.06E− 18 0.612368
h — 1 1 1 1 0

F20

Mean 5.89E+ 01 1.06E+ 02 1.01E+ 02 1.05E+ 02 3.42E+ 02 1.05E+ 02
Std. 2.29E+ 01 2.82E+ 01 1.76E+ 01 4.32E+ 01 5.85E+ 01 2.59E+ 01
Time 2.57E− 01 2.62E− 01 2.25E− 01 2.32E+ 00 3.41E− 01 1.29E− 01
Rank 1 5 2 4 6 3

Test p — 3.43E− 13 2.52E− 13 9.06E− 10 7.22E− 41 1.99E− 15
h — 1 1 1 1 1

Average rank 1.1 3.7 4.4 3.2 6 2.6
Overall rank 1 4 5 3 6 2

Table 5: ,e results of the algorithms on composition functions in D� 10.

Function GMO WOA PSO BRO CSO ABC

F21

Mean 1.98E+ 02 2.19E+ 02 2.47E+ 02 1.19E+ 02 2.77E+ 02 1.19E+ 02
Std. 4.61E+ 01 6.15E+ 01 2.91E+ 01 9.65E+ 00 3.93E+ 01 1.98E+ 01
Time 2.65E− 01 2.68E− 01 2.30E− 01 2.33E+ 00 3.50E− 01 1.31E− 01
Rank 3 4 5 2 6 1

Test p — 6.22E− 06 1.55E− 15 3.56E− 08 4.9E− 13 2.4E− 08
h — 1 1 1 1 1

F22

Mean 1.03E+ 02 1.17E+ 02 1.56E+ 02 1.82E+ 02 1.01E+ 03 1.09E+ 02
Std. 2.11E+ 00 8.03E+ 00 1.80E+ 01 3.34E+ 01 1.93E+ 02 2.66E+ 00
Time 2.99E− 01 3.01E− 01 2.63E− 01 2.38E+ 00 3.59E− 01 1.48E− 01
Rank 1 3 4 5 6 2

Test p — 3.13E− 17 7.07E− 18 3.46E− 14 7.07E− 18 3.98E− 15
h — 1 1 1 1 1

F23

Mean 3.22E+ 02 3.47E+ 02 3.92E+ 02 3.84E+ 02 4.89E+ 02 3.24E+ 02
Std. 7.40E+ 00 2.22E+ 01 3.02E+ 01 2.09E+ 01 2.80E+ 01 7.61E+ 00
Time 3.12E− 01 3.15E− 01 2.72E− 01 2.39E+ 00 3.68E− 01 1.55E− 01
Rank 1 3 5 4 6 2

Test p — 5.4E− 11 1.37E− 17 8.46E− 18 7.07E− 18 0.210851
h — 1 1 1 1 0

F24

Mean 3.24E+ 02 3.74E+ 02 3.82E+ 02 2.98E+ 02 4.88E+ 02 2.76E+ 02
Std. 7.56E+ 01 1.97E+ 01 1.04E+ 01 1.31E+ 02 4.39E+ 01 9.11E+ 01
Time 3.24E− 01 3.29E− 01 2.86E− 01 2.43E+ 00 3.87E− 01 1.62E− 01
Rank 3 4 5 2 6 1

Test p — 1.1E− 13 1.84E− 17 0.037035 7.89E− 16 1.08E− 06
h — 1 1 1 1 1
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intuitively, each table also records the ranking of the average
value and the results of the significance test. ,e rank of
average value is determined by the numerical value of the
test results. ,e algorithm with the smallest average value is
ranked 1st, and the algorithm with the largest average value
is ranked 6th and gives the same rank when the average value
is the same but occupies two positions. ,e final overall
ranking of the algorithm is determined by the average of the
algorithm’s ranking on all functions.

,e significance test technique uses statistical methods to
explore whether there are significant differences in data
distribution. In this paper, the significance test is performed
on the 50 calculation results of the GMO algorithm and
other comparison algorithms, respectively. ,e Wilcoxon
rank-sum test or the independent sample t-test (T-test) is
used to test the significance of different types of data.
According to the data normality test and variance

homogeneity test results, the T-test is performed for nor-
mally distributed data, and Wilcoxon rank-sum test is
performed for others. ,e level of statistical significance is
set at p� 0.05. p< 0.05 means that the calculation result of
the GMO algorithm is significantly different from the
comparison algorithm, which is recorded as “1” in the table.
p> 0.05 means negative answer, which is recorded as “0” in
the table.

3.3. Evaluation of Exploitation and Exploration Capabilities.
,e unimodal functions (F1, F3) are often used to verify the
exploitation ability of the algorithm because they have only
one global optimal value. ,e multimodal functions
(F4–F10) have an excellent effect on testing the exploration
ability of the algorithm because of the characteristics of
multiple local optima.

Table 5: Continued.

Function GMO WOA PSO BRO CSO ABC

F25

Mean 4.22E+ 02 4.24E+ 02 4.70E+ 02 4.72E+ 02 8.81E+ 02 4.33E+ 02
Std. 2.36E+ 01 1.42E+ 01 3.03E+ 01 1.66E+ 01 9.08E+ 01 2.02E+ 01
Time 2.89E− 01 2.95E− 01 2.53E− 01 2.36E+ 00 3.57E− 01 1.44E− 01
Rank 1 2 4 5 6 3

Test p — 0.446195 1.41E− 10 4.96E− 15 7.06E− 18 0.000255
h — 0 1 1 1 1

F26

Mean 3.11E+ 02 4.27E+ 02 4.48E+ 02 6.23E+ 02 1.49E+ 03 3.29E+ 02
Std. 2.36E+ 01 5.36E+ 01 2.20E+ 01 5.72E+ 01 1.74E+ 02 4.93E+ 01
Time 3.43E− 01 3.48E− 01 3.09E− 01 2.42E+ 00 3.97E− 01 1.72E− 01
Rank 1 3 4 5 6 2

Test p — 3.3E− 17 8.91E− 18 7E− 18 6.55E− 19 2.2E− 07
h — 1 1 1 1 1

F27

Mean 3.93E+ 02 4.11E+ 02 4.51E+ 02 4.64E+ 02 5.15E+ 02 3.96E+ 02
Std. 2.78E+ 00 1.53E+ 01 2.72E+ 01 2.03E+ 01 4.80E+ 01 3.52E+ 00
Time 3.55E− 01 3.60E− 01 3.16E− 01 2.42E+ 00 4.23E− 01 1.78E− 01
Rank 1 3 4 5 6 2

Test p — 1.43E− 16 1.21E− 17 7.06E− 18 7.02E− 18 1.43E− 05
h — 1 1 1 1 1

F28

Mean 3.23E+ 02 4.14E+ 02 4.44E+ 02 4.78E+ 02 6.51E+ 02 5.05E+ 02
Std. 4.20E+ 01 1.01E+ 01 5.94E+ 00 5.40E+ 01 7.16E+ 00 1.26E+ 02
Time 3.30E− 01 3.34E− 01 2.92E− 01 2.43E+ 00 3.91E− 01 1.64E− 01
Rank 1 2 3 4 6 5

Test p — 3.13E− 17 7.06E− 18 8.48E− 17 4.73E− 20 1.76E− 13
h — 1 1 1 1 1

F29

Mean 2.63E+ 02 3.11E+ 02 2.89E+ 02 3.41E+ 02 6.28E+ 02 3.11E+ 02
Std. 2.39E+ 01 3.23E+ 01 3.05E+ 01 3.35E+ 01 9.28E+ 01 1.84E+ 01
Time 3.19E− 01 3.26E− 01 2.80E− 01 2.39E+ 00 3.95E− 01 1.59E− 01
Rank 1 3 2 5 6 4

Test p — 5.92E− 11 1.11E− 06 3.38E− 16 7.07E− 18 1.16E− 13
h — 1 1 1 1 1

F30

Mean 5.15E+ 04 3.83E+ 06 3.32E+ 06 1.49E+ 06 1.55E+ 07 4.38E+ 05
Std. 2.43E+ 05 2.31E+ 06 2.95E+ 06 1.30E+ 06 9.22E+ 06 6.85E+ 05
Time 5.93E− 01 5.95E− 01 5.52E− 01 2.66E+ 00 6.43E− 01 2.99E− 01
Rank 1 4 3 5 6 2

Test p — 2.95E− 17 6.26E− 17 7.55E− 17 6.93E− 18 1.16E− 13
h — 1 1 1 1 1

Average rank 1.4 3.2 3.9 4.2 6 2.4
Overall rank 1 3 4 5 6 2
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Table 6: ,e results of the algorithms on unimodal and multimodal functions in D� 30.

Function GMO WOA PSO BRO CSO ABC

F1

Mean 2.96E+ 04 4.54E+ 08 1.18E+ 10 2.16E+ 10 5.92E+ 10 4.40E+ 08
Std. 2.13E+ 04 2.39E+ 08 3.13E+ 09 1.98E+ 09 4.55E+ 09 1.95E+ 08
Time 4.36E− 01 4.61E− 01 3.52E− 01 3.70E+ 00 6.66E− 01 2.51E− 01
Rank 1 3 4 5 6 2

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18
h — 1 1 1 1 1

F3

Mean 2.52E+ 04 2.48E+ 05 2.06E+ 05 4.87E+ 04 8.79E+ 04 1.73E+ 04
Std. 9.19E+ 03 2.82E+ 04 4.61E+ 04 5.23E+ 03 5.55E+ 03 4.38E+ 03
Time 4.34E− 01 4.59E− 01 3.53E− 01 3.64E+ 00 6.72E− 01 2.43E− 01
Rank 2 6 5 3 4 1

Test p — 7.07E− 18 1.04E− 32 6.43E− 26 7.07E− 18 5.78E− 07
h — 1 1 1 1 1

F4

Mean 1.17E+ 02 2.94E+ 02 1.77E+ 03 5.40E+ 03 1.62E+ 04 2.76E+ 02
Std. 1.96E+ 01 8.22E+ 01 1.12E+ 03 6.57E+ 02 2.75E+ 03 5.96E+ 01
Time 4.34E− 01 4.52E− 01 3.51E− 01 3.67E+ 00 6.58E− 01 2.46E− 01
Rank 1 3 4 5 6 2

Test p — 9.55E− 21 7.07E− 18 1.92E− 46 8.77E− 40 1.26E− 25
h — 1 1 1 1 1

F5

Mean 1.21E+ 02 3.15E+ 02 3.36E+ 02 3.19E+ 02 4.76E+ 02 1.85E+ 02
Std. 3.37E+ 01 5.59E+ 01 3.36E+ 01 3.37E+ 01 2.67E+ 01 2.81E+ 01
Time 4.94E− 01 5.23E− 01 4.11E− 01 3.62E+ 00 7.01E− 01 3.41E− 01
Rank 1 3 5 4 6 2

Test p — 7.07E− 18 1.19E− 53 2.09E− 50 6.45E− 78 2.61E− 17
h — 1 1 1 1 1

F6

Mean 3.07E+ 01 7.26E+ 01 5.52E+ 01 7.09E+ 01 9.22E+ 01 2.73E+ 01
Std. 9.70E+ 00 7.50E+ 00 9.96E+ 00 7.91E+ 00 3.56E+ 00 7.19E+ 00
Time 7.21E− 01 7.43E− 01 6.35E− 01 3.92E+ 00 9.56E− 01 5.00E− 01
Rank 2 5 3 4 6 1

Test p — 4.39E− 43 7.03E− 22 9.16E− 41 2.79E− 47 0.0497
h — 1 1 1 1 0

F7

Mean 1.79E+ 02 5.20E+ 02 6.40E+ 02 4.71E+ 02 7.95E+ 02 3.08E+ 02
Std. 3.81E+ 01 8.95E+ 01 7.86E+ 01 6.71E+ 01 2.62E+ 01 2.67E+ 01
Time 5.17E− 01 5.40E− 01 4.33E− 01 3.71E+ 00 7.30E− 01 3.23E− 01
Rank 1 4 5 3 6 2

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18 1.37E− 17
h — 1 1 1 1 1

F8

Mean 1.22E+ 02 2.11E+ 02 3.15E+ 02 2.45E+ 02 3.86E+ 02 1.48E+ 02
Std. 3.09E+ 01 4.43E+ 01 2.88E+ 01 3.48E+ 01 1.69E+ 01 2.84E+ 01
Time 5.10E− 01 5.35E− 01 4.26E− 01 3.73E+ 00 7.11E− 01 3.53E− 01
Rank 1 3 5 4 6 2

Test p — 1.18E− 19 3.56E− 54 4.04E− 34 7.40E− 62 1.96E− 05
h — 1 1 1 1 1

F9

Mean 1.36E+ 03 6.11E+ 03 7.70E+ 03 6.68E+ 03 1.40E+ 04 1.29E+ 03
Std. 7.41E+ 02 1.43E+ 03 2.07E+ 03 1.37E+ 03 1.21E+ 03 6.02E+ 02
Time 5.14E− 01 5.38E− 01 4.32E− 01 3.74E+ 00 7.25E− 01 3.10E− 01
Rank 2 3 5 4 6 1

Test p — 7.5E− 18 7.07E− 18 7.07E− 18 7.07E− 18 0.790692
h — 1 1 1 1 0

F10

Mean 4.56E+ 03 6.04E+ 03 7.30E+ 03 7.32E+ 03 8.45E+ 03 7.39E+ 03
Std. 8.56E+ 02 6.83E+ 02 5.19E+ 02 3.93E+ 02 3.15E+ 02 3.26E+ 02
Time 5.61E− 01 5.81E− 01 4.82E− 01 3.79E+ 00 7.43E− 01 5.03E− 01
Rank 1 2 3 4 6 5

Test p — 1.09E− 15 1.84E− 17 1.21E− 17 1.15E− 43 4.36E− 31
h — 1 1 1 1 1

Average rank 1.11 3 4.67 4 5.78 2.44
Overall rank 1 3 5 4 6 2
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Table 7: ,e results of the algorithms on hybrid functions in D� 30.

Function GMO WOA PSO BRO CSO ABC

F11

Mean 2.14E+ 02 1.90E+ 03 4.90E+ 03 1.20E+ 03 8.46E+ 03 3.28E+ 02
Std. 6.42E+ 01 4.00E+ 02 1.97E+ 03 1.86E+ 02 1.18E+ 03 7.92E+ 01
Time 4.75E− 01 5.01E− 01 3.92E− 01 3.75E+ 00 7.02E− 01 2.68E− 01
Rank 1 4 5 3 6 2

Test p — 7.03E− 34 5.34E− 22 3.50E− 42 1.15E− 43 5.92E− 11
h — 1 1 1 1 1

F12

Mean 9.13E+ 06 2.04E+ 08 1.19E+ 09 4.26E+ 09 1.69E+ 10 1.23E+ 08
Std. 7.86E+ 06 1.06E+ 08 7.39E+ 08 6.93E+ 08 2.06E+ 09 8.41E+ 07
Time 3.27E− 01 3.35E− 01 2.96E− 01 2.62E+ 00 4.00E− 01 1.59E− 01
Rank 1 3 4 5 6 2

Test p — 7.97E− 18 7.07E− 18 7.07E− 18 7.07E− 18 1.45E− 17
h — 1 1 1 1 1

F13

Mean 1.68E+ 05 6.18E+ 05 2.45E+ 08 1.50E+ 09 1.52E+ 10 5.96E+ 05
Std. 7.11E+ 04 3.89E+ 05 3.01E+ 08 5.85E+ 08 2.51E+ 09 5.72E+ 05
Time 3.27E− 01 3.35E− 01 2.93E− 01 2.79E+ 00 3.76E− 01 1.47E− 01
Rank 1 3 4 5 6 2

Test p p 1.47E− 14 7.07E− 18 7.07E− 18 4.18E− 18 7.27E− 15
h h 1 1 1 1 1

F14

Mean 1.27E+ 03 1.08E+ 06 5.17E+ 05 4.25E+ 05 5.20E+ 06 2.85E+ 04
Std. 2.68E+ 03 2.25E+ 05 3.48E+ 05 1.36E+ 05 1.00E+ 06 3.10E+ 04
Time 5.59E− 01 5.87E− 01 4.73E− 01 3.81E+ 00 7.68E− 01 3.19E− 01
Rank 1 5 4 3 6 2

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 1.74E− 18 2.27E− 16
h — 1 1 1 1 1

F15

Mean 4.74E+ 04 4.56E+ 05 4.85E+ 07 1.64E+ 04 5.59E+ 08 3.10E+ 04
Std. 3.30E+ 04 5.69E+ 05 3.17E+ 07 5.05E+ 03 1.94E+ 08 1.48E+ 04
Time 3.08E− 01 3.21E− 01 2.76E− 01 2.74E+ 00 3.67E− 01 1.39E− 01
Rank 3 4 5 1 6 2

Test p — 1.85E− 13 7.07E− 18 1.6E− 11 7.07E− 18 0.002447
h — 1 1 1 1 1

F16

Mean 1.07E+ 03 1.95E+ 03 2.24E+ 03 2.86E+ 03 4.78E+ 03 1.49E+ 03
Std. 2.98E+ 02 3.84E+ 02 3.06E+ 02 4.39E+ 02 5.79E+ 02 2.75E+ 02
Time 5.02E− 01 5.31E− 01 4.19E− 01 3.76E+ 00 7.26E− 01 2.92E− 01
Rank 1 3 4 5 6 2

Test p — 7.67E− 23 1.69E− 35 7.73E− 40 6.38E− 18 6.98E− 10
h — 1 1 1 1 1

F17

Mean 4.00E+ 02 6.10E+ 02 9.21E+ 02 8.75E+ 02 2.72E+ 03 5.49E+ 02
Std. 1.94E+ 02 2.68E+ 02 2.93E+ 02 2.37E+ 02 4.84E+ 02 1.88E+ 02
Time 7.17E− 01 7.46E− 01 6.38E− 01 4.17E+ 00 9.25E− 01 4.05E− 01
Rank 1 3 5 4 6 2

Test p — 5.12E− 05 1.22E− 13 8.05E− 14 7.07E− 18 0.000276
h — 1 1 1 1 1

F18

Mean 1.09E+ 05 6.65E+ 06 1.64E+ 07 1.38E+ 06 5.86E+ 07 3.63E+ 05
Std. 6.86E+ 04 4.25E+ 06 6.02E+ 06 1.02E+ 06 2.94E+ 07 3.08E+ 05
Time 5.05E− 01 5.32E− 01 4.19E− 01 3.81E+ 00 7.41E− 01 2.90E− 01
Rank 1 4 5 3 6 2

Test p — 7.07E− 18 7.07E− 18 2.47E− 17 7.07E− 18 8.95E− 11
h — 1 1 1 1 1

F19

Mean 1.77E+ 05 1.08E+ 07 9.42E+ 07 1.70E+ 06 1.52E+ 09 2.73E+ 06
Std. 2.08E+ 05 5.81E+ 06 6.88E+ 07 1.21E+ 06 5.26E+ 08 1.59E+ 06
Time 1.67E+ 00 1.69E+ 00 1.58E+ 00 5.02E+ 00 1.77E+ 00 9.66E− 01
Rank 1 3 5 4 6 2

Test p — 7.07E− 18 7.07E− 18 1.6E− 16 7.07E− 18 5.02E− 17
h — 1 1 1 1 1
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Table 8: ,e results of the algorithms on composition functions in D� 30.

Function GMO WOA PSO BRO CSO ABC

F21

Mean 3.31E+ 02 4.82E+ 02 5.21E+ 02 5.34E+ 02 6.96E+ 02 3.64E+ 02
Std. 2.92E+ 01 4.11E+ 01 3.52E+ 01 4.30E+ 01 4.38E+ 01 2.97E+ 01
Time 8.45E− 01 8.77E− 01 7.55E− 01 4.14E+ 00 1.08E+ 00 5.28E− 01
Rank 1 3 4 5 6 2

Test p - 2.01E− 36 2.53E− 50 1.63E− 44 2.24E− 64 1.73E− 07
h - 1 1 1 1 1

F22

Mean 2.33E+ 02 2.97E+ 03 1.83E+ 03 4.17E+ 03 7.76E+ 03 3.46E+ 02
Std. 8.90E+ 02 2.20E+ 03 4.37E+ 02 6.19E+ 02 6.63E+ 02 7.91E+ 01
Time 7.19E− 01 7.30E− 01 6.88E− 01 3.00E+ 00 6.35E− 01 3.36E− 01
Rank 1 4 3 5 6 2

Test p — 1.13E− 16 1.35E− 16 1.35E− 16 8.46E− 18 1.43E− 16
h — 1 1 1 1 1

F23

Mean 4.77E+ 02 8.49E+ 02 9.08E+ 02 1.03E+ 03 1.29E+ 03 5.58E+ 02
Std. 4.03E+ 01 9.40E+ 01 8.77E+ 01 6.95E+ 01 1.04E+ 02 4.27E+ 01
Time 9.90E− 01 1.02E+ 00 8.93E− 01 4.22E+ 00 1.14E+ 00 6.21E− 01
Rank 1 3 4 5 6 2

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 5.22E− 18 8.97E− 13
h — 1 1 1 1 1

F24

Mean 5.34E+ 02 7.94E+ 02 9.35E+ 02 1.19E+ 03 1.46E+ 03 5.95E+ 02
Std. 3.28E+ 01 7.54E+ 01 3.68E+ 01 9.28E+ 01 1.32E+ 02 3.78E+ 01
Time 1.07E+ 00 1.09E+ 00 9.61E− 01 4.44E+ 00 1.22E+ 00 6.73E− 01
Rank 1 3 4 5 6 2

Test p — 8.38E− 33 2.35E− 77 1.11E− 49 1.19E− 46 1.16E− 13
h — 1 1 1 1 1

F25

Mean 4.28E+ 02 5.65E+ 02 1.31E+ 03 9.64E+ 02 3.21E+ 03 5.60E+ 02
Std. 2.59E+ 01 3.56E+ 01 2.47E+ 02 5.02E+ 01 4.89E+ 02 4.42E+ 01
Time 9.72E− 01 9.96E− 01 8.73E− 01 4.26E+ 00 1.17E+ 00 5.67E− 01
Rank 1 3 5 4 6 2

Test p — 5.82E− 38 7.07E− 18 1.39E− 67 2.53E− 39 6.16E− 30
h — 1 1 1 1 1

F26

Mean 1.71E+ 03 5.17E+ 03 4.90E+ 03 6.47E+ 03 8.93E+ 03 2.41E+ 03
Std. 1.14E+ 03 8.86E+ 02 5.86E+ 02 4.56E+ 02 5.11E+ 02 1.66E+ 03
Time 1.17E+ 00 1.20E+ 00 1.08E+ 00 4.45E+ 00 1.29E+ 00 7.06E− 01
Rank 1 4 3 5 6 2

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18 0.021112
h — 1 1 1 1 1

F27

Mean 5.65E+ 02 6.77E+ 02 7.59E+ 02 1.37E+ 03 1.94E+ 03 6.36E+ 02
Std. 2.54E+ 01 4.73E+ 01 4.28E+ 01 1.72E+ 02 2.25E+ 02 6.65E+ 01
Time 1.31E+ 00 1.34E+ 00 1.20E+ 00 4.61E+ 00 1.47E+ 00 7.89E− 01
Rank 1 3 4 5 6 2

Test p — 3.13E− 17 1.29E− 42 7.07E− 18 6.62E− 18 1.26E− 09
h — 1 1 1 1 1

Table 7: Continued.

Function GMO WOA PSO BRO CSO ABC

F20

Mean 5.09E+ 02 8.98E+ 02 9.60E+ 02 7.24E+ 02 1.31E+ 03 6.64E+ 02
Std. 1.31E+ 02 5.75E+ 01 1.22E+ 02 1.65E+ 02 1.25E+ 02 8.64E+ 01
Time 7.81E− 01 8.09E− 01 6.89E− 01 4.15E+ 00 9.91E− 01 6.07E− 01
Rank 1 4 5 3 6 2

Test p — 1.37E− 17 1.35E− 32 9.87E− 11 9.87E− 11 6.13E− 10
h — 1 1 1 1 1

Average rank 1.2 3.66 4.6 3.6 6 2
Overall rank 1 4 5 3 6 2
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Table 8: Continued.

Function GMO WOA PSO BRO CSO ABC

F28

Mean 5.04E+ 02 6.82E+ 02 1.62E+ 03 2.15E+ 03 4.45E+ 03 6.35E+ 02
Std. 2.78E+ 01 6.03E+ 01 4.84E+ 02 1.67E+ 02 4.89E+ 02 5.99E+ 01
Time 1.16E+ 00 1.18E+ 00 1.05E+ 00 4.47E+ 00 1.32E+ 00 6.76E− 01
Rank 1 3 4 5 6 2

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18 3.74E− 17
h — 1 1 1 1 1

F29

Mean 1.34E+ 03 2.00E+ 03 2.11E+ 03 2.72E+ 03 4.02E+ 03 1.49E+ 03
Std. 2.13E+ 02 4.41E+ 02 4.51E+ 02 4.45E+ 02 5.05E+ 02 2.77E+ 02
Time 1.00E+ 00 1.03E+ 00 9.06E− 01 4.35E+ 00 1.20E+ 00 5.76E− 01
Rank 1 3 4 5 6 2

Test p — 2.36E− 14 1.13E− 16 7.07E− 18 5.12E− 44 0.0026
h — 1 1 1 1 1

F30

Mean 1.89E+ 06 2.27E+ 07 1.07E+ 08 6.80E+ 07 2.75E+ 09 1.06E+ 07
Std. 1.46E+ 06 9.33E+ 06 5.95E+ 07 2.88E+ 07 6.24E+ 08 7.51E+ 06
Time 1.53E+ 00 1.54E+ 00 1.50E+ 00 3.84E+ 00 1.48E+ 00 7.84E− 01
Rank 1 3 5 4 6 2

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 4.98E− 18 3.98E− 15
h — 1 1 1 1 1

Average rank 1 3.2 4 4.8 6 2
Overall rank 1 3 4 5 6 2

Table 9: ,e results of the algorithms on unimodal and multimodal functions in D� 50.

Function GMO WOA PSO BRO CSO ABC

F1

Mean 7.42E+ 05 4.17E+ 09 4.27E+ 10 7.02E+ 10 1.15E+ 11 8.38E+ 09
Std. 1.25E+ 06 1.26E+ 09 9.16E+ 09 4.53E+ 09 4.94E+ 09 2.28E+ 09
Time 0.415468 0.429595 0.384812 2.886183 0.496381 0.199661
Rank 1 2 4 5 6 3

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18
h — 1 1 1 1 1

F3

Mean 8.26E+ 04 2.10E+ 05 3.74E+ 05 1.23E+ 05 1.88E+ 05 6.88E+ 04
Std. 2.28E+ 04 6.38E+ 04 7.47E+ 04 8.71E+ 03 1.71E+ 04 1.06E+ 04
Time 4.17E− 01 4.34E− 01 3.94E− 01 2.89E+ 00 5.07E− 01 2.01E− 01
Rank 2 4 6 3 5 1

Test p — 8.46E− 18 5.49E− 34 2.12E− 17 5.93E− 44 2.29E− 04
h — 1 1 1 1 1

F4

Mean 2.87E+ 02 1.11E+ 03 5.54E+ 03 1.74E+ 04 3.59E+ 04 1.41E+ 03
Std. 4.70E+ 01 2.38E+ 02 2.42E+ 03 1.41E+ 03 3.54E+ 03 4.33E+ 02
Time 4.12E− 01 4.21E− 01 3.85E− 01 2.88E+ 00 4.90E− 01 1.97E− 01
Rank 1 2 4 5 6 3

Test p — 3.63E− 30 7.07E− 18 3.16E− 55 4.06E− 51 1.02E− 23
h — 1 1 1 1 1

F5

Mean 2.85E+ 02 5.36E+ 02 6.78E+ 02 5.60E+ 02 7.57E+ 02 4.34E+ 02
Std. 4.54E+ 01 9.10E+ 01 4.72E+ 01 4.94E+ 01 1.88E+ 01 5.18E+ 01
Time 5.25E− 01 5.42E− 01 4.99E− 01 2.98E+ 00 5.55E− 01 2.57E− 01
Rank 1 3 5 4 6 2

Test p — 1.35E− 27 7.60E− 65 1.35E− 27 2.51E− 62 1.06E− 27
h — 1 1 1 1 1

F6

Mean 4.65E+ 01 8.57E+ 01 7.95E+ 01 8.71E+ 01 1.05E+ 02 5.42E+ 01
Std. 8.74E+ 00 8.46E+ 00 1.00E+ 01 7.95E+ 00 2.80E+ 00 9.16E+ 00
Time 8.37E− 01 8.48E− 01 8.07E− 01 3.29E+ 00 9.39E− 01 4.20E− 01
Rank 1 4 3 5 6 2

Test p — 5.13E− 41 4.38E− 32 2.43E− 43 1.34E− 47 3.48E− 05
h — 1 1 1 1 1
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Table 9: Continued.

Function GMO WOA PSO BRO CSO ABC

F7

Mean 4.45E+ 02 1.11E+ 03 1.50E+ 03 1.04E+ 03 1.38E+ 03 7.10E+ 02
Std. 1.07E+ 02 9.64E+ 01 1.81E+ 02 7.93E+ 01 2.29E+ 01 5.52E+ 01
Time 5.39E− 01 5.57E− 01 5.10E− 01 2.99E+ 00 5.71E− 01 2.63E− 01
Rank 1 4 6 3 5 2

Test p — 7.5E− 18 7.07E− 18 8.46E− 18 7.07E− 18 9.92E− 16
h — 1 1 1 1 1

F8

Mean 3.08E+ 02 5.41E+ 02 6.68E+ 02 5.91E+ 02 7.90E+ 02 4.63E+ 02
Std. 6.71E+ 01 8.78E+ 01 5.30E+ 01 3.96E+ 01 1.93E+ 01 4.23E+ 01
Time 5.39E− 01 5.53E− 01 5.13E− 01 3.03E+ 00 5.60E− 01 2.64E− 01
Rank 1 3 5 4 6 2

Test p — 4.21E− 17 8.00E− 51 3.84E− 40 7.07E− 18 3.99E− 23
h — 1 1 1 1 1

F9

Mean 1.14E+ 04 2.61E+ 04 3.44E+ 04 2.66E+ 04 4.66E+ 04 1.34E+ 04
Std. 4.58E+ 03 5.24E+ 03 7.17E+ 03 4.95E+ 03 2.43E+ 03 4.83E+ 03
Time 5.35E− 01 5.45E− 01 5.06E− 01 2.98E+ 00 5.60E− 01 2.63E− 01
Rank 1 3 5 4 6 2

Test p — 2.54E− 16 1.73E− 17 1.6E− 16 7.07E− 18 0.017883
h — 1 1 1 1 1

F10

Mean 9.31E+ 03 1.03E+ 04 1.37E+ 04 1.32E+ 04 1.52E+ 04 1.38E+ 04
Std. 1.54E+ 03 6.01E+ 02 7.92E+ 02 9.00E+ 02 4.26E+ 02 3.68E+ 02
Time 6.01E− 01 6.12E− 01 5.82E− 01 3.05E+ 00 6.05E− 01 3.03E− 01
Rank 1 2 4 3 6 5

Test p — 1.52E− 05 3.13E− 17 2.54E− 16 4.45E− 18 7.97E− 18
h — 1 1 1 1 1

Average rank 1.1 3 4.67 4 5.78 2.44
Overall rank 4 6 5 4 6 5

Table 10: ,e results of the algorithms on hybrid functions in D� 50.

Function GMO WOA PSO BRO CSO ABC

F11

Mean 5.94E+ 02 2.03E+ 03 1.51E+ 04 9.54E+ 03 2.27E+ 04 2.02E+ 03
Std. 1.42E+ 02 6.84E+ 02 4.28E+ 03 1.21E+ 03 2.46E+ 03 5.01E+ 02
Time 4.77E− 01 4.86E− 01 4.49E− 01 2.95E+ 00 5.46E− 01 2.27E− 01
Rank 1 3 5 4 6 2

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18
h — 1 1 1 1 1

F12

Mean 2.18E+ 08 8.46E+ 08 1.16E+ 10 4.07E+ 10 8.87E+ 10 1.07E+ 09
Std. 1.35E+ 08 3.38E+ 08 4.24E+ 09 7.04E+ 09 8.91E+ 09 4.97E+ 08
Time 5.36E− 01 5.53E− 01 5.12E− 01 3.03E+ 00 6.03E− 01 2.61E− 01
Rank 1 2 4 5 6 3

Test p — 5.97E− 16 7.07E− 18 7.07E− 18 7.07E− 18 1.6E− 16
h — 1 1 1 1 1

F13

Mean 1.60E+ 05 3.82E+ 07 7.08E+ 09 1.36E+ 10 5.46E+ 10 4.54E+ 07
Std. 6.51E+ 04 3.32E+ 07 7.48E+ 09 3.63E+ 09 8.80E+ 09 3.06E+ 07
Time 4.71E− 01 4.79E− 01 4.39E− 01 2.93E+ 00 5.27E− 01 2.26E− 01
Rank 1 2 4 5 6 3

Test p — 7.07E− 18 7.07E− 18 1.03E− 30 5.45E− 41 7.07E− 18
h — 1 1 1 1 1

F14

Mean 8.87E+ 04 3.46E+ 06 2.26E+ 07 1.14E+ 07 9.15E+ 07 6.50E+ 05
Std. 6.95E+ 04 1.78E+ 06 1.49E+ 07 5.78E+ 06 3.62E+ 07 4.69E+ 05
Time 6.06E− 01 6.19E− 01 5.68E− 01 3.05E+ 00 6.29E− 01 2.95E− 01
Rank 1 3 5 4 6 2

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 7.06E− 18 2.17E− 15
h — 1 1 1 1 1
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,e following conclusions can be drawn from the data
presented in Tables 3, 6, 9, and 12. In the case of D� 10, the
calculation results of the GMO algorithm are better than the
comparison algorithms. In the case of D� 30, the test results
of the GMO algorithm on 6 functions are the optimal values,
and the test results on the F3, F6, and F9 functions are not
the optimal values, but the results are equally competitive. In
the case of D� 50 and D� 100, the test result of the GMO
algorithm only on the F3 function is not the optimal value.
In addition, the comprehensive ranking of the averages in
Tables 3, 6, 9, and 12 is shown in Figure 5. It can be seen that
the GMO algorithm has the best computation results.
Meanwhile, the box plot of the convergence results obtained
by 50 experiments on the F1–F10 functions (takingD� 50 as
an example) is shown in Figure 6. ,e figure shows that the
GMO algorithm maintains a leading edge in convergence
accuracy and stability.

Based on the analysis results of the above data, it can be
seen that the GMO algorithm proposed in this paper has
good exploitation ability, exploration ability, and compu-
tational stability.,is may be attributed to two points. One is
that the migration group members move randomly in a
small area near the head geese during the free foraging
process. ,e other is that the individuals in each migration
group keep moving synchronously during the migration
process, which effectively expands the scope of exploration.

3.4. Ability to Avoid Local Minima. F11–F20 are hybrid
functions, and F21–F30 are composition functions. ,ese
complex functions are obtained by the essential functions’
combination, rotation, and offset. ,e common feature of
the functions is that there are a large number of local ex-
trema in the solution space, which makes the solution space

Table 10: Continued.

Function GMO WOA PSO BRO CSO ABC

F15

Mean 4.47E+ 04 7.27E+ 06 1.57E+ 09 1.19E+ 09 6.61E+ 09 7.56E+ 05
Std. 2.76E+ 04 6.66E+ 06 1.92E+ 09 4.28E+ 08 1.33E+ 09 4.19E+ 05
Time 4.59E− 01 4.71E− 01 4.31E− 01 2.96E+ 00 5.34E− 01 2.20E− 01
Rank 1 3 5 4 6 2

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18
h — 1 1 1 1 1

F16

Mean 2.03E+ 03 3.86E+ 03 4.40E+ 03 5.19E+ 03 8.49E+ 03 2.63E+ 03
Std. 4.29E+ 02 6.87E+ 02 4.93E+ 02 6.73E+ 02 1.19E+ 03 4.15E+ 02
Time 5.12E− 01 5.28E− 01 4.87E− 01 2.98E+ 00 5.76E− 01 2.48E− 01
Rank 1 3 4 5 6 2

Test p — 5.21E− 27 2.40E− 45 7.07E− 18 4.57E− 43 1.35E− 10
h — 1 1 1 1 1

F17

Mean 1.87E+ 03 2.61E+ 03 3.57E+ 03 2.75E+ 03 1.34E+ 04 1.82E+ 03
Std. 3.36E+ 02 4.02E+ 02 3.40E+ 02 4.20E+ 02 4.46E+ 03 2.63E+ 02
Time 7.72E− 01 7.79E− 01 7.48E− 01 3.27E+ 00 7.78E− 01 3.78E− 01
Rank 2 3 5 4 6 1

Test p — 1.44E− 16 1.46E− 44 3.53E− 20 1.48E− 23 0.4231
h — 1 1 1 1 0

F18

Mean 1.03E+ 06 1.70E+ 07 3.66E+ 07 2.59E+ 07 2.18E+ 08 3.77E+ 06
Std. 1.02E+ 06 6.60E+ 06 1.30E+ 07 6.18E+ 06 6.86E+ 07 2.32E+ 06
Time 5.02E− 01 5.19E− 01 4.76E− 01 2.95E+ 00 5.75E− 01 2.43E− 01
Rank 1 3 5 4 6 2

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18 7.8E− 12
h — 1 1 1 1 1

F19

Mean 2.68E+ 05 1.69E+ 06 2.58E+ 08 4.68E+ 08 6.74E+ 09 5.38E+ 06
Std. 2.69E+ 05 2.06E+ 06 1.17E+ 08 2.18E+ 08 1.13E+ 09 5.33E+ 06
Time 2.08E+ 00 2.09E+ 00 2.04E+ 00 4.53E+ 00 1.94E+ 00 1.06E+ 00
Rank 1 2 4 5 6 3

Test p — 6.13E− 12 7.07E− 18 7.07E− 18 7.07E− 18 9.53E− 17
h — 1 1 1 1 1

F20

Mean 1.31E+ 03 1.75E+ 03 2.16E+ 03 1.64E+ 03 2.65E+ 03 1.84E+ 03
Std. 2.96E+ 02 3.31E+ 02 1.96E+ 02 3.38E+ 02 1.53E+ 02 2.20E+ 02
Time 8.16E− 01 8.30E− 01 7.95E− 01 3.32E+ 00 8.10E− 01 4.12E− 01
Rank 1 3 5 2 6 4

Test p — 6.59E− 09 7.79E− 29 1.15E− 06 2.50E− 41 1.53E− 16
h — 1 1 1 1 1

Average rank 1.1 2.7 4.6 4.2 6 2.4
Overall rank 1 3 5 4 6 2
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Table 11: ,e results of the algorithms on composition functions in D� 50.

Function GMO WOA PSO BRO CSO ABC

F21

Mean 4.78E+ 02 8.69E+ 02 8.70E+ 02 8.94E+ 02 1.19E+ 03 6.15E+ 02
Std. 5.83E+ 01 9.85E+ 01 5.51E+ 01 6.31E+ 01 5.33E+ 01 6.66E+ 01
Time 1.15E+ 00 1.17E+ 00 1.12E+ 00 3.62E+ 00 1.19E+ 00 5.85E− 01
Rank 1 3 4 5 6 2

Test p — 2.15E− 38 1.16E− 56 2.76E− 56 1.10E− 81 1.25E− 18
h — 1 1 1 1 1

F22

Mean 9.00E+ 03 1.19E+ 04 1.38E+ 04 1.37E+ 04 1.60E+ 04 4.10E+ 03
Std. 1.53E+ 03 1.00E+ 03 8.51E+ 02 8.58E+ 02 2.40E+ 02 3.34E+ 03
Time 1.29E+ 00 1.30E+ 00 1.26E+ 00 3.76E+ 00 1.17E+ 00 6.58E− 01
Rank 2 3 5 4 6 1

Test p — 1.00E− 18 3.13E− 17 6.90E− 31 2.49E− 18 1.26E− 11
h — 1 1 1 1 1

F23

Mean 7.31E+ 02 1.43E+ 03 1.50E+ 03 1.90E+ 03 2.30E+ 03 1.04E+ 03
Std. 6.55E+ 01 1.51E+ 02 1.68E+ 02 1.54E+ 02 1.31E+ 02 7.27E+ 01
Time 1.49E+ 00 1.50E+ 00 1.45E+ 00 4.01E+ 00 1.39E+ 00 7.61E− 01
Rank 1 3 4 5 6 2

Test p — 1.78E− 40 1.47E− 39 8.41E− 54 5.87E− 18 8.44E− 40
h — 1 1 1 1 1

F24

Mean 7.88E+ 02 1.42E+ 03 1.58E+ 03 2.15E+ 03 2.68E+ 03 1.05E+ 03
Std. 5.84E+ 01 1.58E+ 02 9.94E+ 01 1.38E+ 02 2.75E+ 02 6.91E+ 01
Time 1.61E+ 00 1.62E+ 00 1.55E+ 00 4.09E+ 00 1.52E+ 00 8.20E− 01
Rank 1 3 4 5 6 2

Test p — 1.06E− 35 7.07E− 18 2.97E− 61 6.72E− 18 2.50E− 37
h — 1 1 1 1 1

F25

Mean 6.85E+ 02 1.26E+ 03 6.57E+ 03 6.91E+ 03 1.37E+ 04 1.50E+ 03
Std. 5.39E+ 01 1.98E+ 02 1.99E+ 03 4.82E+ 02 6.50E+ 02 2.83E+ 02
Time 1.53E+ 00 1.54E+ 00 1.49E+ 00 3.96E+ 00 1.51E+ 00 7.74E− 01
Rank 1 2 4 5 6 3

Test p — 4.20E− 27 4.25E− 26 2.45E− 57 2.54E− 66 2.43E− 26
h — 1 1 1 1 1

F26

Mean 4.28E+ 03 1.16E+ 04 9.70E+ 03 1.15E+ 04 1.52E+ 04 6.33E+ 03
Std. 1.16E+ 03 1.53E+ 03 1.69E+ 03 6.21E+ 02 5.18E+ 02 2.60E+ 03
Time 1.84E+ 00 1.85E+ 00 1.81E+ 00 4.30E+ 00 1.70E+ 00 9.40E− 01
Rank 1 5 3 4 6 2

Test P — 7.07E− 18 1.14E− 17 7.07E− 18 7.07E− 18 0.000492
H — 1 1 1 1 1

F27

Mean 9.50E+ 02 2.09E+ 03 1.88E+ 03 3.54E+ 03 5.20E+ 03 1.37E+ 03
Std. 1.55E+ 02 3.23E+ 02 1.95E+ 02 2.85E+ 02 5.77E+ 02 2.30E+ 02
Time 2.10E+ 00 2.11E+ 00 2.04E+ 00 4.58E+ 00 2.04E+ 00 1.08E+ 00
Rank 1 4 3 5 6 2

Test p — 7.07E− 18 1.82E− 46 1.29E− 63 2.39E− 48 2.81E− 17
h — 1 1 1 1 1

F28

Mean 7.80E+ 02 1.88E+ 03 4.48E+ 03 6.09E+ 03 1.12E+ 04 2.14E+ 03
Std. 1.26E+ 02 3.13E+ 02 1.03E+ 03 3.45E+ 02 7.31E+ 02 3.32E+ 02
Time 1.88E+ 00 1.90E+ 00 1.84E+ 00 4.34E+ 00 1.82E+ 00 9.63E− 01
Rank 1 2 4 5 6 3

Test p — 6.44E− 33 3.66E− 30 1.03E− 70 7.98E− 61 2.35E− 36
h — 1 1 1 1 1

F29

Mean 2.43E+ 03 4.90E+ 03 5.53E+ 03 1.01E+ 04 4.36E+ 04 3.38E+ 03
Std. 4.26E+ 02 8.28E+ 02 1.79E+ 03 1.93E+ 03 1.78E+ 04 5.21E+ 02
Time 1.35E+ 00 1.36E+ 00 1.31E+ 00 3.86E+ 00 1.32E+ 00 6.78E− 01
Rank 1 3 4 5 6 2

Test p — 7.07E− 18 8.46E− 18 7.07E− 18 7.07E− 18 8.53E− 13
h — 1 1 1 1 1
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Table 11: Continued.

Function GMO WOA PSO BRO CSO ABC

F30

Mean 4.63E+ 07 3.68E+ 08 7.90E+ 08 1.16E+ 09 9.51E+ 09 2.42E+ 08
Std. 1.53E+ 07 8.18E+ 07 3.99E+ 08 3.11E+ 08 1.26E+ 09 5.05E+ 07
Time 2.70E+ 00 2.71E+ 00 2.66E+ 00 5.22E+ 00 2.54E+ 00 1.38E+ 00
Rank 1 3 4 5 6 2

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 7.06E− 18 7.07E− 18
h — 1 1 1 1 1

Average rank 1.1 3.1 3.9 4.8 6 2.1
Overall rank 1 3 4 5 6 2

Table 12: ,e results of the algorithms on unimodal and multimodal functions in D� 100.

Function GMO WOA PSO BRO CSO ABC

F1

Mean 1.11E+ 10 4.66E+ 10 2.08E+ 11 2.27E+ 11 2.73E+ 11 6.53E+ 10
Std. 3.00E+ 09 7.43E+ 09 2.73E+ 10 6.41E+ 09 4.77E+ 09 9.38E+ 09
Time 1.32E+ 00 1.36E+ 00 1.34E+ 00 4.25E+ 00 1.39E+ 00 6.54E− 01
Rank 1 2 4 5 6 3

Test p — 9.24E− 41 9.02E− 45 4.39E− 100 1.81E− 130 9.28E− 44
h — 1 1 1 1 1

F3

Mean 3.99E+ 05 8.64E+ 05 8.70E+ 05 3.22E+ 05 3.77E+ 05 2.57E+ 05
Std. 7.36E+ 04 5.37E+ 04 1.74E+ 05 1.77E+ 04 2.71E+ 04 2.14E+ 04
Time 1.33E+ 00 1.37E+ 00 1.35E+ 00 4.36E+ 00 1.41E+ 00 6.55E− 01
Rank 4 5 6 2 3 1

Test p — 7.07E− 18 1.17E− 26 4.01E− 09 0.191424 6.25E− 19
h — 1 1 1 0 1

F4

Mean 1.69E+ 03 8.28E+ 03 4.13E+ 04 5.71E+ 04 1.06E+ 05 1.04E+ 04
Std. 4.29E+ 02 1.37E+ 03 8.15E+ 03 4.02E+ 03 7.40E+ 03 1.68E+ 03
Time 1.33E+ 00 1.37E+ 00 1.35E+ 00 4.39E+ 00 1.41E+ 00 6.58E− 01
Rank 1 2 4 5 6 3

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18
h — 1 1 1 1 1

F5

Mean 9.49E+ 02 1.29E+ 03 1.66E+ 03 1.52E+ 03 1.69E+ 03 1.18E+ 03
Std. 1.03E+ 02 1.40E+ 02 9.75E+ 01 5.35E+ 01 2.84E+ 01 6.18E+ 01
Time 1.53E+ 00 1.58E+ 00 1.55E+ 00 4.55E+ 00 1.50E+ 00 7.68E− 01
Rank 1 3 5 4 6 2

Test p — 5.38E− 24 8.63E− 58 1.27E− 47 6.29E− 48 1.04E− 22
h — 1 1 1 1 1

F6

Mean 6.98E+ 01 9.93E+ 01 1.11E+ 02 1.07E+ 02 1.14E+ 02 8.55E+ 01
Std. 7.09E+ 00 8.33E+ 00 6.61E+ 00 4.37E+ 00 2.96E+ 00 6.97E+ 00
Time 2.15E+ 00 2.19E+ 00 2.17E+ 00 5.20E+ 00 2.26E+ 00 1.10E+ 00
Rank 1 3 5 4 6 2

Test p — 8.66E− 35 7.07E− 18 2.94E− 47 1.66E− 48 3.55E− 19
h — 1 1 1 1 1

F7

Mean 1.68E+ 03 2.76E+ 03 3.78E+ 03 2.83E+ 03 3.41E+ 03 2.11E+ 03
Std. 2.67E+ 02 1.39E+ 02 3.84E+ 02 1.34E+ 02 6.48E+ 01 1.38E+ 02
Time 1.56E+ 00 1.60E+ 00 1.57E+ 00 4.59E+ 00 1.52E+ 00 7.82E− 01
Rank 1 3 6 4 5 2

Test p — 2.73E− 38 7.26E− 50 8.50E− 40 7.07E− 18 1.56E− 15
h — 1 1 1 1 1

F8

Mean 9.74E+ 02 1.45E+ 03 1.72E+ 03 1.66E+ 03 1.87E+ 03 1.28E+ 03
Std. 1.07E+ 02 1.20E+ 02 9.64E+ 01 6.52E+ 01 2.85E+ 01 8.21E+ 01
Time 1.56E+ 00 1.60E+ 00 1.58E+ 00 4.59E+ 00 1.51E+ 00 7.83E− 01
Rank 1 3 5 4 6 2

Test p — 3.39E− 38 3.67E− 59 6.51E− 54 2.17E− 51 1.20E− 29
h — 1 1 1 1 1
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Table 12: Continued.

Function GMO WOA PSO BRO CSO ABC

F9

Mean 4.29E+ 04 6.79E+ 04 1.06E+ 05 7.42E+ 04 8.91E+ 04 6.46E+ 04
Std. 9.88E+ 03 1.70E+ 04 1.64E+ 04 1.18E+ 04 3.14E+ 03 5.49E+ 03
Time 1.57E+ 00 1.61E+ 00 1.58E+ 00 4.56E+ 00 1.53E+ 00 7.90E− 01
Rank 1 3 6 4 5 2

Test p — 9.70E− 14 7.07E− 18 1.01E− 16 1.55E− 38 4.00E− 22
h — 1 1 1 1 1

F10

Mean 2.13E+ 04 2.48E+ 04 3.09E+ 04 2.97E+ 04 3.24E+ 04 3.09E+ 04
Std. 2.88E+ 03 1.64E+ 03 1.09E+ 03 1.19E+ 03 5.27E+ 02 6.00E+ 02
Time 1.70E+ 00 1.74E+ 00 1.73E+ 00 4.72E+ 00 1.61E+ 00 8.70E− 01
Rank 1 2 5 3 6 4

Test p — 1.01E− 10 8.46E− 18 1.92E− 28 7.07E− 18 7.07E− 18
h — 1 1 1 1 1

Average rank 1.33 2.89 5.11 3.89 5.44 2.33
Overall rank 1 3 5 4 6 2

Table 13: ,e results of the algorithms on hybrid functions in D� 100.

Function GMO WOA PSO BRO CSO ABC

F11

Mean 3.46E+ 04 2.47E+ 05 2.91E+ 05 1.33E+ 05 2.19E+ 05 5.46E+ 04
Std. 1.19E+ 04 6.86E+ 04 6.59E+ 04 1.34E+ 04 3.24E+ 04 9.89E+ 03
Time 1.38E+ 00 1.42E+ 00 1.43E+ 00 4.31E+ 00 1.42E+ 00 6.82E− 01
Rank 1 5 6 3 4 2

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18 1.52E− 11
h — 1 1 1 1 1

F12

Mean 1.19E+ 09 7.02E+ 09 5.35E+ 10 1.52E+ 11 2.13E+ 11 1.17E+ 10
Std. 4.83E+ 08 1.68E+ 09 1.30E+ 10 8.02E+ 09 1.07E+ 10 2.61E+ 09
Time 1.56E+ 00 1.60E+ 00 1.59E+ 00 4.62E+ 00 1.60E+ 00 7.79E− 01
Rank 1 2 4 5 6 3

Test p — 4.65E− 31 3.78E− 32 7.07E− 18 7.07E− 18 2.73E− 33
h — 1 1 1 1 1

F13

Mean 7.06E+ 04 1.81E+ 08 7.45E+ 09 2.98E+ 10 5.08E+ 10 3.83E+ 08
Std. 2.61E+ 04 9.61E+ 07 2.38E+ 09 2.28E+ 09 3.71E+ 09 1.29E+ 08
Time 1.44E+ 00 1.48E+ 00 1.46E+ 00 4.50E+ 00 1.48E+ 00 7.17E− 01
Rank 1 2 4 5 6 3

Test p — 7.22E− 18 3.52E− 27 1.16E− 56 1.36E− 57 4.69E− 26
h — 1 1 1 1 1

F14

Mean 1.75E+ 06 9.61E+ 06 3.97E+ 07 2.50E+ 07 1.46E+ 08 6.46E+ 06
Std. 9.23E+ 05 3.00E+ 06 1.52E+ 07 8.26E+ 06 3.88E+ 07 2.43E+ 06
Time 1.66E+ 00 1.69E+ 00 1.69E+ 00 4.58E+ 00 1.60E+ 00 8.23E− 01
Rank 1 3 5 4 6 2

Test p — 4.15E− 25 6.07E− 23 7.07E− 18 1.65E− 30 3.93E− 19
h — 1 1 1 1 1

F15

Mean 7.08E+ 04 2.45E+ 07 3.93E+ 09 1.27E+ 10 2.96E+ 10 2.58E+ 07
Std. 2.83E+ 04 2.38E+ 07 1.74E+ 09 2.84E+ 09 2.05E+ 09 1.17E+ 07
Time 1.36E+ 00 1.40E+ 00 1.41E+ 00 4.29E+ 00 1.41E+ 00 6.73E− 01
Rank 1 2 4 5 6 3

Test p — 7.07E− 18 4.88E− 21 2.48E− 34 9.79E− 59 7.07E− 18
h — 1 1 1 1 1

F16

Mean 6.14E+ 03 1.57E+ 04 1.25E+ 04 1.64E+ 04 2.33E+ 04 8.37E+ 03
Std. 8.04E+ 02 2.14E+ 03 1.12E+ 03 1.66E+ 03 1.81E+ 03 1.04E+ 03
Time 1.52E+ 00 1.56E+ 00 1.54E+ 00 4.60E+ 00 1.54E+ 00 7.56E− 01
Rank 1 4 3 5 6 2

Test p — 2.57E− 09 4.88E− 21 2.48E− 34 9.79E− 59 5.64E− 16
h — 1 1 1 1 1
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Table 13: Continued.

Function GMO WOA PSO BRO CSO ABC

F17

Mean 3.99E+ 03 6.17E+ 03 1.87E+ 04 3.22E+ 05 7.03E+ 06 5.07E+ 03
Std. 5.11E+ 02 1.06E+ 03 1.28E+ 04 1.67E+ 05 2.75E+ 06 6.51E+ 02
Time 1.94E+ 00 1.97E+ 00 2.00E+ 00 4.89E+ 00 1.85E+ 00 9.74E− 01
Rank 1 3 4 5 6 2

Test p — 1.2E− 16 7.07E− 18 7.07E− 18 6.98E− 18 4.36E− 12
h — 1 1 1 1 1

F18

Mean 2.05E+ 06 9.42E+ 06 5.24E+ 07 6.44E+ 07 2.55E+ 08 7.62E+ 06
Std. 1.31E+ 06 3.41E+ 06 1.74E+ 07 2.20E+ 07 6.96E+ 07 3.09E+ 06
Time 1.52E+ 00 1.56E+ 00 1.53E+ 00 4.49E+ 00 1.56E+ 00 7.53E− 01
Rank 1 3 4 5 6 2

Test p — 3.32E− 17 7.07E− 18 7.07E− 18 7.07E− 18 3.58E− 16
h — 1 1 1 1 1

F19

Mean 1.14E+ 07 4.74E+ 07 3.33E+ 09 1.19E+ 10 2.82E+ 10 3.68E+ 07
Std. 8.24E+ 06 3.10E+ 07 1.12E+ 09 1.33E+ 09 2.70E+ 09 2.66E+ 07
Time 4.63E+ 00 4.67E+ 00 4.68E+ 00 7.62E+ 00 4.29E+ 00 2.36E+ 00
Rank 1 3 5 4 6 2

Test p — 2.52E− 13 3.96E− 26 1.21E− 48 6.03E− 52 5.05E− 12
h — 1 1 1 1 1

F20

Mean 3.76E+ 03 4.80E+ 03 6.23E+ 03 5.22E+ 03 6.38E+ 03 5.42E+ 03
Std. 5.48E+ 02 4.45E+ 02 3.40E+ 02 4.90E+ 02 2.78E+ 02 2.86E+ 02
Time 2.10E+ 00 2.14E+ 00 2.13E+ 00 5.19E+ 00 1.97E+ 00 1.08E+ 00
Rank 1 2 5 3 6 4

Test p — 2.01E− 17 7.5E− 18 1.39E− 15 8.52E− 43 5.02E− 0
h — 1 1 1 1 1

Average rank 1 2.9 4.4 4.4 5.8 2.5
Overall rank 1 3 4 4 6 2

Table 14: ,e results of the algorithms on composition functions in D� 100.

Function GMO WOA PSO BRO CSO ABC

F21

Mean 1.13E+ 03 2.08E+ 03 2.09E+ 03 2.34E+ 03 3.03E+ 03 1.54E+ 03
Std. 1.27E+ 02 1.52E+ 02 1.01E+ 02 1.14E+ 02 1.27E+ 02 1.04E+ 02
Time 4.06E+ 00 4.11E+ 00 4.08E+ 00 7.07E+ 00 4.04E+ 00 2.09E+ 00
Rank 1 3 4 5 6 2

Test p — 7.07E− 18 2.70E− 64 1.07E− 71 6.72E− 18 6.56E-32
h — 1 1 1 1 1

F22

Mean 2.37E+ 04 2.72E+ 04 3.14E+ 04 3.12E+ 04 3.43E+ 04 2.68E+ 04
Std. 2.50E+ 03 1.43E+ 03 1.37E+ 03 1.30E+ 03 5.75E+ 02 6.74E+ 03
Time 4.32E+ 00 4.35E+ 00 4.34E+ 00 7.42E+ 00 3.97E+ 00 2.24E+ 00
Rank 1 3 4 5 6 2

Test p — 3.66E− 13 6.42E− 31 7.41E− 30 7.94E− 35 0.001689
h — 1 1 1 1 1

F23

Mean 1.51E+ 03 2.80E+ 03 2.98E+ 03 4.25E+ 03 4.52E+ 03 2.25E+ 03
Std. 1.41E+ 02 2.36E+ 02 1.52E+ 02 2.55E+ 02 2.62E+ 02 1.59E+ 02
Time 5.35E+ 00 5.39E+ 00 5.34E+ 00 8.40E+ 00 5.04E+ 00 2.76E+ 00
Rank 1 3 4 5 6 2

Test p — 1.58E− 48 1.75E− 71 1.63E− 69 5.12E− 71 1.50E− 43
h — 1 1 1 1 1

F24

Mean 1.98E+ 03 3.80E+ 03 5.15E+ 03 7.70E+ 03 8.92E+ 03 3.27E+ 03
Std. 1.76E+ 02 3.91E+ 02 3.10E+ 02 3.21E+ 02 6.13E+ 02 2.66E+ 02
Time 5.64E+ 00 5.69E+ 00 5.61E+ 00 8.76E+ 00 5.37E+ 00 2.90E+ 00
Rank 1 3 4 5 6 2

Test p — 4.88E− 41 1.93E− 68 9.76E− 86 4.72E− 18 1.96E− 45
h — 1 1 1 1 1

Computational Intelligence and Neuroscience 21



Table 14: Continued.

Function GMO WOA PSO BRO CSO ABC

F25

Mean 2.18E+ 03 4.32E+ 03 2.16E+ 04 1.89E+ 04 2.73E+ 04 5.76E+ 03
Std. 2.31E+ 02 4.90E+ 02 3.56E+ 03 9.36E+ 02 1.75E+ 03 6.27E+ 02
Time 6.03E+ 00 6.07E+ 00 6.02E+ 00 9.05E+ 00 5.89E+ 00 3.10E+ 00
Rank 1 2 5 4 6 3

Test p — 1.17E− 39 1.59E− 38 8.88E− 69 4.62E− 60 1.34E− 44
h — 1 1 1 1 1

F26

Mean 1.49E+ 04 3.10E+ 04 3.48E+ 04 4.36E+ 04 5.56E+ 04 2.75E+ 04
Std. 1.76E+ 03 3.10E+ 03 4.04E+ 03 1.60E+ 03 1.47E+ 03 3.09E+ 03
Time 6.65E+ 00 6.69E+ 00 6.63E+ 00 9.73E+ 00 6.28E+ 00 3.42E+ 00
Rank 1 3 4 5 6 2

Test p — 7.07E− 18 7.07E− 18 7.07E− 18 7.07E− 18 7.5E− 18
h — 1 1 1 1 1

F27

mean 1.44E+ 03 3.04E+ 03 3.69E+ 03 8.44E+ 03 1.02E+ 04 2.47E+ 03
std. 2.21E+ 02 7.61E+ 02 8.06E+ 02 5.24E+ 02 2.45E+ 02 3.46E+ 02
Time 7.84E+ 00 7.87E+ 00 7.81E+ 00 1.09E+ 01 7.59E+ 00 4.03E+ 00
Rank 1 3 4 5 6 2

Test p — 1.95E− 17 7.97E− 18 7.07E− 18 2.76E− 19 2.78E− 17
h — 1 1 1 1 1

F28

Mean 3.78E+ 03 6.46E+ 03 2.38E+ 04 2.49E+ 04 3.31E+ 04 9.47E+ 03
Std. 9.04E+ 02 6.23E+ 02 3.18E+ 03 3.05E+ 03 1.07E+ 03 1.19E+ 03
Time 7.34E+ 00 7.36E+ 00 7.38E+ 00 1.03E+ 01 7.12E+ 00 3.76E+ 00
Rank 1 2 4 5 6 3

Test p — 8.55E− 30 5.55E− 45 7.07E− 18 4.56E− 117 4.98E− 47
h — 1 1 1 1 1

F29

Mean 7.47E+ 03 1.28E+ 04 1.89E+ 04 4.87E+ 04 7.55E+ 05 1.01E+ 04
Std. 9.15E+ 02 1.90E+ 03 5.85E+ 03 1.26E+ 04 2.73E+ 05 1.16E+ 03
Time 4.33E+ 00 4.37E+ 00 4.41E+ 00 7.33E+ 00 4.16E+ 00 2.21E+ 00
Rank 1 3 4 5 6 2

Test p — 5.82E− 28 7.07E− 18 4.38E− 28 1.39E− 24 5.84E− 22
h — 1 1 1 1 1

F30

Mean 4.77E+ 08 1.43E+ 09 7.26E+ 09 2.56E+ 10 4.83E+ 10 1.06E+ 09
Std. 1.99E+ 08 5.49E+ 08 2.28E+ 09 3.75E+ 09 2.84E+ 09 3.97E+ 08
Time 6.96E+ 00 7.01E+ 00 7.01E+ 00 9.93E+ 00 6.54E+ 00 3.57E+ 00
Rank 1 3 4 5 6 2

Test p — 4.41E− 17 2.49E− 26 7.07E− 18 7.07E− 18 4.23E− 14
h — 1 1 1 1 1

Average rank 1 2.8 4.1 4.9 6 2.2
Overall rank 1 3 4 5 6 2
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Figure 5: Average ranking of 6 algorithms on unimodal and multimodal functions.
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closer to the practical problems. ,e comprehensive ability
of the algorithm to balance exploitation and exploration
problems can be verified by these functions.

Based on the experimental data provided in Tables 4, 5, 7,
8, 10, 11, 13, and 14, the following conclusions can be drawn.

(1) In the case of D� 10, the GMO algorithm achieves
the best calculation results on 17 benchmark func-
tions, and the results only on the F17, F21, and F24
functions are not optimal. In the case of D� 30, the
GMO algorithm does not achieve the best test results
on the F15 function, but achieves the best test results
on all other benchmark functions. In the case of
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Figure 7: Average ranking on hybrid functions.
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Figure 6: Box plots of the fitness values obtained from 50 experiments for the unimodal and multimodal functions. (a) F1. (b) F3. (c) F4. (d)
F5. (e) F6. (f ) F7. (g) F8. (h) F9. (i) F10.
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Figure 8: Average ranking on composition functions.
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Figure 9: Continued.
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D� 50, the GMO algorithm achieves the best results
on 18 hybrid and composition functions, compared
with other algorithms. ,e best experimental results
of the other two functions (F17, F22) are obtained by
the ABC algorithm. In the case of D� 100, the GMO
algorithm obtains the best computational results on
all hybrid and composition functions, compared to
other algorithms.

(2) According to the average of the experimental results,
a comprehensive ranking diagram of all algorithms is
drawn. ,e comprehensive ranking of the experi-
ments on the hybrid functions and composition
functions is shown in Figures 7 and 8, respectively.
,e results show that the GMO algorithm ranks first
in the solution results of hybrid and composition
functions, proving that the GMO algorithm can
balance the contradictory problems of exploitation
and exploration. ,e computing power of the GMO
algorithm is more competitive compared to other
algorithms.

(3) ,e box plots of the convergence results of all al-
gorithms on F11–F30 functions are shown in Fig-
ure 9 (takingD� 50 as an example).,e figure shows
that the GMO algorithm has good stability on hybrid
and composition functions.

Based on the above data analysis, the GMO algorithm
has the comprehensive ability to solve complex problems of
different dimensions. It can well balance the contradiction
between exploitation and exploration in the complex so-
lution space, and the algorithm shows good stability. ,is
may be attributed to alternating between synchronous mi-
gration and free foraging processes in the GMO algorithm.

3.5. Convergence Analysis. ,e convergence information
during the algorithm solving process can be fully displayed
in the average convergence curve, which is very important to
the computational power of the analysis algorithm. Taking
D� 50 as an example, this paper gives the average conver-
gence curve of 29 functions by the GMO algorithm and 5
comparison algorithms, as shown in Figure 10. From the
overall results, the convergence results of the GMO algo-
rithm are the best on 27 functions and rank second on two

functions (F3, F22), which powerfully illustrate the advan-
tage of the GMO algorithm in terms of convergence ability.
From the convergence effect of a single function, the con-
vergence speed of the GMO algorithm is slow in the early
stage. However, the GMO algorithm converges fast in the
middle stage and quickly converges to the global optimum.
,is may be attributed to the large radius of the migration
group in the early stage of the GMO algorithm. ,e wild
geese fully explored the solution space during the syn-
chronous migration process and stored the exploration
results. With the continuous iteration of the algorithm, the
range radius of the migration group is reduced, and the
position of the head geese is continuously optimized, so that
the algorithm converges quickly until the best convergence
effect is achieved.

3.6. Analysis of Significance Test and Running Time. In this
section, the experimental results are further analyzed by
statistical methods. ,e significance test (Wilcoxon rank-
sum test or T-test) results for all data tables in Section 3.2 are
counted, as shown in Table 15. In the table, “1” indicates a
significant difference between the two samples, and “0”
means no significant difference. “+” indicates that the
performance of the GMO algorithm is better than other
algorithms, and “−” indicates that the performance of the
GMO algorithm is worse than other algorithms. ,erefore,
the number of “1+” in the results is counted, which can
strongly demonstrate the advantages of the GMO algorithm.

From the statistical results in Table 15, it can be seen that
comparing the GMO algorithm with the WOA, PSO, BRO,
and CSO algorithms, there are at least 26 calculation results
of “1+,” and comparing the GMO algorithm with the ABC
algorithm, there are at least 20 calculation results of “1+.”
Overall, the significance test results of the GMO algorithm
compared with the other 5 algorithms can reach “1+” more
than 96% of the time, which further illustrates the advan-
tages of the GMO algorithm.

According to the data tables in Section 3.2, the running
times of all algorithms are further counted, as shown in
Table 16.,e statistical results show that the average running
time of the GMO algorithm is similar to the PSO algorithm,
and it is lower than that ofWOA, BRO, and CSO algorithms.
In addition, the benchmark functions corresponding to the

GMO

Fi
tn

es
s V

al
ue

WOA PSO BRO CSO ABC

4000

2000

16000

12000

10000

6000

8000

14000

(p)

GMO

Fi
tn

es
s V

al
ue

WOA PSO BRO CSO ABC

1000

5000

4000

3000

2000

(q)

GMO

Fi
tn

es
s V

al
ue

WOA PSO BRO CSO ABC

2000

10000

12000

8000

6000

4000

(r)

Figure 9: Box plots of the fitness values obtained from 50 experiments for the hybrid and composition functions. (a) F11. (b) F12. (c) F13.
(d) F14. (e) F15. (f ) F16. (g) F17. (h) F18. (i) F19. (j) F20. (k) F21. (l) F22. (m) F23. (n) F24. (o) F25. (p) F26. (q) F27. (r) F28.

Computational Intelligence and Neuroscience 25



50
106

108

Fi
tn

es
s v

al
ue

1010

100 150 200 250
Iteration

300 350 400 450 500

GMO
WOA
PSO
BRO
CSO
ABC

(a)

50

103

104

Fi
tn

es
s v

al
ue

100 150 200 250
Iteration

300 350 400 450 500

GMO
WOA
PSO
BRO
CSO
ABC

(aa)

50

104

105

Fi
tn

es
s v

al
ue

100 150 200 250
Iteration

300 350 400 450 500

GMO
WOA
PSO
BRO
CSO
ABC

(ab)

50

108

109

1010

Fi
tn

es
s v

al
ue

100 150 200 250
Iteration

300 350 400 450 500

GMO
WOA
PSO
BRO
CSO
ABC

(ac)

50
105

106

Fi
tn

es
s v

al
ue

107

100 150 200 250
Iteration

300 350 400 450 500

GMO
WOA
PSO
BRO
CSO
ABC

(b)

50

103

104

Fi
tn

es
s v

al
ue

100 150 200 250
Iteration

300 350 400 450 500

GMO
WOA
PSO
BRO
CSO
ABC

(c)

50
300

400

500

600
700
800
900

1000

Fi
tn

es
s v

al
ue

100 150 200 250
Iteration

300 350 400 450 500

GMO
WOA
PSO
BRO
CSO
ABC

(d)

50

50

60

70

80

90
100
110
120

Fi
tn

es
s v

al
ue

100 150 200 250
Iteration

300 350 400 450 500

GMO
WOA
PSO
BRO
CSO
ABC

(e)

50

103Fi
tn

es
s v

al
ue

100 150 200 250
Iteration

300 350 400 450 500

GMO
WOA
PSO
BRO
CSO
ABC

(f)

50

400

500

600

700
800
900

1000

Fi
tn

es
s v

al
ue

100 150 200 250
Iteration

300 350 400 450 500

GMO
WOA
PSO
BRO
CSO
ABC

(g)

50

2

3

4
5
6
7
8
9

Fi
tn

es
s v

al
ue

100 150 200 250
Iteration

300 350 400 450 500

×10
4

GMO
WOA
PSO
BRO
CSO
ABC

(h)

50

1

1.1

1.2

1.3

1.4

1.5

Fi
tn

es
s v

al
ue

100 150 200 250
Iteration

300 350 400 450 500

×10
4

GMO
WOA
PSO
BRO
CSO
ABC

(i)

50

103

104

105

Fi
tn

es
s v

al
ue

100 150 200 250
Iteration

300 350 400 450 500

GMO
WOA
PSO
BRO
CSO
ABC

(j)

50

109

1010

1011

Fi
tn

es
s v

al
ue

100 150 200 250
Iteration

300 350 400 450 500

GMO
WOA
PSO
BRO
CSO
ABC

(k)

50

106

108

1010

Fi
tn

es
s v

al
ue

100 150 200 250
Iteration

300 350 400 450 500

GMO
WOA
PSO
BRO
CSO
ABC

(l)

Figure 10: Continued.
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minimum, median, and maximum running time of all al-
gorithms are almost the same. It shows that the GMO al-
gorithm has lower time complexity and reliable stability.

3.7.ComparativeAnalysis. In this paper,D� 30 is taken as an
example, and the experimental results of GMO are compared
with the data in the literature [44, 45, 59, 60], as shown in
Table 17. It can be seen from the table that the calculation

results of the GMO algorithm are significantly better than
those of the FSA and KABC algorithms. ,e performance of
the GMO algorithm is similar to that of the FDB-SOS al-
gorithm on unimodal and combinatorial functions, but the
GMO algorithm performs better on multimodal functions.
Compared with the FDBSFS algorithm, the calculation results
of the GMO algorithm are in the same order of magnitude in
most functions.,is shows that the GMO algorithm is equally
competitive with the improved algorithm.

Table 15: ,e statistical results of significance test.

Algorithm D
Result numbers

h� 1+ h� 1− h� 0+ h� 0−

GMO and WOA

10 27 0 1 1
30 29 0 0 0
50 29 0 0 0
100 29 0 0 0

GMO and PSO

10 29 0 0 0
30 29 0 0 0
50 29 0 0 0
100 29 0 0 0

GMO and BRO

10 26 2 0 1
30 29 0 0 0
50 29 0 0 0
100 28 1 0 0

GMO and CSO

10 29 0 0 0
30 29 0 0 0
50 29 0 0 0
100 28 0 0 1

GMO and ABC

10 20 2 7 0
30 27 0 0 2
50 26 2 0 1
100 28 1 0 0

Proportion (%) 96.2 1.4 1.4 1.0

Table 16: ,e statistical results of running time.

D Index
GMO WOA PSO BRO CSO ABC

Time F(i) Time F(i) Time F(i) Time F(i) Time F(i) Time F(i)

10

Best 0.182 F3 0.189 F1 1.148 F5 2.234 F1 0.275 F1 0.89 F3
Median 0.216 F9 0.220 F15 0.180 F10 2.286 F12 0.302 F9 0.11 F15
Worse 0.593 F30 0.595 F30 0.552 F30 2.662 F30 0.643 F30 0.299 F30
Mean 0.258 — 0.263 — 0.224 — 2.258 — 0.224 — 0.128 —

30

Best 0.308 F15 0.321 F15 0.276 F15 2.622 F12 0.367 F15 0.139 F15
Median 0.559 F14 0.581 F10 0.472 F14 3.785 F10 0.741 F18 0.341 F6
Worse 1.666 F19 1.690 F19 1.582 F19 5.018 F19 1.766 F19 0.970 F19
Mean 0.718 — 0.741 — 0.642 — 3.731 — 0.878 — 0.431 —

50

Best 0.412 F4 0.421 F4 0.385 F1 2.876 F4 0.490 F4 0.197 F4
Median 0.601 F10 0.612 F10 0.567 F14 3.051 F10 0.605 F10 0.295 F14
Worse 2.699 F30 2.710 F30 2.659 F30 5.224 F30 2.536 F30 1.381 F30
Mean 0.966 — 0.979 — 0.935 — 3.357 — 0.967 — 0.486 —

100

Best 1.323 F1 1.360 F1 1.337 F1 4.251 F1 1.395 F1 0.654 F1
Median 1.655 F14 1.686 F14 1.693 F14 4.624 F12 1.599 F14 0.823 F14
Worse 7.84 F27 7.868 F27 7.810 F27 10.914 F27 7.589 F27 4.028 F27
Mean 3.057 — 3.093 — 3.077 — 5.975 — 2.961 — 1.557 —
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4. GMO Algorithm for Engineering
Design Problems

In order to verify the applicability of the GMO algorithm on
engineering design problems, this section seeks five classical
structure design problems, and the GMO algorithm is used to
solve the problems. In the experimental process, the design
variable is used as the individual’s location information in the
optimization algorithm, and the calculation model of each
problem is used as the objective function. First, the structure
design problems are introduced in detail. ,e problems
mainly include three-bar truss design problem, pressure
vessel design problem, tension/compression spring design
problem, gear train design problem, and cantilever beam
design problem. ,en, to prove the superiority of the GMO
algorithm in solving engineering design problems, the ex-
perimental results of the GMO algorithm are compared with
the corresponding results of several other algorithms. ,e
results of other algorithms come from literature reports,
including KABC [60], DMMFO [61], GOA [62], LSA [63],
ALO [38], CS [31], GSA [20], IAPSO [64], CPSO [65],
MABGA [66], MBA [67], SOS [68], and CBO [69] algorithms.
Finally, all experimental results are analyzed and discussed.

4.1. :ree-Bar Truss Design Problem. ,ree-bar truss design
is a classical optimization problem in mechanics [3, 38], and
its mechanism schematic is shown in Figure 11.,e problem

aims to minimize the volume of a three-bar truss structure,
while satisfying the constraints of stress and loading force.
,e cross-sectional area (x1,x2) of the connecting rod is used
as the optimization variable, and the optimization objective
function is as follows.

f1(x) � 2
�
2

√
x1 + x2( ∗ l, (6)

where l is the spacing between the connecting rods,
l� 100 cm, and x1,x2 ∈ [0, 1].

In the process of optimizing variables, the design vari-
ables needs to meet the constraints of structural stress,
material deflection, and buckling. ,e three constraint
formulas are as follows.

Table 17: Comparison with some studies in the literature.

Function
GMO FDB-SOS FDBSFS FSA [59] KABC

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.
F1 2.96E+ 04 2.13E+ 04 1.19E+ 07 5.64E+ 06 1.31E+ 07 1.61E+ 07 5.70E+ 03 7.68E+ 03 8.99E+ 03 1.42E+ 04
F3 2.52E+ 04 9.19E+ 03 1.86E+ 04 7.31E+ 03 2.21E+ 04 6.09E+ 03 8.59E+ 04 9.54E+ 03 1.09E+ 05 2.30E+ 04
F4 1.17E+ 02 1.96E+ 01 1.96E+ 02 5.32E+ 01 1.26E+ 02 3.62E+ 01 1.18E+ 02 9.77E+ 01 4.80E+ 02 3.50E+ 01
F5 1.21E+ 02 3.37E+ 01 2.09E+ 01 8.40E− 02 1.08E+ 02 2.45E+ 01 6.83E+ 02 3.84E+ 01 5.61E+ 02 1.13E+ 01
F6 3.07E+ 01 9.70E+ 00 3.92E+ 01 4.91E+ 00 1.52E+ 00 8.07E− 01 6.43E+ 02 1.35E-02 6.00E+ 02 1.57E− 02
F7 1.79E+ 02 3.81E+ 01 4.84E− 01 2.17E− 01 1.65E+ 02 3.05E+ 01 8.09E+ 02 2.34E+ 01 8.02E+ 02 1.88E+ 01
F8 1.22E+ 02 3.09E+ 01 2.37E+ 02 3.11E+ 01 9.65E+ 01 2.10E+ 01 6.72E+ 02 3.61E+ 01 8.57E+ 02 1.56E+ 01
F9 1.36E+ 03 7.41E+ 02 2.98E+ 02 7.62E+ 01 2.70E+ 02 2.54E+ 02 1.03E+ 01 9.71E+ 02 1.05E+ 03 1.50E+ 02
F10 4.56E+ 03 8.56E+ 02 6.44E+ 03 7.90E+ 02 4.05E+ 03 6.12E+ 02 4.90E+ 03 6.81E+ 02 7.62E+ 03 1.27E+ 03
F11 2.14E+ 02 6.42E+ 01 9.14E+ 03 1.46E+ 03 1.40E+ 02 4.41E+ 01 1.16E+ 03 5.22E+ 02 1.16E+ 03 2.88E+ 01
F12 9.13E+ 06 7.86E+ 06 1.58E+ 00 3.45E− 01 1.90E+ 06 1.96E+ 06 6.61E+ 04 9.59E+ 05 2.72E+ 06 2.17E+ 06
F13 1.68E+ 05 7.11E+ 04 6.21E− 01 1.04E− 01 2.01E+ 04 2.57E+ 04 1.46E+ 04 1.02E+ 03 2.01E+ 04 2.21E+ 04
F14 1.27E+ 03 2.68E+ 03 3.99E− 01 1.44E− 01 4.19E+ 03 7.55E+ 03 4.54E+ 04 6.21E+ 04 3.67E+ 04 2.20E+ 04
F15 4.74E+ 04 3.30E+ 04 8.34E+ 01 2.20E+ 01 4.31E+ 03 3.54E+ 03 1.84E+ 04 8.19E+ 04 7.35E+ 03 7.82E+ 03
F16 1.07E+ 03 2.98E+ 02 2.12E+ 01 5.78E− 01 8.90E+ 02 2.72E+ 02 2.64E+ 03 1.47E+ 02 2.39E+ 03 2.55E+ 02
F17 4.00E+ 02 1.94E+ 02 1.72E+ 06 1.28E+ 06 2.69E+ 02 1.63E+ 02 2.56E+ 03 5.48E+ 02 1.95E+ 03 1.25E+ 02
F18 1.09E+ 05 6.86E+ 04 2.59E+ 03 1.68E+ 03 9.71E+ 04 6.31E+ 04 5.20E+ 05 9.74E+ 05 6.19E+ 05 5.62E+ 05
F19 1.77E+ 05 2.08E+ 05 6.48E+ 01 3.26E+ 01 3.35E+ 03 4.82E+ 03 5.22E+ 03 1.29E+ 04 1.17E+ 04 1.23E+ 04
F20 5.09E+ 02 1.31E+ 02 1.52E+ 04 5.33E+ 03 3.36E+ 02 1.47E+ 02 2.59E+ 03 1.07E+ 02 2.34E+ 03 1.52E+ 02
F21 3.31E+ 02 2.92E+ 01 6.75E+ 05 3.74E+ 05 2.80E+ 02 4.55E+ 01 2.21E+ 03 1.19E+ 02 2.36E+ 03 1.42E+ 01
F22 2.33E+ 02 8.90E+ 02 1.19E+ 03 3.86E+ 02 1.14E+ 02 3.47E+ 00 3.10E+ 03 7.25E+ 03 8.38E+ 03 2.68E+ 03
F23 4.77E+ 02 4.03E+ 01 2.00E+ 02 0.00E+ 00 4.60E+ 02 2.44E+ 01 2.59E+ 03 1.12E+ 02 2.72E+ 03 2.44E+ 01
F24 5.34E+ 02 3.28E+ 01 2.00E+ 02 1.01E− 04 5.20E+ 02 2.53E+ 01 2.97E+ 03 2.66E+ 02 2.91E+ 03 1.79E+ 01
F25 4.28E+ 02 2.59E+ 01 2.00E+ 02 0.00E+ 00 4.14E+ 02 1.70E+ 01 2.78E+ 03 9.32E+ 00 2.89E+ 03 9.44E+ 00
F26 1.71E+ 03 1.14E+ 03 1.81E+ 02 3.94E+ 01 1.63E+ 03 8.74E+ 02 3.14E+ 03 8.55E+ 02 3.99E+ 03 3.54E+ 02
F27 5.65E+ 02 2.54E+ 01 1.37E+ 03 1.24E+ 02 5.54E+ 02 1.98E+ 01 2.95E+ 03 9.86E+ 01 3.20E+ 03 1.65E-04
F28 5.04E+ 02 2.78E+ 01 2.36E+ 03 8.66E+ 02 4.78E+ 02 3.63E+ 01 3.36E+ 03 5.14E+ 01 3.30E+ 03 4.73E+ 00
F29 1.34E+ 03 2.13E+ 02 2.28E+ 07 1.94E+ 07 8.10E+ 02 1.35E+ 02 3.61E+ 03 3.51E+ 01 3.57E+ 03 1.88E+ 02
F30 1.89E+ 06 1.46E+ 06 1.52E+ 04 6.56E+ 03 6.33E+ 04 8.39E+ 04 3.40E+ 03 4.13E+ 02 6.43E+ 03 2.84E+ 03
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Figure 11: Schematic of three-bar truss mechanism.
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(7)

where P � 2KN/cm2, σ � 2KN/cm2.
According to equations (6) and (7), the GMO algorithm

is used to solve the three-bar truss problem, and the results
are shown in Table 18. Compared with the results of other
algorithms, the fitness values of GMO, ALO, and GSA al-
gorithms are optimal, and the solution results satisfy the
constraints. It shows that the GMO algorithm is feasible to
solve the three-bar truss design problem.

4.2. Pressure Vessel Design Problem. Kannan and Kramer
[70] proposed the pressure vessel design problem, which is
to minimize the manufacturing cost under the constraints.
,e structure schematic is shown in Figure 12. ,is problem
consists mainly of 4 design variables, x1 is the shell thickness
of the pressure vessel, x2 is the thickness of the head, x3 is the
inner ring radius of the pressure vessel, and x4 is the length
of the cylindrical section.,e calculation model is as follows.

f2(x) � 0.6224x1x3x4 + 1.7781x2x3

+ 3.1661x
2
1x4 + 19.84x

2
1x3,

(8)

where x1, x2 ∈ [0, 100] and x3, x4 ∈ [10, 200], in which x1,

and x2 are integer multiples of 0.0625. According to the
design specification, the constraint formulas are as follows.

g
2
1(x) � −x1 + 0.01930x3, ≤ 0,

g
2
2(x) � −x2 + 0.00954x3, ≤ 0,

g
2
3(x) � −πx

2
3x4 −

4
3
πx

3
3 + 1960000, ≤ 0,

g
2
4(x) � −x4 − 240, ≤ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

,e calculation results of the GMO algorithm and the
other 9 algorithms for the pressure vessel design problem are
shown in Table 19. ,e table shows that the results of the
KABC, DMMOF, MABGA, and MBA algorithms do not
meet the constraints of the variables, which is not desirable.
However, the proposed GMO algorithm finds a design with
the optimal value identical to LSA, CS, GSA, LAPSO, and
CPSO algorithms and satisfies the variable constraints.
,erefore, the algorithm is also applicable to solve the
pressure vessel design problem.

4.3. Tension/Compression Spring Design Problem. It is an
interesting problem to achieve tension/compression spring
weight minimization, while satisfying specification and
theoretical constraints. ,is problem was described by
Belegundu and Arora [71]. ,e structure is shown in
Figure 13.

,e calculate model of tension/compression spring
weight is as follows.

f3(x) � x3 + 2( x2x
2
1, (10)

where x1, x2, x3 are the design variables, which are wire
diameter, coil diameter, and number of coils, respectively.
,e value ranges of the design variables are 0.05≤x1 ≤ 2,
0.25≤x2 ≤ 1.3, 2≤ x3 ≤ 15, respectively. At the same time,

Table 18: Comparison results for the three-bar truss design problem.

Algorithm x1 x2 Optimum cost

GMO 0.7886775 0.4082415 263.8958434
KABC 0.7886 0.4084 263.8959
DMMFO 0.788687421 0.408213541 263.8958435
GOA 0.7888976 0.4076196 263.895881
ALO 0.788662816000317 0.408283133832901 263.8958434
CS 0.78867 0.40902 263.9716
GSA 0.7886751284 0.4082483080 263.8958434
MBA 0.7885650 0.4085597 263.8958522
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Figure 12: Schematic of pressure vessel structure.
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the problem also needs to meet the design theories, such as
minimum deflection and shear stress.,e specific constraint
formulas are as follows.

g
3
1(x) � 1 −

x
3
2x3

71.785x
4
1

, ≤ 0,

g
3
2(x) �

4x
2
2 − x1x2

12.566 x2x
3
1 − x

4
1 

, ≤ 0,

g
3
3(x) � 1 −

140.45x1

x
2
2x3

, ≤ 0,

g
3
4(x) �

x1 + x2

1.5
− 1, ≤ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

,e calculated results of the GMO algorithm for solving
the tension/compression spring design problem are shown
in Table 20 and compared with the results of 7 other al-
gorithms. It can be seen that the calculated results of all
variables meet the requirements of the constraints, and the
calculation results of the GMO algorithm are very
competitive.

4.4. Gear Train Design Problem. ,e gear train design is a
significant engineering design problem in mechanical
transmission [72, 73]. ,e process designs the number of
teeth on each gear in the transmission system according to a
reasonable transmission ratio. ,e gear train is shown in
Figure 14. ,e design variables for this problem include the
number of teeth of the 4 gears (x1, x2, x3, x4). ,e math-
ematical model is as follows.

Table 19: Comparison results for pressure vessel design problem.

Algorithm x1 x2 x3 x4 Optimum cost

GMO 0.8125 0.4375 42.0984456 176.6365958 6059.7143
KABC 0.8745 0.4323 45.3106 140.5353 5951.593
DMMFO 0.7430 0.3842 40.319619 200.0000 6032.5484
LSA 0.8125 0.43750 42.097398 176.65405 6059.9463
CS 0.8125 0.4375 42.0984456 176.6365958 6059.7143
GSA 0.8125 0.437500 42.09844539 176.63659855 6059.7144
LAPSO 0.8125 0.4375 42.0984 176.6366 6059.7143
CPSO 0.8125 0.437500 42.091266 176.746500 6061.0777
MABGA 0.7917 0.3924 41.0218 190.4508 5912.2
MBA 0.7802 0.3856 40.4292 198.4964 5889.3216

x
1

x
2

Figure 13: Schematic of the tension/compression spring.

Table 20: Comparison results for the tension/compression spring
design problem.

Algorithm x1 x2 x3
Optimum

cost

GMO 0.0514617 0.3512730 11.6154626 0.0126662
KABC 0.0556 0.4575 7.1480 0.013017
LSA 0.05027598 0.32367954 13.52540953 0.012720452
CPSO 0.051728 0.357644 11.244543 0.0126747
MBA 0.051656 0.355940 11.344665 0.012665
CBO 0.051894 0.3616740 11.007846 0.0126697

n
f
(x

4
)

n
a
(x

2
)

n
b
(x

3
)n

d
(x

1
)

D B

A

F

Figure 14: Transmission diagram of the gear train.

Table 21: Comparison result of the gear train design problem.

Algorithm x1 x2 x3 x4 Optimum cost

GMO 43 19 16 49 2.700857E− 12
KABC 50.4259 22.3987 16.7082 51.4394 0
ALO 43 19 16 49 2.7009E− 12
IAPSO 43 19 16 49 2.700857E− 12
MBA 43 19 16 49 2.700857E− 12

12345

x
i

x
i

Figure 15: Schematic of the cantilever beam structure.
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f4(x) �
1

6.931
−

x3x2

x1x4
 

2

(12)

,e gear train design problem has a unique solution, and
the elements of the solution vector must be integers. ,e
optimization results of the GMO algorithm for the gear train
design problem are the same as those of the ALO, IAPSO,
and MBA algorithms, as shown in Table 21. It can be seen
that the result of the GMO algorithm is optimal and feasible
for the problem.

4.5. Cantilever Beam Design Problem. ,e cantilever beam
design problem is a common engineering problem [74], and
its structural diagram is shown in Figure 15. ,e cantilever
beam is mainly composed of 5 sections of square steel with
equal wall thickness, and the design variables include the
section side length of the 5 sections of square steel (x1, x2, x3,
x4,x5). ,e design objective is the minimum weight of the
cantilever beam. ,e calculation model is established in
equations (13), and equation (14) is the constraint formula.

f5(x) � 0.0624 x1 + x2 + x3 + x4 + x5( ,

g
5
(x) �

61
x
3
1

+
37
x
3
2

+
19
x
3
3

+
7
x
3
4

+
1
x
3
5

.
(13)

,e experimental results of the GMO algorithm to
optimize the cantilever beam design problem are shown in
Table 22. ,e table shows that the calculation results of all
algorithms satisfy the constraints and the optimal fitness
values are very close. It is proven that the GMO algorithm
obtains satisfactory results.

,e comparison results of the above five engineering
design problems show that the GMO algorithm has good
applicability in practical engineering problems in complex
unknown spaces and has achieved satisfactory calculation
results. It proves that the GMO algorithm is a promising
meta-heuristic optimization algorithm.

5. GMO Algorithm for Inverse
Kinematics Solution

,is paper takes the 7R 6DOF robot as an example to study
the inverse kinematics solution of robot by GMO algorithm.
,e 7R 6DOF robot is composed of 7 rotary joints, which are
driven by 6 motors. ,e robot structure is shown in Fig-
ure 16. It has the characteristics of a hollow wrist and flexible
movement, which can be used for work in narrow spaces and
complex paths. However, the problem of no analytical so-
lution for inverse kinematics limits the field application.
,erefore, it may be only feasible to study numerical
methods for solving the inverse kinematics of the robot.

5.1. KinematicModeling of the 7R 6DOFRobot. In this paper,
theD-H parameter method is used to establish the kinematic
model of the 7R 6DOF robot. ,e forward kinematics model
is as follows.

0
7T �

0
1T∙

1
2T∙

2
3T∙

3
4T∙

4
5T∙

5
6T∙

6
7T, (14)

where 0
7T is the pose matrix of the end effector and i−1

i T is the
coordinate transformation matrix between adjacent links of
the robot. ,e specific transformation matrix is as follows.

i−1
i T �

cθi −cαisθi sαisθi aicθi

sθi cαicθi sαicθi aisθi

0 sαi cαi di

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

where ai, di, αi, and θi represent the link length, link offset,
link torsion angle, and joint angle, respectively. Among
them, ai, di, αi are the fixed parameters of the rotary joint
robot, and θi is the control parameter. ,is paper takes the
IRB5400 robot with a 7R 6DOF structure as an example, and
its D-H parameters are shown in Table 23 [75].

According to the input robot joint angles, the pose
matrix of the robot end position is solved through the

Table 22: Comparison results for the cantilever beam design problem.

Algorithm x1 x2 x3 x4 x5 Optimum cost

GMO 6.0148311 5.3106005 4.4960591 3.5010936 2.1510803 1.3399567
GOA 6.011674 5.31297 4.48307 3.50279 2.16333 1.33996
ALO 6.01812 5.31142 4.48836 3.49751 2.158329 1.33995
CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999
SOS 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996

2-Axis

5-Axis

7-Axis

6-Axis

1-Axis

3-Axis

4-Axis

Figure 16: ,e structure schematic of 7R 6DOF robot.
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forward kinematics formula and D-H parameters. ,e pose
matrix of the robot end position is as follows.

0
7T �

nx ox

ny oy

αx px

αy py

nz oz

0 0

αz pz

0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
n o α p

0 0 0 1
 , (16)

where nx, ny, nz, ox,oy, oz, αx, αy, αz represent the rotational
elements of the pose matrix and px, py, pz represent the
elements of position vector.

In order to realize the step-by-step optimization of the
GMO algorithm in the inverse kinematics solution process,
the objective function is designed in equation (17), which is
the difference between the expected value and the actual
value of the pose matrix.

f(x) � sum n − n
∧
 + o − o

∧
 + α − α∧


 + c p − p

∧
  (17)

where n∧, o∧, α∧, p∧ represent the rotational and position
vectors of the expected pose matrix and c is the adjustment
factor.

5.2. Experiment and Result Analysis. According to the for-
ward kinematics model and objective function of the 7R
6DOF robot, the inverse kinematics experiment of the GMO
algorithm takes the joint angle of the robot as the optimi-
zation variable and the desired end pose as the optimization
goal. ,en, to prove the GMO algorithm’s computational
performance in solving the inverse kinematics of the robot,
the experimental results of the GMO algorithm are com-
pared with theWOA, PSO, BRO, CSO, and ABC algorithms.
In the experiment, two pose matrices of the robot end
position are randomly selected as the test points, and the
pose matrix is shown in Table 24. ,e population size
N� 100, the maximum number T� 500, and the adjustment
factor c � 1.

During the experiment, in order to avoid the influence of
accidental results, 50 independent experiments are con-
ducted at each test point, and the best, worst, mean, and
standard deviation of each algorithm’s convergence results
are recorded. ,e results are shown in Table 25. It can be
seen from the table that the average value of the GMO al-
gorithm has reached 1.0E− 11 on two test points, which is at
least 5 orders of magnitude better than other algorithms.,e

Table 23: D-H parameters of IRB5400 robot.

No ai (meters) di (meters) αi (°) θi (°)

1 0 0.66 0 θ1
2 0.3 0 −90 θ2
3 1.2 0 0 θ3
4 0.186 0.14075 −90 θ4
5 0 0.07935 35 −θ6
6 0 0.07935 −70 θ6
7 0 0.082501 35 θ7

Table 24: Experimental test points.

Test points Robot end pose matrix (07T)

Point 1

−0.17931106457 −0.08651059806
−0.27296478268 −0.95263994316

−0.97998135622 +1.31356028780
+0.13404240413 +1.09112643623

−0.94516547204 +0.29153568412
0.00000000000 0.00000000000

+0.14720453576 −0.09275569962
0.00000000000 +1.00000000000

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Point 2

+0.85283591032 −0.06535445456
−0.01552116481 −0.99487122809

−0.51807306950 +1.72688939209
+0.09995165315 +0.98941272857

−0.52194827667 −0.07720126160
0.00000000000 0.00000000000

−0.84947628671 +0.97503807418
0.00000000000 +1.00000000000

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 25: Experimental results of 6 algorithms on two test points.

GMO WOA PSO BRO CSO ABC

Point 1

Mean 1.68E− 11 8.6–E− 02 2.8–E− 04 2.48–E− 02 3.0–E− 01 8.4–E− 05
Best 6.1–E− 16 1.7–E− 02 5.5–E− 05 4.2–E− 03 1.2–E− 01 3.4–E− 05
Worst 7.7–E− 10 2.7–E− 01 1.3–E− 03 1.0–E− 01 5.6–E− 01 1.7–E− 04
Std. 1.1–E− 10 5.6–E− 02 2.1–E− 04 1.9–E− 02 8.7–E− 02 3.5–E− 05

Point 2

Mean 7.1–E− 12 6.2–E− 02 8.7–E− 05 2.72–E− 03 2.2–E− 01 6.3–E− 05
Best 6.0–E− 16 3.8–E− 03 3.5–E− 05 1.6–E− 05 3.5–E− 02 1.5–E− 05
Worst 3.1–E− 10 2.5–E− 01 1.8–E− 04 1.2–E− 02 5.0–E− 01 1.2–E− 04
Std. 4.5–E− 11 5.6–E− 02 3.3–E− 05 2.6–E− 03 1.0–E− 01 2.2–E− 05
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best, worst, and standard deviation values are also better
than those of the other 5 algorithms. ,e average conver-
gence curve is shown in Figure 17. Its shows that the GMO
algorithm has fast convergence speed and high accuracy.

However, the effectiveness of solving the inverse kine-
matics problem can be more directly verified by the inde-
pendent errors of each element in the pose matrix. As shown
in Table 26, the independent errors of each element in the
pose matrix are calculated. It can be seen that the error of
each element in the solution result by the GMO algorithm is

less than 1.0E− 15, which is higher than the minimum error
in other algorithms. ,e experimental results verify the
feasibility of the GMO algorithm to solve the inverse ki-
nematics problem.

In recent years, scholars have made a lot of valuable
explorations to solve the inverse kinematics of robots
through intelligent methods. ,is paper counted the ex-
perimental results in the literature and compared them with
the solution results of the GMO algorithm, as shown in
Table 27. It can be seen that scholars have achieved more
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Figure 17: Average convergence curve of 6 algorithms. (a) Test point 1. (b) Test point 2.

Table 26: Errors of elements in the pose matrix.

Test points Index GMO WOA PSO BRO CSO ABC

Point 1

n − n∧
2.78E− 17
3.33E− 16
2.22E− 16

−8.21E− 04
3.41E− 04
5.78E− 05

−1.93E− 05
4.74E− 06
2.29E− 06

2.59E− 04
−1.14E− 04
−1.63E− 05

2.23E− 02
−4.01E− 03
−2.80E− 03

6.93E− 06
−2.13E− 06
−7.00E− 07

o − o∧
1.11E− 16
2.22E− 160

−3.42E− 03
4.04E− 04
2.85E− 04

1.18E− 05
−2.26EE− 06
−3.89E− 06

−7.94E− 04
1.33E− 04
1.98E− 04

−3.14 E− 02
4.89 E− 03
4.90E− 03

−6.31E− 06
1.23E− 06
2.14E− 06

α − α∧
3.33E− 16
1.39E− 16
1.67E− 16

4.59E− 04
3.52E− 03

−1.94E− 04

2.49E− 06
−6.40E− 06
2.24E− 05

2.30E− 05
7.11E− 04

−4.98E− 04

−5.57E− 04
2.42E− 02
3.11E− 02

−7.11E− 07
4.39E− 06

−8.73E− 06

p − p∧
0
0
0

−6.79E− 03
7.55E− 03

−6.86E− 03

−1.76E− 05
6.43E− 06

−1.19E− 05

−2.09E− 04
2.61E− 03
1.51E− 03

4.57E− 02
4.22E− 02
1.40E− 02

−9.92E− 06
1.56E− 05

−8.23E− 06

Point 2

n − n∧
−2.22E− 16
9.37E− 17
1.11E− 16

1.48 E− 04
1.00E− 03
2.13E− 04

5.74E− 06
−5.29E− 06
9.53E− 06

−2.44E− 06
−5.94E− 06
−3.82E− 06

3.50 E− 03
5.60 E− 03
5.70 E− 03

1.01E− 06
3.41E− 06
1.53E− 06

o − o∧
6.94E− 17
1.11E− 16

−2.50E− 16

4.98E− 04
5.95E− 05

−1.20E− 03

−3.59E− 06
7.33E− 08
2.09E− 06

−3.49E− 06
−2.75E− 07
6.50E− 06

7.00 E− 03
−4.03 E− 04
−4.01 E− 04

8.67E− 07
3.66E− 07

−5.45E− 06

α − α∧
−2.22E− 16
−2.08E− 16

0

1.81E− 04
7.42E− 04

−2.29E− 05

9.90E− 06
−9.15E− 08
−6.05E− 06

−3.58E− 06
−3.66E− 06
1.76E− 06

5.00 E− 03
−3.40 E− 03
−3.40 E− 03

1.54E− 06
4.17E− 06

−4.47E− 07

p − p∧
0

1.11E− 16
0

1.40E− 03
−2.27E− 04
1.40E− 03

−1.27E− 06
−6.25E− 06
1.70E− 05

−3.06E− 06
−6.02E− 07
−3.00E− 06

8.10 E− 03
6.60 E− 03

−1.98 E− 02

9.85E− 07
−1.70E− 06
7.00E− 06
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research results on the problem of solving the robot end
position. However, there are fewer studies on more complex
pose problems, and the results are less accurate. ,e GMO
algorithm is applied to solve the inverse kinematic pose
problem of a complex 7R 6DOF robot. ,e average solution
result of 50 experiments is 1.68E− 11, which shows that the
GMO algorithm has a high solution accuracy and excellent
applicability.

6. Conclusion

In this paper, the wild geese migration optimization (GMO)
algorithm is inspired by the behavior of wild geese migra-
tion. ,e mathematical optimization model of GMO algo-
rithm is designed by simulating the special migration
process of the wild geese, which has the advantages of simple
structure and few parameters. In order to verify the opti-
mization ability of the GMO algorithm, the 29 stable
benchmark functions from CEC2017 are used for 50 ex-
periments, respectively. ,e primary performance evalua-
tion indicators are the mean, standard deviation,
significance test results, and the algorithm’s running time.
,e test results of the GMO algorithm andWOA, PSO, BRO,
CSO, and ABC algorithms are statistically analyzed. It can be
seen that the GMO algorithm has apparent advantages in
computing performance and can better seek a balance be-
tween exploitation and exploration. It is a sufficiently
competitive optimization algorithm.

In addition, the GMO algorithm is used to solve five
engineering optimization problems, and the solution results
are compared with the results provided in other studies. ,e
comparison results show that the GMO algorithm obtains
excellent solution results, and the experimental results meet
the constraints of engineering optimization problems. ,is
shows that the GMO algorithm has satisfactory computing
performance and universality in the face of unknown space
and complex practical problems. Finally, the GMO algo-
rithm is applied to the inverse kinematic pose problem of the
7R 6DOF robot. ,e experimental results show that the
average solution accuracy of the end pose of the GMO al-
gorithm reaches 1.0E− 11, which is at least 5 orders of

magnitude higher than that of the comparison algorithm.
,e GMO algorithm provides a new solution for the inverse
kinematics of the complex 7R 6DOF robot, showing that the
algorithm has strong practicability and good development
prospects.

In future work, we will study the independent optimi-
zation mechanism of the migration groups in the GMO
algorithm and the multiobjective optimization problem of
the GMO algorithm and explore more valuable practical
application cases.
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Table 27: Comparison results of inverse kinematics solutions.

Algorithms Results Robot IK problem
GMO algorithm in this paper 1.68E− 11 7R 6DOF Pose error
Modified ABC [76] 6.31E− 13 6DOF Position error
ANN [77] 0.001665 5 DOF Position error
Quantum PSO [78] 2.775E− 17 7 DOF Position error
Global-local best IW PSO [79] 3,64E− 03 7 DOF Position error
Firefly [80] 6.53E− 05 7 DOF Position error
Improves PSO [81] 4.00E− 04 6 DOF Position error
CMA-ES [82] 0.1441 5 DOF Position error
BRO [25] 1.8914E− 07 6 DOF Position error
NIKA [83] 1.02E− 04 6 DOF Position error
KABC [60] 1.62E− 04 5 DOF Position error
NMFOA [84] 2.151E− 3 7 DOF Pose error
IW-PSO [85] 6.655E− 05 2 DOF Position error
SRM-PSO [86] 4.863E− 14 7 DOF Position error
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