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With the increasing complexity of users’ needs and increasing uncertainty of a single web service in big data environment, service
composition becomes more andmore difcult. In order to improve the solution accuracy and computing speed of the constrained
optimization model, several improvements are raised on ant colony optimization (ACO) and its calculation strategy. We in-
troduce beetle antenna search (BAS) strategy to avoid the danger of falling into local optimization, and a service composition
method based on fusing beetle-ant colony optimization algorithm (Be-ACO) is proposed. Te model frst generates search
subspace for ant colony through beetle antenna search strategy and optimization service set by traversing subspace based on ant
colony algorithm. Continuously rely on beetle antenna search strategy to generate the next search subspace in global scope for ant
colony to traverse and converge to the global optimal solution fnally. Te experimental results show that compared with the
traditional optimization method, the proposed method improves combination optimization convergence performance and
solution accuracy greatly.

1. Introduction

In order to solve the interoperability between network ap-
plications better and improve efciency of data sharing and
storage, web service composition technology came into
being. Due to limited functions provided by individual web
service, people began to fexibly and quickly combine
existing independent web service platforms to achieve data
information mutual exchange and integration to meet the
needs of diferent users. With the increasing complexity of
users’ needs and increasing uncertainty of individual web
service in big data environment, service composition be-
comes more and more difcult. Te requirements of web
service composition methods and technologies are be-
coming higher and higher. Te existing web services com-
position optimization methods mainly include traditional
optimizationmethods and intelligent optimizationmethods,
two categories. Traditional optimization methods have
disadvantages such as poor scalability and low fexibility, and

they have been replaced by intelligent optimization algo-
rithms gradually. Te intelligent optimization algorithms
have more obvious advantages than traditional optimization
algorithms. First, there is no restriction of central control,
and individual failure will not afect the solution of whole
problem, which ensures that the algorithm has stronger
robustness. Second, they are parallel distributed algorithm
model and can make full use of multiprocessors. Tird, they
have no special requirements for continuity of problem
defnition and have strong expansibility. Fourth, the
implementation of algorithm is simple. Intelligent optimi-
zation algorithms can make use of task resources to fnd
service combination optimal solution better and improve
algorithm overall performance and resource utilization, for
example, common intelligent algorithms include genetic
algorithm, ant colony algorithm, simulated annealing al-
gorithm, chaos algorithm, freworks algorithms, and clus-
tering algorithms [1–13]. Wu et al. [1] proposed an
improved genetic algorithm variable neighborhood search to
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solve hybrid fow shop scheduling problem, and enhance local
search ability of genetic algorithm. Previous studies [2, 3]
combined chaos idea and genetic algorithm to realize pop-
ulation selection and optimization, which improves efciency
of service composition. Lu and Kou [5] proposed a genetic
algorithm based on ε-dominance multiobjective is used to
solve web service composition optimization problem. Te
calculation result is a set of compromised Pareto optimal
solution, providing users with a variety of options. Zhang et al.
[6] improved the particle swarm optimization algorithm and
its calculation method and introduced a diversifcation
mechanism to avoid the danger of algorithm falling into local
optimum. In the study by Zhang et al. [7], a fast and reliable
fault-tolerance approach is proposed for service composition
in integration networks, that is, an improved particle swarm
optimization algorithm is used to implement service com-
pensation when the permanent faults of service arise. Xing
et al. [8] proposed a novel mashup service clustering approach
integrating K-means and Agnes algorithms (MSCA). Com-
pared with the traditional mashup service clustering approach
based on the K-means algorithm, the average precision rate
and recall rate of MSCA improved. Huang et al. [9] greatly
improved the ability of web service search engines retrieve
services by using the K-means algorithm. In the study by
Zhang et al. [11], the improved freworks algorithm was frst
applied to discrete services combination optimization prob-
lem, and Gaussian mutation probability and elite selection
strategy were introduced in the modeling process. Zhang and
Yang [13] presented Dynamic QoS Data-driven Reliable Web
Service Selection (DQoSRSS), which uses mean and standard
deviation to portray the beneft and risk of QoS and to im-
prove the accuracy of QoS description. Due to the interference
of various uncertain factors such as the complexity, openness,
dynamics, and volatility of cloud service loads in Internet
environment, a large number of cloud services with the same
functionality have appeared on cloud platform. However,
most of their quality of service (QoS) is in an uneven state,
which cannot meet the needs of users. In order to handle the
QoS-aware cloud service composition problem conveniently
and efciently, there are many representative cluster coop-
erative intelligent algorithms proposed by scholars such as the
ant colony optimization (ACO) system of simulate real ant
colony collaboration to fnd optimized path, genetic algo-
rithm (GA) of mimic biological genetic evolution, particle
swarm optimization (PSO) algorithm based on the bird
cluster foraging activity model, and so on. Liu et al. [14]
proposed a double-elite coevolution algorithm based on three
diferent high ftness individuals as the evolutionary core and
adopted diferent evolutionary strategies to improve algo-
rithm search ability. Xia et al. [15] proposed a global opti-
mization algorithm for dynamic updating multiple
pheromones. Compared with the original ant colony algo-
rithm and genetic algorithm, it has better performance in
solving service composition optimization problems. Liu et al.
[16] proposed a multiobjective service dynamic selection
optimization algorithm based on global QoS constraints, and
the optimal noninferior solution set can be obtained by
optimizing multiple objective functions. Wong et al. [17]
proposed a bee colony optimization algorithm based on

frequency allocation, which has been improved in experiment
of solving traveling salesman problem. A hybrid ant colony
genetic algorithm is proposed in the study by Ciornei and
Kyriakides [18], which proves the feasibility of this algorithm
in dealing with global complex optimization problems. Al-
though the above research methods can solve service com-
position problem to a certain extent, they all have their own
shortcomings. For example, the genetic algorithm has poor
local search capabilities and unstable solution results; ant
colony optimization pheromone accumulation takes a long
time at algorithm initial stage and easy to fall into local
optimum. Xie et al. [19] proposed a new swarm intelligence
algorithm (social cognitive optimization, SCO). Although
SCO can be used to deal with the optimization problems of
complex continuous functions, it cannot be used to solve
discrete service composition problems. In addition to above
problem, the optimization accuracy of the ant colony algo-
rithm is higher than that of the BAS algorithm [20]. Te BAS
algorithm has fewer adjustment parameters and smaller
amount of calculation than some traditional heuristic algo-
rithms, and it has strong global optimization ability. We
proposed a service composition optimization method that
integrates the beetle-ant colony algorithm in this paper. We
fuse BAS algorithm idea to reduce the difculty of parameter
selection in the ant colony algorithm, which overcomes ant
colony algorithm to fall into local optimum and obtains the
optimal service combination. We verify the feasibility and
accuracy of the Be-ACO algorithm through experiments
fnally.

2. Related Work

2.1. Service Composition. Service composition mainly in-
cludes service request, service calculation, service compo-
sition, feedback result of request be processed, generating log
fle and reporting to cloud service platform, and reporting
confrmation. Te common cloud computing service model
is shown in Figure 1.

Generally speaking, cloud service composition divided
into following several processes: frst, user sends out service
request and transmits it to cloud through edge node server;
second, cloud control server divides request task into several
subtasks and assigns subtasks to diferent cloud node servers;
third, cloud node server returns result to cloud central server
after accomplishing assigned subtask; lastly, cloud central
server summarizes processing results of all node servers and
feeds back it from cloud server to user through edge node
server.

In this paper, the nonfunctional Qo S attribute indicators
are used to evaluate service composition quality. We eval-
uate and study Qo S attribute indicators from the aspects of
service time T, service cost C, availability Av, reliability Rel,
and reputation Rep. Te expression is shown in the fol-
lowing formula:

Qo S � T(S), C(S), Av(S),Rel(S),Rep(S)􏼈 􏼉. (1)

Te specifc QoS attribute defnition, quantization ex-
pression, and normalization processing are based on
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reference [20], and we assuming that P is the path of service
composition, then

Qo S(P) � T(P), C(P), Av(P), Rel(P), Rep(P)􏼈 􏼉 � FSeq(T, C, Av, Rel, Rep) + FSel(T, C, Av, Rel, Rep)

+ FPar(T, C, Av, Rel, Rep) + FCyc(T, C, Av, Rel, Rep).
(2)

Te values of FSeq, FSel, FPar, and FCyc depend on
structure of actual execution path of edge service, and FSeq +

FSel + FPar + FCyc � 1. We use relevant technologies to

convert parallel, selection, and circular structures into serial
structures to form service composition model expression, as
shown in the following formula:

Qo S(P) � Min φ1T(P) + φ2C(P) +
φ3

Av(P)
+

φ4
Rel(P)

+
φ5

Rep(P)
􏼠 􏼡,

φ1 + φ2 + φ3 + φ4 + φ5 � 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

2.2. Ant Colony Optimization Algorithm. Ant colony opti-
mization was proposed in 1991 by Italian scholar Marco
Dorigo. It is an intelligent optimization algorithm that
imitates ants fnding path process. According to scholars’
long-term research on ants’ living habits, ants can always
fnd a feasible shortest path from the foraging place to ant
nest without any external help, and they can search for a new
shortest path based on the constantly changing surrounding
environment. Te ability of ants to search for the best path is
achieved by ants emitting volatile secretion pheromone on
the path during the foraging process. Te pheromone
concentration will weaken gradually with the passage of
time. Te ants will choose a path according to pheromone
concentration of each path when they look for path, and the
greater the pheromone concentration on path, the more
likely the ant will choose the path [21–23].

Te ant will select the next hop path according to the size
of pheromone concentration on each path. Te following
formula represents the state transition probability of the k-th
ant from node i to node j at time t.

P
k
ij(t) �

τij(t)􏽨 􏽩
α∙ ηij(t)􏽨 􏽩

β

􏽐
s∈allowedk

τis(t)􏼂 􏼃
α∙ ηis(t)􏼂 􏼃

β , j ∈ allowedk,

0, others.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

In formula (4), τij(t) and ηij(t), respectively, represent
the residual pheromone and heuristic information, allowedk
represent the nodes that are allowed to select by the k-th ant
at time t, α represents the information heuristic factor, and β
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Figure 1: Cloud computing service model.

Computational Intelligence and Neuroscience 3



represents the expected heuristic factor. Te bigger the
information heuristic factor is, the faster the algorithm
converges, but it is easy to converge prematurely and fall
into local optimal solution and the global optimal solution
cannot be obtained. However, the bigger the expected
heuristic factor is, the more likely the algorithm is to
achieve the global optimization, but the convergence speed
of algorithm will decrease. Terefore, the convergence
speed of the algorithm and global optimization contradict
each other.

In order to prevent too much pheromone remaining on
the path from making heuristic information inefective,
update remaining pheromones on the path after M ants go
from starting point to end point. Te amount of pheromone
at time t+ n can be updated by the following formulas.

τij(t + n) � (1 − ρ)∙τij(t) + Δτij(t), (5)

Δτij(t) � 􏽘
M

k

∆τk
ij(t). (6)

In formula (5), ρ represents the volatilization coefcient
of pheromone on the path; it is to prevent the pheromone
from accumulating continuously and make the algorithm
fall into local optimization and miss the better solution. Te
value range of ρ is [0, 1), and 1 − ρ represents the pheromone
residual coefcient on path. Δτij(t) represents the increment
of pheromone on path (i, j) after each search is completed,
and Δτij(t) � 0 at the beginning. ∆τk

ij(t) represents the
change of pheromone on path (i, j) after the k-th ant search is
complete. Marco Dorigo proposed three diferent phero-
mone update models based on diferent pheromone update
methods. Tey are the ant cycle model, ant quantity model,
and ant density model.

With research on the ant colony algorithm, scholars
found that the ant colony algorithm can also be used in
factory scheduling, multitask matching, image recogni-
tion, and other issues. Te efect of all these applications
mainly depends on selection of ant colony algorithm
parameters. Te parameters of algorithm performance
mainly include information heuristic factor, expected
heuristic factor, pheromone volatilization coefcient (or
pheromone residue coefcient), pheromone strength, and
the number of ant, and the setting of these parameters
determines algorithm convergence speed, robustness, and
efectiveness. Compared with other intelligent optimiza-
tion algorithms [24–27] such as the wolf colony algorithm,
genetic algorithm, and diferential evolution algorithm,
the ant colony algorithm has advantages as follows: frst,
the bottom layer of the ant colony algorithm is a parallel
search algorithm actually. In search process, each ant is
independent of each other, searches forward in parallel,
and works together through residual pheromone. Second,
the main feature of the ant colony algorithm is positive
feedback. Te pheromone left by ants on path can guide
following ants to choose the path, which can avoid ants
selecting the next hop node blindly. Tird, the ant colony
algorithm has strong universality, will not cause it to fail
to converge due to a little error, and can be well combined

with other intelligent optimization algorithms to get
better performance. Te ant colony algorithm has a
certain development in diferent felds based on above
advantages, but it also has its own shortcomings. On the
one hand, the ant colony algorithm is easy to fall into local
optimization and miss the global optimal solution when
algorithm converges too fast. On the other hand, if
randomness of ant colony algorithm is increased, the
global optimal solution can be improved, but this will lead
to algorithm convergence speed slowly at same time. Last,
the ant colony algorithm does not have a complete
mathematical analysis and theoretical foundation, and
most of the parameters are derived from a large number of
experimental summaries [28].

2.3. Beetle Antenna Search Algorithm. As a novel stochastic
optimization algorithm similar to PSO, the beetle antenna
search (BAS) algorithm is proposed in 2017 by Jiang and
Li [29], which has a more concise search strategy based on
beetles’ foraging behavior. When the beetle is foraging, if
the odor received by left antennae is stronger than that on
the right, the beetle moves to left; otherwise, it moves to
right. Based on this simple principle, beetle can fnd food
easily. We transform beetle antenna search into an op-
timization problem in n-dimensional space, where xl is
the left antenna coordinate, xr is the right antenna co-
ordinate, and dt is the distance from the center of mass to
antenna at time t. Since the beetle’s head orientation is
arbitrary, a standardized random vector can be generated
from beetle’s right antenna pointing to its left antenna.
Te standardized random vector is shown in the following
formula.

b
→

�
rands(n, 1)

‖rands(n, 1)‖
. (7)

Te generated random vector (beetle’s right antenna
pointing to its left antenna) is shown in the following for-
mula, where d0 is the constant distance and ηd is the at-
tenuation coefcient of search distance.

xl − xr � 2 ηdd
t− 1

+ d0􏼐 􏼑∗ b
→

. (8)

At tmoment, if position of beetle is xt, the coordinates of
left and right antenna are shown in the following formula.

xl
t

� x
t

+ ηdd
t− 1

+ d0􏼐 􏼑∗ b,
→

xr
t

� x
t

− ηdd
t− 1

+ d0􏼐 􏼑∗ b
→

.

(9)

If odor function is f (x), the value of left and right an-
tenna are shown in the following formula.

fleft � f xl( 􏼁, fright � f xr( 􏼁 . (10)

At t − 1 moment, if fleft >fright, then beetle moving left,
and beetle position in next moment is xt � xt− 1 + step∗ b

→
;

if fleft <fright, then beetle moving right, and beetle position
in next moment is xt � xt− 1 − step∗ b

→
. According to this

rule, we use formula (11) to express beetle moving position
in next moment.
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x
t

� x
t− 1

− step∗ b
→
∗ sign fleft − fright􏼐 􏼑, (11)

step � δt− 1
, δt

� ηδδ
t− 1 . (12)

So, δt represents the t-th iteration step size, sign(x)

represents the symbol function, and ηδ is the attenuation
coefcient of update step.

Te BAS algorithm has the characteristics of small
computation, fast convergence speed, and global opti-
mization high efciency. However, the local optimal so-
lution cannot be solved efectively, so it is possible to
further optimize the global optimal solution. Based on the
above research and analysis, we introduce the BAS al-
gorithm on the basis of ACO algorithm and propose a
service composition method based on fusing beetle-ant
colony optimization algorithm (i.e., Be-ACO) in this
paper. Te Be-ACO algorithm fully integrates the char-
acteristics of BAS algorithm’s global optimization ef-
ciency and ant colony algorithm accurate solution,
thereby improving algorithm time efciency and solution
accuracy.

3. Service Composition Optimization Method
Based on Be-ACO Algorithm

3.1.Be-ACOAlgorithmPrinciple. During the search process
of the Be-ACO algorithm, the search mechanism of
beetle’s movement direction and position update is the
same as that described in Section 2.3, and ant colony
search subspace is determined by direction and position of
beetle’s next hop. As shown in Figure 2, the beetle current
position is B, and the positions of previous hop and next
hop are A and C, respectively; then, ant colony next search
subspace is the number of nodes covered by circumcircle
area of points A, B, and C, which is recorded as Saco. Saco
does not include node C and nodes have been searched,
and Saco � 4 can be seen from Figure 2. Ten determine the
search target of ant colony in search subspace, that is, the
node closest to the global target in set of Saco is ant colony
search target position in subspace and denoted as Pbest. By
analogy, until the search is completed, an ant colony
searched optimal path is the global optimal solution
generally.

Assume that the beetle’s position coordinates are
A(xt−1, yt−1), B(xt, yt), and C(xt+1, yt+1) at moment t − 1, t,
and t + 1, respectively. At t + 1 moment, the ant colony
search range is a circular area with O(xO, yO) as the center
and R as the radius; there is no need to search the whole
space and make the search efciency improved greatly.
According to Cramer’s rule, the coordinates of circle center

O are obtained, as shown in formula (13), and the radius R is
updated by formula (14).

xO �
C1 ∗B2( 􏼁 − C2 ∗B1( 􏼁􏼂 􏼃

A1 ∗B2( 􏼁 − A2 ∗B1( 􏼁􏼂 􏼃
,

yO �
A1 ∗C2( 􏼁 − A2 ∗C1( 􏼁􏼂 􏼃

A1 ∗B2( 􏼁 − A2 ∗B1( 􏼁􏼂 􏼃
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(13)

R � |OA| � |OB| � |OC| �

�������������������

xt − xO( 􏼁
2

+ yt − yO( 􏼁
2

􏽱

, (14)

A1, B1, C1, A2, B2, andC2 in formula (13) satisfy the following
equation.

A1 � 2∗ xt − xt−1( 􏼁,

B1 � 2∗ yt − yt−1( 􏼁,

C1 � xt
2

+ yt
2

− xt− 1
2

− yt− 1
2
,

A2 � 2∗ xt+1 − xt( 􏼁,

B2 � 2∗ yt+1 − yt( 􏼁,

C2 � xt+1
2

+ yt+1
2

− xt
2

− yt
2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

3.2. Be-ACOAlgorithmProcess. Te Be-ACO algorithm fow
is shown in Figure 3, and the Be-ACO algorithm main
process includes following steps:

① Initialize the algorithm parameters and beetle ob-
jective function f(x), the beetle movement step � δt− 1

(δ is constant), and t� 0;
② Initialize the starting search position of subspace, set

the starting coordinate as (x0, y0), and beetle posi-
tion coordinate is (xt, yt) at t moment;

③ Ten t� t+ 1, according to the principle of BAS al-
gorithm in Section 2.3, update the position coordi-
nate of beetle, if t< 2, return step③; otherwise, go to
step ④;

④ Te current position of the beetle is Pbeetle and f(xt-1)
< f(xt), calculate and obtain ant colony search area
according to formulas (13) and (14), update the
subset size of Saco and the target position Pbest that the
ant colony will reach in subsearch space; go to next
step;

⑤ According to ACO algorithm principle, ant colony
completes search and reaches the optimal position
Pbest in subspace; if Pbest is consistent with beetle
position Pbeetle, execute step ⑥; otherwise, return
step ③;
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⑥ Search is completed, output the global optimal
solution.

4. Experiment and Analysis

4.1. Simulation Experiment Environment and Parameter
Setting. Te type of experimental computer is HP880G1,

ACPI ×64-based PC; processor is Intel(R) Core(TM) i5-
4590CPU @ 3.30GHz 3.30GHz; random access memory
(RAM) is 4.0GB; system type is win 8 64-bit operation
system; simulation software is MATLAB-R2018b.

Target model:

F Xi( 􏼁 � Qo S(P) � Min φ1T Pi( 􏼁 + φ2C Pi( 􏼁 +
φ3

Av Pi( 􏼁
+

φ4
Rel Pi( 􏼁

+
φ5

Rep Pi( 􏼁
􏼠 􏼡. (16)

Parameter setting: φ1 � 0.2, φ2 � 0.2, φ3 � 0.2, φ4 � 0.2,
and φ5 � 0.2.

In our simulation experiment in this paper, ACO al-
gorithm group scale 0–300 and maximum iterations 300,
due to 1< α< 5, 1< β< 5, 0.3< ρ< 0.99, 1<Q< 10000 [30],
so we set α� 2.5, β� 2.5, ρ� 0.5, Q� 5000; PSO algorithm
group scale 0–300, maximum iterations 300, inertia weight
0.6, and learning factor 1; BAS algorithm maximum itera-
tions 300, and adjust the initial value of beetle whiskers
length, step size, and attenuation coefcient appropriately
according to the range of optimization function variables;
Be-ACO algorithm group scale 0–300 and maximum iter-
ations 300 and other parameters settings refer to relevant
algorithms.

4.2. Experiment Results Analysis. In this experiment, in
order to prove the performance superiority of the Be-ACO
algorithm by our proposal, ACO, PSO, and BAS are se-
lected to compare the convergence, solution accuracy, and
time performance of algorithms, respectively, in this
paper.

4.2.1. Convergence Performance and Solution Accuracy.
Under the same conditions, the convergence comparison
between the ACO algorithm and PSO algorithm is shown in
Figure 4. It can be seen from fgure that the target value tends
to be stable with the increase of iteration times, the con-
vergence speed of ACO algorithm is faster than PSO al-
gorithm, and we can also see the target solution accuracy of
the ACO algorithm is higher than that of the PSO algorithm
from the convergence curve. As we can see from Figure 5
that the convergence speed of the BAS algorithm is much
higher than that of the ACO algorithm, but the solution
accuracy of the BAS algorithm is much lower than that of the
ACO algorithm.

In order to improve the performance of our algorithm,
the design of our Be-ACO algorithm draws on advantage of
the fast convergence speed of the BAS algorithm. Te
experimental results in Figure 6 show our Be-ACO algo-
rithm’s convergence performance (CP) is higher than that
of the ACO algorithm under same iterations, that is,
CPBe−ACO >CPACO, Be-ACO algorithm inherits the fast
convergence speed of the BAS algorithm, and it uses fewer

iterations than that of ACO when they obtain same target
value. Te experimental results in Figure 7 show BAS al-
gorithm’s convergence performance is higher than our Be-
ACO algorithm under the number of iterations is small, but
as the number of iterations increases, the solved target
value of the Be-ACO algorithm is smaller than BAS, and the
solving accuracy (SA) is higher than that of the BAS al-
gorithm, that is, SABe−ACO > SABAS. Te Be-ACO algorithm
inherits the solving accuracy of the BAS algorithm and it
obtains smaller target value than that of BAS.

Trough the experimental comparison between Fig-
ures 6 and 7, the Be-ACO proposed in this paper inherits
the characteristics of BAS fast convergence speed and ACO
high solving accuracy, and it overcomes two algorithms’
shortcomings, respectively. In order to further verify
performance of the algorithm, we also compared it with the
PSO algorithm with good convergence and solution ac-
curacy relatively. Te results are shown in Figure 8. Te
experimental results show that when the number of iter-
ations is the same, the target value solved by the Be-ACO
algorithm is smaller, that is, the solution accuracy is higher
than that of the PSO algorithm. Under the same target
value, the Be-ACO algorithm has fewer iteration times, that
is, the convergence speed is faster than that of the PSO
algorithm.

In order to more intuitively present the performance of
the Be-ACO, BAS, ACO, and PSO algorithms in terms of
convergence and solution accuracy, the change trends of
several algorithms are shown in Figure 9. Te results show
that the Be-ACO algorithm has obvious advantages over the
three algorithms in terms of convergence and solution
accuracy.

4.2.2. Time Performance Analysis. Te Be-ACO algorithm
proposed in this paper, ACO algorithm, and PSO algorithm
have a common feature that algorithm convergence speed
slows down with the increase of group scale, and the ex-
perimental results are shown in Figure 10. Te time cost of
ACO and PSO algorithm is greatly afected by group scale,
and solution rate decreases signifcantly, while we proposed
the Be-ACO algorithm is less afected by group scale rela-
tively, and the solution rate is signifcantly better than that of
ACO and PSO algorithm.
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Figure 4: Convergence between ACO and PSO.
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Figure 5: Convergence between ACO and BAS.
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Figure 6: Convergence between Be-ACO and ACO.
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Figure 7: Convergence between Be-ACO and BAS.
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Figure 8: Convergence between Be-ACO and PSO.
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Figure 9: Convergence trend graph of several algorithms.
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5. Conclusion

Te existing web services composition optimization
methods mainly include traditional optimization methods
and intelligent optimization methods. Traditional optimi-
zation methods have been replaced by intelligent optimi-
zation algorithms gradually because of poor scalability and
low fexibility. Te intelligent optimization algorithms have
more obvious advantages than traditional optimization al-
gorithms, and it can make use of task resources to fnd
service combination optimal solution better and improving
algorithm overall performance and resource utilization. Due
to the interference of various uncertain factors such as the
complexity, openness, dynamics, and volatility of cloud
service loads in Internet environment, a large number of
cloud services with the same functionality have appeared on
cloud platform. However, most of their quality of service is
in an uneven state, which cannot meet the needs of users.
Based on above problems, this paper proposes a service
composition method based on the beetle-ant colony opti-
mization algorithm. Te Be-ACO algorithm combines ad-
vantages of BAS and ACO optimization algorithm, while it
avoids limitations of their own algorithms. BAS does not
consider the connection among groups, but ACO focuses on
group infuence and ignoring individual infuence in the
search process. Te Be-ACO algorithm proposed by us not
only has fast global optimization convergence speed but also
has good local optimization efect. In solving the optimal
solution of service composition, our method has obvious
advantages over BAS, ACO, and PSO intelligent optimi-
zation algorithms and methods in terms of convergence and
solution accuracy. In future research work, we will optimize
this method by combining artifcial intelligence, study its
optimization method for home robots to handle complex
tasks in smart homes [31], and improve the computational
efciency of neural networks; we will also combine con-
volution neural networks (CNNs) that were applied in the
feld of medical imaging diagnosis [32] and explore the work
to improve the training speed and optimization of initiali-
zation parameters to ensure the accuracy of medical
diagnosis.
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