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In order to address the application of genetic optimization algorithms to �nancial investment portfolio issues, the optimal
allocation rate must be high and the risk is low.�is paper uses quadratic programming algorithms and genetic algorithms as well
as quadratic programming algorithms, Matlab planning solutions for genetic algorithms, and genetic algorithm toolboxes to solve
Markowitz’s mean variance model. �e mathematical model for introducing sparse portfolio strategies uses the decomposition
method of penalty functions as an algorithm for solving nonconvex sparse optimization strategies to solve �nancial portfolio
problems. �e merging speed of the quadratic programming algorithm is fast, and the merging speed depends on the selection of
the initial value. �e genetic algorithm performs very well in global searches, but local search capabilities are insu�cient and the
pace of integration into the next stage is slow. To solve this, using a genetic algorithm toolbox is quick and easy. �e results of the
experiments show that the �nal solution of the decomposition method of the �ne function is consistent with the solution of the
integrity of the genetic algorithm. 67% of the total funds will be spent on local car reserves and 33% on wine reserves. When data
scales are small, quadratic programming algorithms and genetic algorithms can provide e�ective portfolio feedback, and the
method of breaking down penalty functions to ensure the reliability and e�ectiveness of algorithm combinations is widely used in
sparse �nancial portfolio issues.

1. Introduction

In recent years, China’s venture capital industry has devel-
oped rapidly, and the total amounts of venture capital en-
terprises (funds) and venture capital management funds are
increasing. �e increasing number and variety of securities
investment not only greatly enrich the products of the �-
nancial market, but also become a backbone force in the
�nancial market and play an important role in the stable
development of the market. Securities investment is an im-
portant part of the operation of the securities market, and
securities portfolio theory is one of the most important se-
curities investment theories. �erefore, it is of great signi�-
cance to establish an appropriate model and choose an
e�ective algorithm to solve the portfolio problem. In order to
avoid complex mathematical programming, many scholars
use intelligent algorithms to solve portfolio problems [1].

Market investment has both the possibility of pro�t and
the risk of loss. Portfolio is a commonly used way to avoid
risk. �e reasonable goal of building a portfolio should be to
achieve the highest return portfolio as far as possible under a
certain risk level, that is, an e�ective portfolio. In order to
build a portfolio that can achieve the most e�ective goal,
Markowitz model provides a clear training proc-
ess—optimization. Optimization process is widely used in
the process of asset allocation. Since the main asset types
available are limited in the actual process, the process is
operable [2].

Optimization models and algorithms are playing an
increasingly important role in �nancial decision making.
From asset allocation to risk management and option
pricing to modeling, many �nancial mathematical problems
can be e�ectively addressed through modern optimization
methods. Optimization methods are a branch of applied
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mathematics. Mathematically, this means finding the min-
imum or maximum value of the objective function under
certain conditions [3]. A typical optimization problem is to
achieve the goal optimization by allocating different pro-
portions of resources, such as cost minimization, profit
maximization, and so on. Optimization method is a
mathematical method to solve optimization problems.
Traditional optimization methods mainly include branch
definition method, background segmentation method, dy-
namic programming method, and other accurate algo-
rithms. (e absolute optimal solution can be obtained by
accurate algorithm, but because of its large calculation scale,
it is only suitable for solving small-scale problems and is not
suitable for application in complex engineering problems
with high-dimensional, multiobjective, and multi-
constraints. On the contrary, heuristic algorithm refers to
the method of searching according to empirical rules when
solving problems, rather than solving according to deter-
mined steps. After the 1950s, scholars applied heuristic
algorithms to practical complex engineering problems and
obtained good feedback, which opened the research wave of
heuristic algorithms [4].

(e purpose of this article is to understand the effects of
various methods of optimization in theory and practice.
(erefore, we have chosen the M-V model, which is the
simplest square error model.

M-V model, as shown in the following formulas:

min
x

σ2 �
1
2
x

T
Vx, (1)

s
r

T
x≥ μ,

e
T
x � 1,

L≤x≤U,

⎧⎪⎪⎨

⎪⎪⎩
(2)

where V represents the covariance matrix of each financial
asset (in this case, stock), (r1, r2, . . . , rn)T represents the rate
of return of each stock, and μ � (μ1, μ2, . . . , μn)T represents
the investment return expected by investors.

In the portfolio theory, the average value of the return on
assets is used as the measurement index of the expected
return on assets, and the variance of the return on assets is
used as the risk measurement index of the portfolio [5].

2. Related Works

At present, domestic and foreign scholars have more and
more research on portfolio optimization. It can be seen from
the Citation Report retrieved from the relevant database that
there is more and more literature research on portfolio
optimization. (e publication and citation of portfolio
optimization literature are shown in Figure 1.

After Kumar et al. put forward the portfolio theory, there
have been many new portfolio developments: multiperiod
portfolio, portfolio under different risk measures, portfolio
based on transaction cost and liquidity, portfolio theory
based on nonutility maximization, etc. [6, 7]. In the de-
velopment history of portfolio theory, Ahn’s work is the
most prominent. By introducing a single factor model

describing securities returns, it greatly simplifies the model
of Markowitz theory and provides convenience for the
successful application of Markowitz theory in the actual
investment process. However, the theory is not perfect.(en
Wang et al. proposed a multifactor model, which we call
arbitrage pricing model [8]. Setiawan and Rosadi made an
in-depth study on the securities price in the capital market
by using statistical methods from both theoretical and
empirical aspects in 1965 and put forward the efficient
market theory [9]. (e subsequent portfolio development is
based on some of the above theories. In China, the research
on portfolio can be traced back to the 1990s [10]. Of course,
many valuable documents have emerged. Jiang et al. pro-
posed a portfolio selection theory that strictly stated the
operability under uncertain conditions: mean variance
method, and conducted systematic, in-depth, and fruitful
research. (is theory led to the revolution of stock invest-
ment theory. Since Markowitz put forward the mean vari-
ance model, most portfolio models are based on the two
parameters of mean and variance. With the development of
portfolio theory, new risk measurement methods continue
to emerge. Takahashi and Takahashi proposed the concept of
semiabsolute deviation (Semia. D) and improved the mean
variance model on this basis [11]. By analyzing the com-
pound price of 50 representative stocks in Shanghai, it is
concluded that the portfolio based on M-Semiad model is
better than that in M-V model at each expected rate of
return, and the effective portfolio satisfies the separation
theorem of two funds. Finding the optimal solution of
portfolio problem actually belongs to a kind of portfolio
optimization problem, which usually comes down to qua-
dratic programming model. (e solving process is very
cumbersome and requires high mathematical foundation, so
many scholars use intelligent algorithms to solve it. Nahvi
et al. applied binary coded genetic algorithm (GA) to solve
this problem, which has the advantages of simplicity and
intuition, but the efficiency is not high enough (Figure 2)
[12]. Bakar and Rosbi applied integer coded adaptive genetic
algorithm (AGA) to solve the problem, which improved the
solution efficiency [13]. In 1964, Cheng and Zhong estab-
lished the capital asset pricing model (CAPM) based on
Markowitz. CAPM “accurately described the return and risk
of assets” and studied the relationship between the expected
return of assets and risky assets in the securities market and
the formation of equilibrium price [14]. Pakistan proposed
to solve the problem of portfolio optimization through
symbiotic multiswarm PSO [15]. Mu and Xiong proposed
portfolio analysis under background risk based on mean
variance model [16]. Lin et al. put forward an adaptive
portfolio model under new assets [17].

Based on the basic idea of ABC algorithm, this paper
solves the cardinality constrained mean variance model
(CCMV model) in portfolio problem. In the process of
solving, a FABC algorithm which can always get the feasible
solution is designed for CCMV model. (en the renewal
equation of FABC is improved, and the IFABC algorithm
with faster convergence speed is obtained. Finally, the
IFABC algorithm is further improved based on quadratic
programming, and a better QFABC algorithm is proposed.
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3. Method

3.1. Quadratic Programming (QP). Quadratic programming
problem with inequality constraints, as shown in the fol-
lowing formulas:

min q(x) �
1
2
x

T
Hx + f

T
x, (3)

s.t.
Ax≤ b,

Aeq · x � beq,

lb≤x≤ ub,

⎛⎜⎜⎜⎜⎜⎜⎝ (4)

H, A, and Aeq are matrices,H is a symmetric matrix of order
n, and f, b, beq, lb, ub, and x are column vectors. h is a
positive semidefinite matrix with a convex quadratic pro-
gram or a nonconvex program. For convex quadratic pro-
gramming, the objective function q (x) is a convex function.
A quadratic programming strategy is the smallest solution in
the world if it satisfies at least one x vector limit and has a
lower limit in the potential range q (x). H is a positive
definite matrix. If there is a globally optimal solution when
there is a rigid convex quadratic program, it must be unique,
as shown in the following equation:

[x, fval, exitflag, output]

� quadgrog H, f, A, b,Aeq, beq, lb, ub, x0( .
(5)

In general, this optimization strategy can be described as
a convex quadratic programming strategy as shown in the
following equation:

min
x∈Rn

σ2 �
1
2
x

T
Qx,

μT
x � β,

s.t.
e

T
x � β,

x≥ 0.

(6)

(is is a convex quadratic programming policy. Given
the value of the parameter β, β is the expected return on
investment with a uniquely optimal solution, as shown in the
following equation:

x
∗
μ � λQ

− 1
e + cQ

− 1μ, (7)

where λ � c − βb/Δ, c � βa − b/Δ, a � eTQ− 1e, c � μTQ− 1μ,

and Δ � ac − b2.

(e main problem of the above convex quadratic pro-
gramming model is that the mean and covariance of assets
are estimated from historical data and do not have sufficient
accuracy. In fact, it is difficult to estimate the mean value of
income, which is called mean ambiguity. In addition, the
mean variance model is very sensitive to the distribution of
input parameters, which will amplify the estimation error,
lead to limit investment, and poor out of sample test results.
Later, some improved Markowitz models were proposed to
obtain stable investment. Later, in order to make the op-
timization process of investment more diversified, addi-
tional investment constraints were added to the model. For
the investment allocation of minimizing risk, James Steiner
estimation was proposed, and then robust estimation was
proposed. In order to reduce transaction costs and the
complexity of investment management, a class of important
portfolio problems are proposed, which achieve this goal by
limiting the amount of capital investment. Adding this
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Figure 2: Financial investment of genetic algorithm.
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constraint, the model is transformed into solving the sparse
portfolio problem, which remedies the high instability of the
traditional portfolio model. In particular, the Markowitz
model is modified by adding constraints to control the
number of assets [18]. (is kind of problem is called the
portfolio problem with cardinality constraints, as shown in
the following equation:

min
x∈Rn

σ2 �
1
2
x

T
Qx,

μT
x � β,

s.t.

‖x‖0 ≤K,

e
T

x � 1,

x≥ 0,

(8)

where ‖x‖0 is the zero norm of x and represents the number
of nonzero elements in vector x; parameter K is the upper
limit of the number of investment projects. In short, the
modern portfolio problem mainly includes the following
three objective functions:

(1) Minimize investment risk xTQx, minxTQx

(2) Maximize expected return on investment μTx,
max μTx

(3) Minimize the number of selected investment proj-
ects ‖x‖0, min ‖x‖0

(e restriction on the number of investment projects in
the above cardinal constrained portfolio can be transformed
into controlling the parameter K to a sufficiently small value;
that is, the mathematical model of the financial portfolio
problem mainly studied in this paper is obtained, as shown
in the following equation:

min
x∈Rn

‖x‖0,

μT
x � β,

s.t.x
T
Qx≤ a,

e
T
x � 1,

x≥ 0,

(9)

where μ is the rate of return of each asset, Q is the variance
covariance matrix of each asset, α is the upper limit of
acceptable risk of investors, and β is the expected rate of
return of investors.

3.2. Genetic Algorithm. Genetic algorithm (GA) is a global
optimization algorithm formed by simulating the evolution
mechanism of natural selection and population “survival of
the fittest” and “survival of the fittest.” Each possible
problem solution is expressed as a “chromosome,” so as to
obtain a “group” composed of chromosomes. (is group is
limited to the specific environment of the problem. Each
individual is evaluated according to the predetermined

objective function to obtain the individual fitness value.
Individuals with higher adaptability to living environment
often have higher survival probability. At the beginning,
some individuals are always randomly generated, that is,
candidate solutions.(ese individuals are cross combined by
genetic algorithm according to the principle of “survival of
the fittest” to produce offspring. (e offspring inherit some
excellent shapes of the parent generation, so they are ob-
viously better than the previous generation. In this way, the
population of “chromosome” will gradually evolve towards a
better solution. Combined with genetic operations such as
gene mutation in the process of species evolution, offspring
more adapted to the environment may be produced [19].

Genetic algorithm is mainly composed of chromosome
coding, initial population setting, fitness function setting,
genetic operation (crossover, mutation) design, and so on.
Coding refers to transforming the solution structure of
practical problems into chromosome structure. Selection
refers to selecting several individuals with higher fitness
from the current population according to the selection
probability and the fitness value of each chromosome.
Fitness determines the individual’s viability, usually roulette
selection or tournament selection. Crossover refers to the
mating recombination of some genes of two chromosomes
according to the crossover probability and crossover strategy
to produce new individuals. Crossover strategies generally
include single point crossover and multipoint crossover.
Mutation refers to the mutation of some genes in the
chromosome according to the mutation probability and
mutation strategy, which is another method for genetic
algorithm to generate new individuals. For example, under
the binary coding mode, the traditional mutation operation
simply reverses the binary of the gene; that is, “0” becomes
“1” and “1” becomes “0” [20].

(e common parameters of genetic algorithm in China
are shown in Table 1.

Genetic algorithms for solving optimization problems
usually involve three basic operations: selection, crossover,
and mutation. Selection is a key function of genetic algo-
rithms. Different selection actions affect the speed of the
genetic algorithm. Excessive selection pressure can improve
the integration speed of the algorithm but can lead to early
mergers. (erefore, it is necessary to choose the appropriate
selection measure. Selection means selecting the most
physically fit people and passing them on to the next gen-
eration with a higher probability and selecting the less
physically fit people to pass on to the next generation. (e
selection process can bring the fitness value of individuals in
the population closer to the optimal solution. Crossover
operation is the process of replacing and reuniting parts of a
parent’s two personal structures to create a new individual.
Crossover activity can create new people in next-generation
populations and increase the efficiency of genetic algorithm
search. Relying solely on the crossover operator is likely to
bring you closer to local optimization. Mutation refers to the
act of mutating an individual with a certain probability, and
the value of the vector changes randomly among individuals
with a low probability. Mutational activity creates a structure
that is unprecedented in a population and increases the

4 Computational Intelligence and Neuroscience



likelihood of approaching global optimization [21]. See
Figure 3.

(e genetic algorithm that retains the optimal solution
before or after selecting the operator can converge to the
global optimal solution with probability 1. See Figure 4.

Execution steps of genetic algorithm:

(1) Select an encoding strategy (binary encoding) and
use an appropriate encoding strategy to represent
each possible point in the problem search space, i.e.,
to create a chromosome.

(2) Identify population size n, crossover and mutation
methods, and genetic strategies such as genetic pa-
rameters such as selection probability PR, crossover
probability PC, and mutation probability PM.

(3) Set the number of iterations to t� 0, select a random
chromosome to initiate the P (o) population, and
determine the fitness function f (F> 0).

(4) Calculate the fitness value for each chromosome.

(5) (e “best survival” process is implemented through a
selection process to select better independent groups.

(6) crossover operation on better chromosomes selected
according to probability PC (single point crossover).

(7) Participate in a mutation process with a PM prob-
ability for a gene on the chromosome.

(8) (e performance of the group determines whether it
meets the predetermined termination criteria.
Otherwise, return to 4.

3.3. Penalty Function Decomposition Method. In order to
consider the financial portfolio problem, the general
l0-minimization problem is accompanied by the fact that the
l0-norm is part of the objective function or constraints.

Firstly, the first-order optimality condition of this kind
of problem is given, and then the penalty function de-
composition algorithm to solve this kind of problem is
introduced; that is, the original problem is transformed into
a series of penalty function subproblems, and the penalty
function subproblems are solved by the block cooperative
descent method, so as to obtain the solution of the original
problem. It is proved theoretically that, under reasonable
assumptions, the convergence point of the sequence ob-
tained by the penalty function decomposition method sat-
isfies the first-order optimality condition. In addition, l0 is
the only nonconvex term in the original problem. It is
proved that the convergence point is a local minimum point,
and it can be proved that the convergence point of the
sequence generated by the block cooperative descent method
is the saddle point of the penalty function subproblem.

Table 1: Common parameters of genetic algorithm.

Control parameters Meanings
String length (L) (e length of each code, including fixed length and variable length
Population capacity Number of individuals per generation
Crossover rate (e probability of executing the crossover operator is recorded as PC
Variation rate (e probability of executing the mutation operator is recorded as PM

Choose Cross Variation

Roulette method of choice

Random competitive selection 
method

Exclude choosing

Tournament selection method

Breeding pool selection

The best method of individual 
preservation

Single point crossover

Cross at two points
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Uniform variation

Boundary variation
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Figure 3: Operation method of genetic algorithm.
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Figure 4: Flowchart of genetic algorithm.
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Because l0 is the only nonconvex term, the convergence
point is the local minimum of the penalty function
subproblem.

Sparse problems are now widely used. For example, with
a compressed sensor, it is possible to encode a large sparse
signal with a relatively small number of linear dimensions,
which converts the problem into a solution of a linear
equation or a set of linear inequalities. Similar methods have
been widely used in the field of linear regression. In recent
years, the choice of sparse reverse covariance has become an
important tool for finding conditional independent terms in
image design. (e current basic approach is to increase the
log-probability function while finding a sparsely inverse
covariance matrix. Similarly, the choice of characteristics for
cluster problems suggests a promising approach to sparse
logistic regression that seeks to reduce sparse logistics losses
while seeking sparse solutions [22]. All the above applica-
tions can be expressed as the following l0 minimization
problem, as shown in the following formulas:

min
x∈x

f(x): g(x)≤ 0, h(x) � 0, xJ

����
����0≤ r , (10)

min
x∈X

f(x) + ] xJ

����
����0: g(x)≤ 0, h(x) � 0 , (11)

where r> 0, υ> 0R> 0, υ> 0, and the sparsity of the problem
is controlled by adjusting the size of R and υ. X is the closed
convex set of n-dimensional Euclidean space Rn.
g :Rn⟶R, g :Rn⟶Rm, h :Rn⟶Rp are continuously
differentiable functions. ‖xJ‖0 refers to the cardinality of the
subvector marked by the index set J in x. Aiming at the
special situation of this kind of problem, some algorithms
are proposed. For example, iterative threshold method and
matching pursuit method are developed to solve the
l0-regularized least squares problem in compressed sensing,
but they can not be used to deal with the general l0-mini-
mization problem. A popular way to deal with the problem is
to replace ‖•‖0 with l1 − norm‖•‖1 and then solve the re-
laxation problem. In applications such as compression
sensing, problems can be solved under some reasonable
assumptions. In recent years, some other relaxationmethods
have been proposed, that is, replacing l0 with lp. In general,
the properties of the solutions of these methods are not very
clear. (e l0 regularization problem with upper and lower
bound constraints is shown in the following equation:

min
x

f(x) + λ‖x‖0: l≤x≤ u . (12)

(e hard threshold algorithm is proposed as follows, as
shown in the following equation:

x
k+1 ∈ argmin

x∈B
f x

k
  + ∇f x

k
 

T
x − x

k
 

+
L

2
x − x

k
�����

�����
2

2
+ λ‖x‖0,

(13)

where λ> 0, L> Lf, Lf is the Lipschitz constant of ∇f(x),
B � x ∈ Rn: l≤ x≤ u{ }, l ∈ R

n

−, u ∈ Rn
+.

4. Experimental Results and Discussion

In this paper, we use a penalized decomposition method to
solve this problem, i.e., a block cooperative method to solve
the subproblem of the penalty function. According to some
reasonable assumptions, the first point of the sequence
formed by the penalized decomposition method provides a
first-order optimization of the problem. Furthermore, when
h is an affine function and f and g are convex functions, the
join point is a local minimum of the problem. At the same
time, the boundary points of the sequence formed by the
joint collapse of the blocks are saddle points for the children
of the penalty function. In addition, h is an affine function, f
and g are convex functions, and the combination is a local
minimum of the penalty function subproblem.

min
x∈X,y∈Y

f(x): g(x)≤ 0, h(x) � 0, xJ − y � 0 , (14)

where Y � y ∈ RJ: ‖y‖0 ≤ r .
(e related quadratic penalty function is defined as

follows, as shown in the following equation:

qp(x, y) � f(x) +
ρ
2

g(x)
+

����
����
2

+‖h(x)‖
2

+ xJ − y
����

����
2

 ,

∀x ∈ X, y ∈ Y,

(15)

where penalty function ρ> 0.
Now a penalty function decomposition method is

proposed to solve the problem, which can be treated
equivalently.

Let εk  be a decreasing sequence of positive terms. For
the given ρ0 > 0, σ > 1, choose any y0

0 ∈ Y, constant

c≥max f(xfeas),min
x∈X

qpo(x, y0
0) ,makek � 0° .

(1) Let l � 0; apply the block cooperative descent
method to solve the approximate solution of the
penalty function subproblem through steps (a), (b),
(c), and (d).

min qpk(x, y): x ∈ X, y ∈ Y . (16)

(a) Solve

x
k
l+1 ∈ argmin

x∈X
qρk x, y

k
l . (17)

(b) Solve

y
k
l+1 ∈ argmin

y∈Y
qρk x

k
l+1, y . (18)

(c) Let (xk, yk) � (xk
l+1, yk

l+1), if (xk, yk) meets

Px x
k

− ∇xqρk x
k
, y

k
   − x

k
�����

�����≤ εk. (19)

(d) Makel←l + 1,Turn to(a).

After analysis, the problem can be expressed
equivalently, as shown in the following equation:
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min
x∈X,y∈R|J|

f(x) + ]‖y‖0: g(x)≤ 0, h(x) � 0, xJ − y � 0 .

(20)

(e related quadratic penalty function is defined as
follows, as shown in the following equation:

qρ(x, y) ≔ f(x) + ]‖y‖0

+
ρ
2

g(x)
+

����
����
2

+‖h(x)‖
2

+ xJ − y
����

����
2

 ,

∀x ∈ X, y ∈ R
|J|

.

(21)

Included is penalty parameter ρ> 0.
Now a penalty function decomposition method is
proposed to solve the problem, which can be treated
equivalently. Let εk  be a decreasing sequence of
positive terms for the given ρ0 > 0, σ > 1, q0.
Choose any y00 ∈ Y; constant c satisfies

c≥max f(xfeas) + ]‖xfeas‖0,minpρ0(x, y0
0)

x∈X

⎧⎨

⎩

⎫⎬

⎭; let

k� 0.
(2) Let l � 0, the penalty function subproblem is solved

by the block cooperative descent method described
in steps (a)–(d), as shown in the following equation:

min pρk(x, y): x ∈ X, y ∈ R
|J|

 . (22)

Approximate solution (xk, yk) ∈ X × R|J|.

(a) Solve

x
k
l+1 ∈ argmin

x∈X
qρk x, y

k
1 . (23)

(b) Solve

y
k
l+1 ∈ argmin

y∈R|J|

qρk x
k
l+1, y . (24)

(c) Let (xk, yk) � (xk
l+1, yk

l+1), if (xk, yk) meets

Px x
k

− ∇xqρk x
k
, y

k
   − x

k
�����

�����≤ εk. (25)

Turn to (2).
(d) Let l←l + 1; turn to (a);
(1) Let ρk+1: � σρk;

(2) if min
x∈X

pρk+1(x, yk)> c,makeyk+1
0 : � xfeas,

otherwise, letyk+1
0 � yk;

(3) Letk←k + 1, turn to(1)°

(is part mainly tests the penalty function decompo-
sition method introduced earlier through numerical ex-
periments, applies it to the portfolio model, and compares
the results with the running results of genetic algorithm.
Select the closing price (unit: yuan) of 10 constituent stocks
in the 300 index for 100 trading days from January 5, 2019, to
June 4, 2020. (e data is from Sina Financial Data Center.
(e optimal asset allocation proportion of investors in these
10 constituent stocks is calculated by penalty function

decomposition method and genetic algorithm [23]. See
Figures 5 and 6.

(e challenge of traditional analytical approaches to
financial securities investment strategies needs to be
addressed. During the analysis, it was found that the op-
erational process of traditional strategic analysis methods is
complex and the inability to solve the problem limits the
scope of driving search [24]. (erefore, the advantage of the
powerful local search capabilities of genetic algorithms is
that they are used to search for parametric spaces. (e
process of analyzing the financial securities investment
strategy based on a genetic algorithm is shown in Figure 7.

(e results of the quadratic programming algorithm, the
results of the Matlab programming solution of the genetic
algorithm, the tools of the genetic algorithm, and the results
of the solution are compared, focusing on the above Mar-
kovitz average variance model. See Figure 8.

In order to test the validity of the genetic algorithm
method of financial portfolio analysis, a risk-free bank de-
posit in a particular city is selected and the real data is
analyzed [25]. Select stocks in different sectors to invest in,
taking into account diversification risks. (ere are four risky
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assets. To confirm the interpretation of the experiment, the
traditional strategic analysis method is compared with the
strategic analysis method of this model, and the final result is
obtained by repeated experiments.

Finally, the penalty function decomposition method and
the convergence solution of genetic algorithm are consistent.
67% of the total investment assets will buy a local automobile
stock and 33% will buy a wine stock.

5. Conclusion

(is paper proposes a genetic optimization algorithm to
solve the financial portfolio problem. (e quadratic pro-
gramming algorithm (QP) and the penalty function de-
composition algorithm are used to compare the three to
solve the financial portfolio problem. Experimental results
show that the quadratic programming algorithm (QP) has a
faster convergence rate, but the investment distribution is
not so good under the influence of the initial value selection.
At the same time, the penalty function decomposition al-
gorithm can be widely used in sparse financial portfolio
problems, which ensures consistency with financial portfolio
issues and provides effective value to the test results.

Compared to the quadratic programming algorithm, the
genetic algorithm is very good for global control, but not
good enough for local search, so the late merger speed is
reduced and decentralized investment is better than the
quadratic programming algorithm.(us, genetic algorithms
are faster, more convenient, and more efficient in solving
financial portfolio problems. However, because the data
selected in the model is not as large as that in the actual
financial portfolio problem, the complexity of the problem is
greatly reduced. (erefore, in the future, quadratic pro-
gramming algorithm and genetic algorithm can be applied to
the financial portfolio of small-scale investment stocks.
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