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Wetlands have important ecological value. �e application of wetland remote sensing is essential for the timely and accurate
analysis of the current situation in wetlands and dynamic changes in wetland resources, but high-resolution remote sensing
images display nonobvious boundaries between wetland types. However, high classi�cation accuracy and time e�ciency cannot
be guaranteed simultaneously. Extraction of wetland type information based on high-spatial-resolution remote sensing images is a
bottleneck that has hindered wetland development research and change detection. �is paper proposes an automatic and e�cient
method for extracting wetland type information. First, the object-oriented multiscale segmentation method is used to realize the
�ne segmentation of high-resolution remote sensing images, and then the deep convolutional neural network model AlexNet is
used to classify automatically the types of wetland images. �e method is veri�ed in a case study involving �eld-measured data,
and the classi�cation results are compared with those of traditional classi�cation methods. �e results show that the proposed
method can more accurately and e�ciently extract di�erent wetland types in high-resolution remote sensing images than the
traditional classi�cation methods. �e proposed method will be helpful in the extension and application of wetland remote
sensing technology and will provide technical support for the protection, development, and utilization of wetland resources.

1. Introduction

With the development of remote sensing technology, the
quality of available remote sensing images is increasing, and
information on ground objects is becoming increasingly
detailed; however, the classi�cation accuracy of the traditional
pixel-based classi�cation method is low due to the large
amount of data, and it can no longer meet the classi�cation
requirements of high-resolution remote sensing images [1].
Shallow structure models, such as neural networks and
support vector machine ensembles, combine spectral,
structural, and semantic features for the classi�cation of high-

resolution remotely sensed imagery [2]. However, due to the
high resolution of remote sensing images, the heterospectrum
phenomenon is very obvious. For complex sample structures,
shallow structure models are a�ected by computing power
and are unable to learn the sample information adequately
[3]. A deep learning network is a deep structure model
composed of multiple nonlinear mappings, has a strong
function expression ability, can learn more complex training
samples, and has good robustness for the classi�cation of
complex features in remote sensing images [4, 5].

Wetlands play an important role in regulating the
natural environment; they are considered a unique
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ecosystem with rich biodiversity formed between the in-
teraction between water and land, and they have important
ecological value [6, 7]. *e status and dynamic changes of
wetland resources can be accurately studied in a timely
manner by using high-precision and high-spatial-resolution
remote sensing image classification methods, which are of
great significance in wetland research [8]. However, the
boundary between wetland types in high-resolution remote
sensing images is not obvious; at present, automatic and
efficient extraction of wetland type information has been a
bottleneck hindering wetland development and change
monitoring [9, 10].

*e traditional supervised classification algorithm of
remote sensing image based on pixel classifies mainly the
image according to the ground object spectrum, which de-
pends on the priori knowledge and practical experience [11].
*e diversity of spectral information brings challenges to the
high-resolution image classification. *e traditional classifi-
cation method based on physical model and statistical model
has been difficult to apply in the remote sensing information
extraction in the era of big data [12, 13]. Due to the differences
of ground object targets, the neural network needs to extract
effectively the features of ground object targets under dif-
ferent receptive fields. Deep learning semantic segmentation

based on pixel classification can analyze quickly the deep
semantic information of image and has become the most
advanced technology in the field of image segmentation
[14, 15].

With the improvement of computer technology, the
classification method of wetland remote sensing has also
been continuously developed. Decision tree has the char-
acteristics of flexibility, intuition, and high efficiency, and it
has been widely used in grassland wetland evaluation and
freshwater swamp information extraction [16]. In the 1980s,
the classification method such as neural network [17] and
support vector machine [18] was gradually applied in the
classification of wetland remote sensing images. *ese
models can improve the classification accuracy of high-
resolution remote sensing images. However, for the complex
sample structure, the shallow structure model is affected by
the computing power and cannot fully learn the sample
information. But the deep structure model can make full use
of the spatial structure information of the image by clas-
sifying the high-resolution wetland remote sensing image.
*e convolutional neural network extracts suitably the input
features layer by layer from the low level to the high level to
form the network weight structure, which is more suitable
for dealing with complex ground object classification. More
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Figure 1: Technology guidelines.
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and more scholars introduce convolutional neural network
to deal with the problems of feature extraction, classification,
and scene recognition of high-resolution remote sensing
images, but the research on wetland classification system is
very rare.

By outlining classification requirements for extracting
wetland type information, this paper presents a method to
automatically and efficiently extract wetland type infor-
mation based on high-spatial-resolution remote sensing
images and verifies the classification results by specific ex-
perimental cases. By comparing the proposed method with
traditional classification methods in terms of extraction
precision and efficiency, the high accuracy and efficiency of
the method are suggested, and the possibility of accurately
and efficiently extracting wetland type information is
provided.

2. Basic Idea

Wetlands are considered an important natural resource, and
the emergence of high-resolution remote sensing images in
recent years has provided a basic condition for large-scale
wetland information extraction; by analyzing comprehen-
sively the existing methods, it is possible to improve the
accuracy and efficiency. *is paper selects an area with rich
wetland types as the research area. Based on high-resolution
remote sensing image data, the object-oriented method is
used to segment the system. A deep convolutional neural
network model is used to extract wetland type information,
and taking field-measured data as the reference for accuracy
verification, the extracted results are compared with tradi-
tional classification methods, and an automatic and efficient
method for extracting wetland type information is proposed.
*e method is as follows (Figure 1):

(1) Original high-spatial-resolution remote sensing
images in the study area were selected, and the ra-
diometric geometric correction images were pre-
processed with methods such as fusion, stitching,
and clipping. *e distribution characteristics of the
remote sensing image features were analyzed by a
visual interpretation method, and the wetland type
classification system in the study area was established
based on the field-measured data.

(2) After preprocessing the remote sensing images for
object-oriented multiscale segmentation and stan-
dardizing the segmentation of the data, the dataset
was divided into a training set, validation set, and test

set according to a ratio of 3 :1 :1. A deep convolu-
tional neural network was trained based on the depth
of the model to achieve the extraction of feature
information by the high-resolution remote sensing
images.

(3) *e iterative self-organizing data analysis technique
(ISODATA) algorithm, maximum likelihood, and
backpropagation (BP) neural network classification
methods were selected to classify the remote sensing
images in the study area, and the extraction results of
the proposed method were compared with those of
the traditional classification methods. In addition,
the accuracy of the results of each of the models was
evaluated, and the advantages of deep convolutional
neural networks for extracting wetland type infor-
mation from high-resolution remote sensing images
were determined.

2.1. Object-Oriented Multiscale Segmentation. *e object-
oriented multiscale remote sensing image segmentation
method is a kind of image feature information extraction
technology for the classification of high-resolution remote
sensing images [19, 20]. Different from traditional remote
sensing image classification methods based on pixels, the
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Figure 3: True color image of the study area.
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object-oriented method divides images into objects
according to certain homogeneity and spectral texture
structures [21]. *e smallest unit is no longer a pixel but an
image object. In the segmentation process, similar pixels are
divided into the same object, and adjacent objects have
obvious differences. *e object-oriented method can obtain
segmentation objects with relatively regular edges with high
spatial accuracy, and the classification results have a certain
integrity, which can avoid the occurrence of salt-and-pepper
noise [22].

Multiscale segmentation technology is often used in
the classification of remote sensing images, and the image
segmentation effect is directly affected by the scale pa-
rameters. For example, if a large area of image objects is

obtained, a large-scale parameter is set, and the number of
objects is small correspondingly. When the scale pa-
rameters and compactness parameters are fixed, different
shape parameters have different effects on the segmen-
tation results. *e larger the shape parameter, the more
regularly segmented the object; the smaller, the more
irregular. In the multiscale segmentation of remote
sensing images, the selection of segmentation scale and
corresponding segmentation parameters should be based
on the image feature. *e segmentation scale and pa-
rameters corresponding to different feature are different
[23]. In this paper, the segmentation scale and corre-
sponding parameters are selected through repeated
experiments.

Table 1: Multiscale segmentation parameters for extracting wetland type information.

Wetland type Scale parameter Shape parameter Compactness parameter Smoothness parameter Weights
Grassland 100 0.4 0.6 0.4 1, 1, 1, 1
Mudflat 100 0.4 0.6 0.4 1, 1, 1, 1
River 30 0.3 0.7 0.3 1, 1, 1, 1

Image 1 Scale=50 Scale=100 Scale=150

Comparison of the multiscale segmentation results of the grassland area

Image 2 Scale=50 Scale=100 Scale=150

Comparison of the multiscale segmentation results for the mudflat area

Image 3 Scale=20 Scale=30 Scale=40

Comparison of the multiscale segmentation results for the river

Figure 4: Multiscale segmentation of wetland type information.
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2.2. AlexNet Convolutional Neural Network. *e AlexNet
model is a typical deep convolutional neural network model;
in recent years, it has achieved breakthroughs in the field of
image recognition [24, 25]. *e AlexNet model obtains the
original image characteristics in the input layer and the filter
with the sample characteristics. *rough 5 convolutional
layers and 3 fully connected layers, the depth model with an
8-layer network structure is obtained, which achieves effi-
cient training and has a stable convergence rate. Compared
with AlexNet model, other deep convolutional neural net-
work models, such as VGGNet, GoogLeNet, ResNet, and so
on, all have far more layers than AlexNet. With the increase
of layers, it will bring huge parameter calculation. With the
increase of neural network depth, the accuracy of the model
will first rise and be saturated. When the depth continues to
increase, the accuracy will decline. Because with the increase
of the number of layers, there will be gradient explosion or
attenuation, the gradient will become unstable, and the value
will be particularly large or small. *erefore, the network
performance will become worse and worse. Too many pa-
rameters lead to excessive memory consumption and ex-
cessive computing resources. AlthoughMobileNet and other
methods with less layers have less floating-point calculation,
networks at different levels can learn the characteristics of
different levels. With the reduction of layers, the ability to
mine the detailed information of ground objects is affected,
and the classification accuracy is reduced [26]. AlexNet uses
ReLU activation function to solve the gradient dispersion
problem and improve the training speed when the network
is deep; dropout is used in training to avoid overfitting. LRN
(local response normalization) is used to enhance the
generalization ability of the model and improve the accuracy
of training. In addition, based on GPU, AlexNet uses CUDA
to accelerate the training of neural network and improve the
training efficiency of the network. Figure 2 shows the
schematic diagram of the AlexNet model.

3. Case Study

3.1. Selection of the Experimental Data. We selected remote
sensing images of the Heilongjiang Gongbiela River Na-
tional Nature Reserve taken by the Gaofen-2 (GF-2) satellite
as the experimental data. Panchromatic and corresponding
multispectral imaging data of two scenes were collected in
July 2018 to obtain a mosaic remote sensing image with a
spatial resolution of 1m after preprocessing. *e data are
shown in Figure 3.

3.2. Image Multiscale Segmentation. According to visual
interpretation, the main wetland types in the preliminary
study area were determined. After repeated comparative
analysis during image segmentation, the wetland types were
first segmented at multiple scales. *e boundary of the
segmentation objects is more accurate when the segmen-
tation scale parameters of the grassland and mudflat areas
(layer 1) are 100. *e boundary of the river (layer 2) is more
accurate when the segmentation scale parameter is 30. On
the condition that the segmentation scales of the above two

layers remain unchanged, the weight of the compactness
parameters is fixed, and the weight is gradually increased
from 0.1 to 0.9 according to an arithmetic sequence to
determine the shape parameters. Based on this experiment,
layer 1 achieves a better segmentation effect on grassland
and mudflat when the segmentation scale parameter is 100,
the shape parameter is 0.4, and the compactness parameter is
0.6. Layer 2 is taken as the sublayer of layer 1 and has a better
segmentation effect on rivers when the segmentation scale
parameter is 30, the shape parameter is 0.3, and the com-
pactness parameter is 0.7. *e multiscale segmentation
parameters for extracting wetland type information in the
study area are shown in Table 1.*emultiscale segmentation
results are shown in Figure 4.

Similarly, the cultivated land area was divided according
to a segmentation scale parameter of 100, a shape parameter
of 0.4, and a compactness parameter of 0.6. *e remaining
images to be segmented were forestland (since the road class
has a maximum width of 6 pixels and is not considered as a
research focus, it is classified as the adjacent feature type).

*e segmented wetland images were converted into three-
channel red, green, and blue (RGB) images, and the segmented
images were divided into three standard datasets of 256×× 256
images, namely, a training set, verification set, and test set,
according to a ratio of approximately 3 :1 :1. A typical area of
theresearchareawasselectedas the testarea,andthesegmented
images were produced into a standard test set.*e scope of the
test area is shown in Figure 5. *e image segmentation data
outside the test area were divided into a standard training set
and validation set.*ere were 3224 samples in the training set,
908samples in theverificationset, and969samples inthetest set
(testareas).Examplesof thetrainingset,verificationset,andtest
set are shown in Figure 6. Part of themaskedRGB values of the
samples are filled in with 0 s.

Test scope

0 1 2 3 4
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N

Figure 5: Test scope.
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3.3. Extraction of the Wetland Type Information. In this
study, the Caffe machine learning framework and AlexNet
convolutional neural network are applied for wetland type
information extraction. During the training process, some
neurons were randomly deleted in each iteration, and
softmax logistic regression was applied to classify the images

in the output layer. *e initial value of the learning rate was
set to 0.001. *e deep convolutional neural network was
trained and evaluated through 5 types of land cover types,
namely, grassland, mudflat, river, cultivated land, and forest,
so there were 5 outputs in the fully connected layer. *e
network is optimized to obtain the multivariate logistic

(a)

(b)

(c)

(d)

(e)

Figure 6: Examples. (a) Grassland. (b) Mudflat. (c) River. (d) Cultivated land. (e) Forest.
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regression model of the maximum average. *e network
training process is shown in Figures 7 and 8.

It can be seen from the experiment that the AlexNet deep
convolutional neural network model achieves a good effect
on the experimental dataset after effective training and
learning. *e accuracy of batches 0 to 20 was unstable, with
an initial accuracy of 25.2%; the accuracy rapidly increased to
90.4%, then rapidly decreased to 67.2%, and stabilized at
approximately 70%. After 20 batches, the accuracy began to
rise gradually, and the highest accuracy achieved was 97.2%.
After 100 batches, the accuracy reached a high level and
stabilized. At the same time, the initial loss function was
approximately 1.1, and the loss function of batches 0 to 20
rapidly converged to approximately 0.4. *e loss function
gradually began to converge after 20 batches. *e loss
function of batch 100 was less than 0.1, and the convergence

effect was good and tended to be stable. As the loss function
converges rapidly and tends to be stable, the accuracy in-
creases rapidly and remains high.*e initial learning rate was
0.001, which gradually decreased to 0.0001 after 100 batches
and then continued to decline and gradually stabilized after
200 batches, indicating that the deep convolutional neural
network achieves an ideal learning effect on the dataset.

3.4. Analysis and Verification of the Results. *is research
uses field-measured data and visual interpretation results to
verify the effectiveness of the convolutional neural network
model for the wetland classification, and its accuracy and
efficiency in extracting wetland type information were com-
pared with those of traditional methods, namely, an unsu-
pervised classification method (the ISODATA algorithm), a
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supervised classification method (the maximum likelihood
(ML) method), and shallow machine learning classification
method (a BP neural network) on the same data. *e clas-
sification results of the test set images by the proposedmethod
and the three traditional methods are shown in Figure 9.

All the results of the traditional remote sensing image
classification methods, that is, the ISODATA algorithm, ML,
and BP neural network, have “salt-and-pepper noise”
[27–29]. However, the classification method selected in this

paper obtained clear features. After about fifteen repeated
experiments, the following indexes are selected to evaluate
the accuracy and efficiency of the methods: the producer’s
accuracy, user’s accuracy, overall accuracy, kappa coefficient,
and classification time. *e classification accuracy and
statistical results are shown in Table 2.

*rough the comparative analysis of the classification
results of the four methods, it can be seen that for the ex-
traction of wetland type information from the high-

River
Cultivated land
Mudflat

Plowland
Forrest

(a)

River
Cultivated land
Mudflat
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Forrest

(b)

River
Cultivated land
Mudflat
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(c)

River
Cultivated land
Mudflat

Plowland
Forrest

(d)

Figure 9: Classification results. (a) Classification results of the method proposed in this paper. (b) Classification results of the ISODATA
algorithm. (c) Classification results of the maximum likelihood method. (d) Classification results of the BP neural network.
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resolution remote sensing images, the identification accuracy
of the four classification methods is higher for the grassland
and mudflat areas, which is due to the large difference in the
image characteristics of these land cover types. Although the
river image has obvious spectral features, the ISODATA
algorithm fails to extract the river information effectively and
automatically classifies it into the surrounding features be-
cause the local width is no more than 10 pixels. *e maxi-
mum likelihood classification method can extract the river
information, but the river is relatively fragmented. *e river
features extracted by the BP neural network and deep
convolutional neural network are relatively consistent, and
the deep convolutional neural network achieves the best river
connectivity effect. Compared with the four classification
methods, the maximum likelihood method and the deep
convolutional neural network method are faster; they take 6
minutes and 4 minutes, respectively. However, the overall
classification accuracy of the maximum likelihood method is
low. Although the ISODATA algorithm does not need to
understand the research area in advance, reduces the in-
terference of human factors, and achieves a moderate clas-
sification time (26 minutes), it misclassifies and fails to
classify many areas, and its overall classification accuracy is
the lowest; therefore, it does not meet the requirements of
classification. Although the overall accuracy of the BP neural
network classification method is high, it takes 185 minutes to
run, which is too long for practical applications. Based on the
above analysis, it can be concluded that the deep convolu-
tional neural network can quickly and effectively identify
wetland type information, with high classification accuracy,
short runtime, and ideal effect.

4. Conclusion and Discussion

At present, the status and dynamic changes of wetland re-
sources cannot be determined in a timely and accurate
manner by the current wetland remote sensing method. *is
paper proposes an automatic method that combines appli-
cation of object-oriented multiscale segmentation technology
and a deep convolutional neural network based on remote

sensing image feature extraction technology. *is paper ex-
tracts wetland type information from high-resolution remote
sensing images of the Heilongjiang Gongbiela River National
Nature Reserve. *e final results are verified and compared
with the traditional methods. *e results show that the deep
convolutional neural network can extract wetland types from
remote sensing images better than the traditional methods;
for example, the deep convolutional neural network can
handle nonobvious boundaries better than the traditional
methods. Depth characteristics can be better expressed, and
more detailed information of wetland types can be mined,
which not only improves the classification accuracy but also
substantially improves the extraction efficiency compared
with the traditional classification algorithms. *e research
method proposed in this paper achieves a higher accuracy and
has a wider applicability than the traditional methods.
However, as a new classification technology, convolutional
neural network has broad research space. Based on the results
of remote sensing image processing in different regions, this
study has still partial limitations and deficiencies, which will
be further improved in the future research.

Next, the authors will focus on the GoogLeNet [30], Visual
Geometry Group (VGG) [31, 32], and ResNet convolutional
neural network architectures and the advantages and disad-
vantages of neural network models for extracting wetland
types from high-resolution remote sensing images.*is article
created a large number of sample datasets according to the
types of features and characteristics of the remote sensing data
sources; however, to address a large number of wetland types
for environment information extraction from remote sensing
images, future research will also increase the number of
datasets and diversify the types of datasets, expand the study
area, and improve the generalization ability of themodel. How
to select the optimal parameters and improve the classification
efficiency needs the further study.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Table 2: Comparison of the classification accuracy.

Precision
ISODATA algorithm Maximum likelihood method BP neural network Deep convolutional

neural network
Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

River 0.00 0.00 53.23 100.00 66.13 100.00 74.19 100.00
Grassland 87.30 64.45 90.48 69.51 91.01 79.26 95.77 90.95
Mudflat 90.98 93.08 90.23 97.56 91.73 99.19 90.91 99.17
Cultivated
land 54.17 49.06 72.92 55.56 87.50 58.33 91.67 65.67

Forest 66.06 68.99 72.12 90.15 86.67 99.31 97.56 98.77
Overall
accuracy 70.5193% 80.0670% 87.1022% 92.6050%

Kappa
coefficient 0.5991 0.7336 0.8293 0.9022

Time
(minutes) 26 6 185 4
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