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To solve the premature convergence problem of the standard chicken swarm optimization (CSO) algorithm in dealing with
multimodal optimization problems, an improved chicken swarm optimization (ICSO) algorithm is proposed by referring to the
ideas of bacterial foraging algorithm (BFA) and particle swarm optimization (PSO) algorithm. First, in order to improve the depth
search ability of the algorithm, considering that the chicks have the weakest optimization ability in the whole chicken swarm, the
replication operation of BFA is introduced. In the role update process of the chicken swarm, the chicks are replaced by the same
number of chickens with the strongest optimization ability. Ten, to maintain the population diversity, the elimination-dispersal
operation is introduced to disperse the chicks that have performed the replication operation to any position in the search space
according to a certain probability. Finally, the PSO algorithm is integrated to improve the global optimization ability of the
algorithm. Te experimental results on the CEC2014 benchmark function test suite show that the proposed algorithm has good
performance in most test functions, and its optimization accuracy and convergence performance are also better than BFA,
artifcial fsh swarm algorithm (AFSA), genetic algorithm (GA), and PSO algorithm, etc. In addition, the ICSO is also utilized to
solve the welded beam design problem, and the experimental results indicate that the proposed algorithm has obvious advantages
over other comparison algorithms. Its disadvantage is that it is not suitable for dealing with large-scale optimization problems.

1. Introduction

Temultimodal optimization problem is a complex function
optimization problem with one or more local extrema [1]. In
practical applications, there are many multimodal optimi-
zation problems, such as parameter estimation and identi-
fcation of models [2, 3], engineering structure optimization,
welded beam design [4], and medical diagnosis [5]. It is
difcult to fnd the global optimum because there are many
local extrema in the multimodal optimization problem.
Terefore, it is of very importance to study efcient and
reasonable algorithms [6, 7].

Te swarm intelligence optimization algorithm is a kind
of bionic random search algorithm which can solve complex
optimization problems by imitating the ecosystem mecha-
nism in nature. Because of its strong global search ability,

high efciency, and insensitivity to initial values, it has been
widely concerned by relevant researchers [8–10]. At present,
hundreds of algorithms based on swarm intelligence have
emerged, such as genetic algorithm (GA) [11], particle
swarm optimization (PSO) algorithm [12], bacterial foraging
algorithm (BFA) [13], and artifcial fsh swarm algo-
rithm(AFSA) [14]. In the swarm intelligence optimization
algorithm, there are no individuals with centralized control,
and the interaction between individuals is extremely simple,
but they have the ability to solve complex problems in a short
time, which makes them very suitable for solving complex
optimization problems in practice. Moreover, the swarm
intelligence optimization algorithm does not need the
gradient information of the optimization problem, so it
belongs to the nongradient optimization algorithm.
Terefore, it has a wide range of applications [15, 16]. At
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present, it has been applied in optimization calculation
[17, 18], workshop scheduling [19, 20], image engineering
[21], network structure optimization [22], vehicle routing
problem [23], control of teleoperating systems, and other
felds [24].

As a kind of swarm intelligent algorithm, the chicken
swarm optimization (CSO) algorithm was proposed by
Meng et al. in 2014 [25]. Due to its good stability and global
search ability, the algorithm has attracted extensive attention
since it was proposed and has been successfully applied in
some felds [26, 27]. Liang et al. combined the CSO algo-
rithm with the pulse-coupled neural network for image
segmentation. Te experimental results show that this
method has obvious advantages in convergence speed and
segmentation accuracy [28]. Cristin et al. combined the CSO
algorithm with the deep neural network for the classifcation
of brain tumors and achieved good performance in terms of
accuracy, specifcity, sensitivity, and so on [29].

Although the CSO algorithm has shown good perfor-
mance in solving many benchmark problems and practical
problems, it also has some inherent shortcomings, such as
premature convergence and falling into local extrema.
Terefore, researchers have proposed many improved al-
gorithms. At present, the improvement of the CSO algo-
rithm can be mainly classifed into three categories as
follows:

(1) Combination with other swarm intelligent algorithms.
For example, Li et al. improved the search ability of
the CSO algorithm by integrating the operation of
gray wolf optimization algorithm and PSO algorithm
into the CSO algorithm. Te experimental results
show that the algorithm is superior to other basic
swarm intelligent algorithms in accuracy, conver-
gence speed [30], etc. Sampath fne-tuned the so-
lution of the CSO algorithm by introducing the
diferential evolution algorithm to avoid premature
convergence and applied the proposed algorithm to
solve routing problems [31].

(2) Modifcation of position update formulas of the
chicken swarm. For example, Gu et al. improved the
CSO algorithm by introducing an adaptive update
factor and designing the inertia weight and suc-
cessfully applied it to parameter estimation of the
Richards model [32]. Considering that the imbalance
between the diversity and intensifcation of the
population may afect the performance of the CSO
algorithm, Lin et al. proposed an improved CSO
algorithm by modifying the position update for-
mulas of the roosters and hens. Experiments show
that this algorithm has obvious advantages over
other swarm intelligent algorithms in terms of op-
timization accuracy and robustness [33].

(3) Multiobjective CSO algorithm. In order to solve the
confguration problem of electric vehicle charging
stations, Deb et al. proposed a new hybrid multi-
objective CSO algorithm based on pareto optimi-
zation. Te efectiveness of the algorithm is verifed

on some multiobjective benchmark problems and
the electric vehicle charging station confguration
problem [34].

Te performance of the aforementioned swarm intelli-
gence optimization algorithms has been improved to a
certain extent, but there are still some disadvantages. For
example, the literature [18] introduced the diferential
evolution strategy and quantum behavior into the bird
swarm algorithm. Although the convergence speed of the
algorithm was enhanced, the problem of premature con-
vergence still existed. In the literature [30], several improved
factors are introduced into the position update formulas of
the chicken swarm, which improves the ability of the al-
gorithm to jump out of the local extrema to a certain degree.
But the optimization accuracy still needs to be further
improved.

To solve the abovementioned problems, in this paper, an
improved chicken swarm optimization (ICSO) algorithm is
proposed which combines the idea of PSO with the repli-
cation and elimination-dispersal operations of BFA. More
specifcally, our contributions are as follows:

(1) Te replication operation of BFA is applied to the
chicks with the weakest optimization ability to in-
herit the optimal food source in the whole chicken
swarm, which is proftable to enhance the depth
search ability of the algorithm.

(2) Te chicks are dispersed to any position in the search
space according to a certain probability by using the
elimination-dispersal operation of BFA, which is
benefcial to improve the population diversity.

(3) Te idea of PSO is integrated to improve the global
search ability of the algorithm. Te experimental
results on CEC2014 standard function test suite
preliminarily show that this algorithm has obvious
advantages over other swarm intelligent algorithms
in optimization accuracy and convergence perfor-
mance [35]. In addition, compared with other
comparison algorithms, it also obtains competitive
results in solving the welded beam design problem.

2. CSO Algorithm

Te CSO algorithm is a meta-heuristic optimization algo-
rithm that simulates the foraging behavior of roosters, hens,
and chicks in nature. Te characteristics of the algorithm are
as follows:

(1) Correspondence with the optimization problem. Te
algorithm regards several randomly generated po-
sitions in the solution space of the optimization
problem as several chickens, and the food source of
each chicken is measured by the ftness function
value of the corresponding optimization problem.

(2) Hierarchical order, that is, the role assignment of the
chicken swarm. Te whole chicken swarm is com-
posed of four roles, namely, the roosters, hens,
chicks, and mother hens. Teir role assignment is
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based on the content of food sources.Te rooster has
the best food sources, the hens take the second place,
the food sources of the chicks are the worst, and the
mother hens are randomly selected from the hens.

(3) Subgroup division. During the whole foraging pro-
cess, the chicken swarm is divided into several
subgroups. Te number of subgroups is determined
by the number of the roosters, because each sub-
group is composed of a randomly selected rooster,
several hens, and chicks, and there is at least one hen
in each subgroup.

(4) Relation of dependence. In the foraging process of the
chicken swarm, the chicks follow the chicks’ mothers
(mother hens) and the hens follow the roosters in
their subgroups to forage for food.Tey can also steal
the good food sources found by other subgroups at
random.

(5) Information exchange. Te hierarchical order of the
chicken swarm and the mother-child relationship
between the mother hens and the chicks will be
updated after several iterations. Te information
exchange between subgroups will be realized
through continuous role assignment.

(6) Parallel optimization. Te whole chicken swarm can
realize parallel optimization through the division of

labor and cooperation mechanism between sub-
groups, quickly fnd the best food sources, and then
obtain the solution to the optimization problem.Te
formulas used by chickens with diferent roles in
foraging are given below.

Te formula used by the roosters in foraging is as follows:

Xi,j(t + 1) � Xi,j(t) × 1 + Randn 0, σ2  j ∈ [1, dim], (1)

σ2 �

1 fi ≤fk

exp
fk − fi( 

fi


 + ε

  fi >fk

i, k ∈ [1, rNum], k≠ i,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where Xi,j(t) represents the position of the ith rooster in the
t-th iteration, and dim is the dimension of the optimization
problem. Randn(0, σ2) is a normal distribution with a mean
value of 0 and a standard deviation of σ2. ε is a very small
number that can be expressed by the computer, which is
used to avoid the situation that the denominator is 0 in the
formula. fk represents the content of the food source of any
other rooster which is diferent from the ith rooster. rNum
represents the number of roosters.

Te formula used by the hens in foraging is as follows:

Xi,j(t + 1) � Xi,j(t) + c1 × Rand × Xr1 ,j(t) − Xi,j(t)  + c2 × Rand × Xr2 ,j(t) − Xi,j(t) , (3)

c1 � exp
fi − fr1

 

abs fi(  + ε( 
⎛⎝ ⎞⎠, (4)

c2 � fr2
− fi , (5)

where Xi,j(t) is the position of the ith hen in the t-th iter-
ation. Rand is a random number function with a value range
of (0, 1). Xr1,j(t) is the position of the rooster which is in the
same subgroup as the ith hen. Xr2,j(t) is any chicken ran-
domly selected from the whole chicken swarm, which is
diferent from the ith hen, and r1≠ r2.

Te formula used by the chicks in foraging is as follows:

Xi,j(t + 1) � Xi,j(t) + FL × Xm,j(t) − Xi,j(t) , (6)

where Xi,j(t) represents the ith chick, and Xm,j(t) is the
position of the chick’s mother. FL ∈ (0, 2) is a following
coefcient that the chick follows the chick’s mother to search
for food.

Te corresponding basic fowchart is shown in Figure 1.

3. The Proposed Algorithm

Aiming at the premature convergence of the standard CSO
algorithm in solving multimodal optimization problems, an
ICSO algorithm is proposed in this paper. Considering that
the chicks have the weakest optimization ability in the whole

chicken swarm, the algorithm improves the foraging be-
havior of the chicks by referring to the reproduction and
elimination-dispersal operations of BFA. At the same time,
considering that the PSO algorithm has good global search
ability, on the basis of individual division of labor and
cooperation optimization mechanism of the CSO algorithm,
a hybrid CSO algorithm is constructed to enhance the global
search ability of the algorithm by integrating the PSO
algorithm.

3.1. CSO Algorithm with Reproduction and Elimination-
Dispersal Operations (RECSO Algorithm). In the standard
CSO algorithm, chicks are the most vulnerable group.
Terefore, in order to improve the depth search ability of the
algorithm, this paper introduces the reproduction and
elimination-dispersal operations of BFA into the chicks’
foraging behavior, and a RECSO algorithm is proposed.
Firstly, in the role update process of the chicken swarm, the
replication operation of BFA is introduced to replace the
chicks with the same number of chickens with the strongest
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optimization ability. Trough this behavior, the depth op-
timization speed of the chicken swarm can be accelerated. At
the same time, in order to maintain the population diversity,
the elimination-dispersal operation is introduced to disperse
the chicks that have performed the replication operation to
any position in the search space according to a certain
probability. Trough this operation, the chicken swarm can
avoid falling into the local extrema. Te specifc repro-
duction and elimination-dispersal operations are as follows:

3.1.1. Reproduction Operation. According to the ftness
function values of the chicken swarm, let the chicks with poor
optimization ability inherit the position of the chickens with
the strongest optimization ability. Te formula is as follows:

Xi,j(t + 1) � Xi−rNum−hNum,j(t), (7)

where rNum is the number of roosters and hNum is the
number of hens.

3.1.2. Elimination-Dispersal Operation. Te chicks are dis-
persed to any position in the search space with the prob-
ability Ped, where Ped � 0.25. Te concrete contents are
given as follows:

for i� (rNum+ hNum+ 1): pop do.
if p> rand then

Xi,j(t + 1) � lb +(ub − lb) × rand. (8)

end.
end.

Here, pop is the population size. lb and ub are the lower
and upper bounds of search range, respectively.

3.2. CSO Algorithm Based on PSO (CSO-PSO Algorithm).
To improve the global optimization ability of the CSO al-
gorithm, in this section, we construct a CSO-PSO algorithm
to enhance the ability of the algorithm to jump out of the
local extrema by integrating PSO into the CSO algorithm.
Te fowchart of the CSO-PSO algorithm is shown in
Figure 2.

Te main steps are described as follows:

(1) Population initialization. It mainly involves the
parameter settings and determination of initial in-
dividual between CSO and PSO algorithms.

(2) Fitness evaluation.Te initial swarm optimal value is
recorded on the bulletin board.

Initialization of chicken swarm

Fitness evaluation and record the optimal value

Whether the role
update condition is met

End

Yes

No

Whether the maximum
number of iterations is reached

No

the roosters' foraging behavior

the hens' foraging behavior

the chicks' foraging behavior

Update the optimal value

Output the optimal value

Start

Role assignment:Define which chickens
are roosters, hens, and chicks

Subgroup division:Each Rooster belongs to
different subgroups, and hens and chicks are

randomly assigned to different subgroups

Yes

Figure 1: Flowchart of the standard CSO algorithm.
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(3) Subgroup division. Te initial population is divided
into two parts with the same scale as follows: sub-
group 1 and subgroup 2.

(4) CSO. We assign roles to subgroup 1 according to the
CSOalgorithm andperform the foraging behavior of the
chicken swarm to search for the global optimal value.

(5) PSO. Te velocity and position of particles in sub-
group 2 are updated according to the PSO algorithm
to search for the global optimal value.

(6) Information exchange. We merge subgroup 1 and
subgroup 2 to realize information exchange.

(7) Updating swarm optimal value. Te swarm optimal
value is updated according to the subgroup optimal
values obtained in steps (4) and (5).

(8) Werepeat steps (3)–(7) until the maximum number of
iterations is reached and the optimal value is output.

3.3. ICSO Algorithm. In view of the premature convergence
problem of the standard CSO algorithm in dealing with
multimodal optimization problems, an ICSO algorithm is
proposed in this section. Considering that the chicks have
the weakest optimization ability in the whole chicken swarm,
the RECSO algorithm in Section 3.1 is introduced to im-
prove the depth search ability of the algorithm. At the same
time, the CSO-PSO algorithm in Section 3.2 is introduced to
improve the global search ability of the algorithm. Te
fowchart of the ICSO algorithm is shown in Figure 3. Te
green part is the improvement strategy of reproduction and
elimination-dispersal operations introduced in Section 3.1
and the yellow part is the improvement strategy of the PSO
algorithm integrated in Section 3.2.

Te corresponding detailed steps are as follows:

(1) Parameter settings. It mainly involves the maximum
number of iterations M, the population size pop, the
dimension of solution space dim, and the limited
number of role updates G.

(2) Population initialization. pop solutions are randomly
generated in the solution space of the optimization
problem, which are used as the initial positions of the
population. According to the ftness function of the
optimization problem, the ftness value of each
position is calculated as a food source.

(3) Fitness evaluation. By comparing the food source
content of the whole initial population, the optimal
food source and corresponding individual position
of the population are recorded.

(4) Subgroup division. Te whole population is ran-
domly divided into two parts, namely, subgroup 1
and subgroup 2.

(5) RECSO. Te subgroup 1 is optimized according to
the RECSO algorithm.Te details are summarized as
follows:

(a) Judgment of the role update condition. Te role
update condition of the whole algorithm is mod(-
t,G)==1, where t is the current iteration number,

mod is a remainder function. If the condition is
false, we jump to step (d); otherwise, we judge
whether it is the frst iteration of the algorithm, if so,
we go to step (c), if not, we go to step (b).

(b) Reproduction and elimination-dispersal opera-
tions. We perform the reproduction and elimi-
nation-dispersal operations which are described
in Section 3.1 on the chicks.

(c) Role assignment and subgroup division.
According to the ftness function of the current
chicken swarm, we update the hierarchical order
and mother-child relationship of the whole
chicken swarm. After that, we divide the sub-
groups and determine the number of subgroups
according to the number of the roosters. Each
rooster belongs to diferent subgroups. Te hens
and chicks are randomly assigned to diferent
subgroups, but it is necessary to ensure that there
is at least one hen in each subgroup.

(d) Foraging behavior. According to (1), (3), and (6),
the foraging behaviors are performed by
chickens with diferent roles.

(e) Update of the optimal food source. At the end of
each iteration, the optimization situation of
chickens with diferent roles will change ac-
cordingly. We calculate the food source content
of the current chicken swarm according to the
ftness function and record the optimal food
source and its corresponding position by com-
paring them with the previous situation.

(6) PSO. Te velocity and position of particles in sub-
group 2 are updated according to the PSO algorithm.
Te optimal food source and its corresponding
position are recorded.

(7) Information interaction. We merge subgroups 1 and
2 to realize the information interaction.

(8) Update of swarm optimal value. Te swarm optimal
value is updated according to the subgroup optimal
values obtained in steps (e) and (6).

(9) Judgment of the algorithm’s termination conditions. If
the maximum number of iterations specifed by the
algorithm is reached, the optimal value is output and
the program operation is ended; otherwise, we jump
to step (4).

4. Simulation Experiment

4.1. Experimental Setup

4.1.1. Te Experimental Environment. Te experimental
environment of this paper is described as follows: Win-
dows 7 operating system, CPU: 3.5 GHz RAM: 12 GB and
the programming environment is MATLAB R2016a. In
order to verify the efectiveness and superiority of the
ICSO algorithm, we conducted experiments on CEC2014
function test suite, which provides 30 test functions, in-
cluding 3 unimodal functions: f1∼f3, 13 simple multimodal
functions: f4∼f16, 6 hybrid functions: f17∼f22, and 8
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Initialization of chicken swarm

Fitness evaluation and record the optimal value

Start

Perform CSO algorithm for subgroup 1 Perform PSO algorithm for subgroup 2

Whether the maximum
number of iterations is reached

Randomly divided into two subgroups 1 and 2 with the same scales

Position update of chickens with different roles

Optimal value update of subgroup 1

The velocity and position update of particles

Optimal value update of subgroup 2

Merge subgroups to realize information exchange

No

Yes

Output the optimal value

End

Update swarm optimal value

Figure 2: Flowchart of CSO-PSO algorithm.

The role update
condition is met

Yes

No

Role assignment

Subgroup division

It is the first
iteration

Reproduction operation
of the chicks

No

Yes

Elimination and dispersal
operation of the chicks

Population initialization

Fitness evaluation and record the optimal value

Start

Perform RECSO algorithm for subgroup 1 Perform PSO algorithm for subgroup 2

The maximum number
of iterations is reached

Randomly divided into two subgroups 1 and 2 with the same scales

The velocity and position update of particles

Optimal value update
of subgroup 2

Information exchange

No

Yes

Output the optimal value

End

Update swarm optimal value

Optimal value update
of subgroup 1

The foraging behavior
of the roosters

The foraging behavior
of the hens

The foraging behavior
of the chicks

Figure 3: Flowchart of ICSO algorithm.
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composition functions: f23∼f30. Te search range of all test
functions is [−100 100]. In order to understand CEC2014
function test suite more intuitively, the function types,
numbers, names, and theoretical global optimal values are
given in Table 1.

4.1.2. Te Parameter Settings. To make a more reasonable
comparison, for all algorithms involved in this paper, the
population size is set to 100, the maximum number of it-
erations is 10000, and the dimension of solution space is 10.
All algorithms are independently run 30 times on each test
function, and then the mean values are calculated. Other
parameter settings involved in this experiment are as
follows:

(1) Parameter settings of ICSO and CSO algorithms. Te
limited number of role updates in the chicken swarm
G� 10. Te ratios of roosters and hens in the whole
chicken swarm rPercent and hPercent are 0.15 and
0.7, respectively. Te proportion of mother hens in
the hens mPercent� 0.5. In addition, the elimina-
tion-dispersal probability Ped of the ICSO algorithm
is 0.25.

(2) Parameter settings of BFA. Te chemotactic opera-
tion Nc� 100. Te reproduction operation Nre� 10.
Te elimination-dispersal operation Ned � 10, and
the length of a swim Ns� 4.

(3) Parameter settings of the PSO algorithm. Two
learning factors c1 and c2 are both 2.

(4) Parameter settings of AFSA. Te visual feld of ar-
tifcial fsh visual� 2.5.Te step length step� 0.3.Te
maximum tentative number try_number� 5.

(5) Parameter settings of GA. Te binary digits PRE-
CI� 20. Te generation gap GGAP� 0.9. Te
crossover probability Pc � 0.7, and the mutation
probability Pm � 0.01.

In aforementioned parameter settings, the parameters of
CSO, BFA, and AFSA are set according to the literature
[13, 25] and [14], where CSO, BFA, and AFSA are proposed.
It is worth noting that the reason why Nre and Ned are set to
10 in BFA is to ensure that the maximum number of it-
erations is 10000. Te parameter settings of PSO and GA are
derived from the comparison algorithms mentioned in the
literature [28, 32], respectively.

In the ICSO algorithm, considering that if the value of
Ped is large, chicks are easy to fall into random exhaustive
search. If the value of Ped is small, it is not conducive to
maintaining population diversity, which will reduce the local
search ability of the algorithm. Terefore, in this section, to
give an appropriate value of Ped, we select four typical
functions f3, f6, f20, and f27 from the CEC2014 function test
suite for experiments, where f3 is a unimodal function, f6 is a
simple multimodal function, f20 is a hybrid function, and f27
is a composition function. At the same time, we choose the
ICSO algorithm to run these four functions 30 times in-
dependently to calculate their mean values. Te experi-
mental results are shown in Table 2.

In Table 2, F∗i represents the theoretical global optimal
values corresponding to diferent functions, where i� 3, 6,
20, 27. Te value of Ped is taken from 0.05 to 0.85 with an
interval of 0.2. |Di| represents the absolute value of the
diference between the theoretical global optimal value and
the actual mean one obtained on each function, where
i� 0.05, 0.25, · · ·, 0.85. It is easy to see from Table 2 that when
Ped � 0.25, the value of |Di| is the smallest, that is, the actual
mean optimal values obtained by the ICSO algorithm on
four functions are the closest to the theoretical ones. Fur-
thermore, when the value of Ped changes from 0.25 to 0.85
with an interval of 0.2, the value of |Di| is larger than that of
|D0.25|. Terefore, in the experiment, we choose Ped � 0.25.

4.2. Te Efectiveness Test of ICSO, RECSO, and CSO-PSO.
To verify the efectiveness of the three improved algorithms
proposed in this paper, namely ICSO, RECSO, and CSO–
PSO, compared with the standard CSO algorithm, in this
section, these four algorithms are tested on the CEC2014
function test suite, and the experimental comparison is made
in terms of optimization accuracy and convergence per-
formance.Te experimental parameter settings are shown in
Section 4.1.

4.2.1. Te Efectiveness Test for Optimization Accuracy.
To verify the efectiveness of the three improved algorithms
(ICSO, RECSO, and CSO-PSO) in terms of optimization
accuracy, in this section, we use ICSO, RECSO, CSO-PSO,
and CSO to run all 30 functions of the CEC2014 test suite
independently 30 times to obtain their mean values. Te
results are shown in Table 3, where the symbols “>,” “�,” and
“<” indicate that the experimental results of the comparison
algorithms are superior, equal, and inferior to the CSO
algorithm, respectively. Te optimal results are shown in
bold.

It can be clearly seen from Table 3 that the ICSO al-
gorithm has the largest number of optimal values, followed
by CSO-PSO, and the CSO algorithm is the worst. Most
specifcally, the operation results of the ICSO algorithm on
28 functions are better than those of the CSO algorithm, and
the operation results on 2 functions are the same as those of
the CSO algorithm. Te operation results of the RECSO
algorithm on 19 functions are better than those of the CSO
algorithm. Te operation results of it on 6 functions are
worse than those of the CSO algorithm, and its operation
results are the same as those of the CSO algorithm on the
other 5 functions. Te results of the CSO-PSO algorithm are
similar to those of the ICSO algorithm. Tere are 28
functions whose operation results are better than those of the
CSO algorithm, and the operation results on 2 functions are
the same as those of the CSO algorithm. However, from the
number of optimal values obtained, the ICSO algorithm is
far superior to the CSO-PSO algorithm. Tis shows the
efectiveness of the three improved strategies in terms of
optimization accuracy compared with the CSO algorithm,
and the performance of the ICSO algorithm is the best
among the four algorithms.
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Table 1: Te description of the CEC2014 test functions.

Type No Functions F∗i

Unimodal functions
f1 Rotated high conditioned elliptic function 100
f2 Rotated bent cigar function 200
f3 Rotated discus function 300

Simple multimodal functions

f4 Shifted and rotated Rosenbrock’s function 400
f5 Shifted and rotated Ackley’s function 500
f6 Shifted and rotated Weierstrass’s function 600
f7 Shifted and rotated Griewank’s function 700
f8 Shifted Rastrigin’s function 800
f9 Shifted and rotated Rastrigin’s function 900
f10 Shifted Schwefel’s function 1000
f11 Shifted and rotated Schwefel’s function 1100
f12 Shifted and rotated katsuura function 1200
f13 Shifted and rotated HappyCat function 1300
f14 Shifted and rotated HGBat function 1400
f15 Shifted and rotated expanded Griewank’s plus Rosenbrock’s function 1500
f16 Shifted and rotated expanded Scafer’s F6 function 1600

Hybrid functions

f17 Hybrid function 1 (N� 3) 1700
f18 Hybrid function 2 (N� 3) 1800
f19 Hybrid function 3 (N� 4) 1900
f20 Hybrid function 4 (N� 4) 2000
f21 Hybrid function 5 (N� 5) 2100
f22 Hybrid function 6 (N� 5) 2200

Composition functions

f23 Composition function 1 (N� 5) 2300
f24 Composition function 2 (N� 3) 2400
f25 Composition function 3 (N� 3) 2500
f26 Composition function 4 (N� 5) 2600
f27 Composition function 5 (N� 5) 2700
f28 Composition function 6 (N� 5) 2800
f29 Composition function 7 (N� 3) 2900
f30 Composition function 8 (N� 3) 3000

Table 2: Te experimental results via diferent Ped.

Functions f3 f6 f20 f27
F∗i 300 600 2000 2700
Ped � 0.05 300.1282 600.7110 2.0077e + 03 2.8786e + 03
|D0.05| 0.1282 0.7110 7.7 178.6
Ped � 0.25 300.0813 600.7149 2.0053e+ 03 2.8314e+ 03
|D0.25| 0.0813 0.7149 5.3 131.4
Ped � 0.45 300.1122 600.8051 2.0068e + 03 2.8911e + 03
|D0.45| 0.1122 0.8051 6.8 191.1
Ped � 0.65 300.1803 600.8868 2.0075e + 03 2.8463e + 03
|D0.65| 0.1803 0.8868 7.5 146.3
Ped � 0.85 300.1330 601.0191 2.0074e + 03 2.8795e + 03
|D0.85| 0.1330 1.0191 7.4 179.5

Table 3: Te experimental results of ICSO, RECSO, CSO-PSO, and CSO algorithms.

Functions ICSO CSO RECSO CSO-PSO
f1 2.5963e+ 03> 7.4764e + 05 3.2289e + 05> 6.1321e + 03>
f2 728.1158> 1.5107e + 07 5.8310e + 06> 1.0100e + 03>
f3 300.0813> 957.7185 446.6751> 300.2133>
f4 411.1957> 431.2580 426.6130> 414.4211>
f5 517.9530> 519.9147 519.2104> 519.1367>
f6 600.7149> 602.1075 601.8348> 600.8712>
f7 700.0947> 701.4794 701.4910< 700.1054>
f8 800.1327> 808.6386 809.2422< 800.3648>
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4.2.2. Te Efectiveness Test for Convergence Performance.
To verify the efectiveness of the abovementioned three
improved algorithms in terms of convergence perfor-
mance compared to the CSO algorithm, Figure 4 shows
the average convergence curves of the four algorithms
independently running 30 times on 30 functions. In order
to show the convergence efect of each algorithm more
clearly, the average ftness function values are logarith-
mically processed in Figure 4. In addition, the conver-
gence curves of some functions contain subgraphs, such as
those of f4, f8, and f13, which are locally magnifed
renderings.

It can be seen from Figure 4 that the convergence
performance of the ICSO algorithm on functions f1, f5, f9,
f10, f11, f17, f18, f25, and f27 is signifcantly better than that of
the other three algorithms. On functions f2, f3, f6, f8, f12, f16,
f22, and f24, ICSO and CSO-PSO algorithms have similar
convergence performance. Te former is slightly better
than the latter, and both of them are better than CSO and
RECSO algorithms (only on function f16, CSO-PSO al-
gorithm is slightly better than the ICSO algorithm). On
functions f4, f7, f13, f14, f15, f19, f20, f21, f28, f29, and f30, the
four algorithms have comparable convergence perfor-
mance, and ICSO is slightly superior. On functions f23 and
f26, the RECSO algorithm has the best convergence
performance.

To sum up, the convergence performance of the ICSO
algorithm on 27 functions is the best, and it is better than
that of the CSO algorithm on all 30 functions. Te CSO-PSO
algorithm has the best convergence performance on one
function, and its convergence performance on 28 functions

is better than that of the CSO algorithm. Te RECSO al-
gorithm has the best convergence performance on two
functions, and only the convergence performance on
functions f8, f13, and f17 is slightly inferior to that of the CSO
algorithm. Tis fully shows the efectiveness of the three
improved algorithms in terms of convergence performance
compared with the CSO algorithm, and the ICSO algorithm
has the best convergence performance.

It is concluded that the reason why the ICSO algorithm is
superior to the other three algorithms may be that the al-
gorithm integrates the ideas of BFA and PSO, which not only
improves the depth search ability of the algorithm but also
improves its breadth searchability.

4.3. Te Superiority Comparison among Several Swarm In-
telligent Algorithms. To verify the superiority of the ICSO
algorithm proposed in this paper, in this section, we
compare the performance of seven algorithms, namely,
ICSO, CSO, ICSOII proposed in the literature [30] (named
ICSOII to distinguish it from the ICSO algorithm), BFA,
PSO, AFSA, and GA from the aspects of optimization ac-
curacy and convergence performance.

4.3.1. Te Superiority Comparison in Optimization Accuracy.
To verify the superiority of the ICSO algorithm in terms of
optimization accuracy, this section presents the experi-
mental results of the abovemetioned seven algorithms to
optimize the CEC2014 function test suite.Te data in Table 4
are the mean values of 30 independent runs of each

Table 3: Continued.

Functions ICSO CSO RECSO CSO-PSO
f9 904.7067> 911.8049 911.5464> 905.7708>
f10 1.0499e+ 03> 1.1771e + 03 1.1783e + 03< 1.1091e + 03>
f11 1.2233e+ 03> 1.4489e + 03 1.4199e + 03> 1.2716e + 03>
f12 1.2001e+ 03> 1.2005e + 03 1.2005e + 03� 1.2001e+ 03>
f13 1.3001e+ 03= 1.3001e+ 03 1.3001e+ 03= 1.3001e+ 03=
f14 1.4001e+ 03> 1.4003e + 03 1.4003e + 03� 1.4001e+ 03>
f15 1.5007e+ 03> 1.5011e + 03 1.5009e + 03> 1.5009e + 03>
f16 1.6015e+ 03> 1.6020e + 03 1.6020e + 03� 1.6015e+ 03>
f17 2.6873e+ 03> 3.6491e + 03 5.8702e + 03< 3.0513e + 03>
f18 2.6243e+ 03> 5.1907e + 03 3.5783e + 03> 4.7507e + 03>
f19 1.9008e+ 03> 1.9023e + 03 1.9018e + 03> 1.9013e + 03>
f20 2.0053e+ 03> 2.0848e + 03 2.0673e + 03> 2.0068e + 03>
f21 2.1390e+ 03> 2.3364e + 03 2.3150e + 03> 2.1486e + 03>
f22 2.2045e+ 03> 2.2244e + 03 2.2264e + 03< 2.2084e + 03>
f23 2.6122e + 03> 2.6138e + 03 2.5955e+ 03> 2.6122e + 03>
f24 2.5148e+ 03> 2.5258e + 03 2.5211e + 03> 2.5158e + 03>
f25 2.6629e+ 03> 2.6923e + 03 2.6713e + 03> 2.6694e + 03>
f26 2.7001e+ 03= 2.7001e+ 03 2.7001e+ 03� 2.7001e+ 03=
f27 2.8314e+ 03> 2.9131e + 03 2.8878e + 03> 2.8759e + 03>
f28 3.1761e+ 03> 3.1878e + 03 3.1792e + 03> 3.1765e + 03>
f29 3.2961e+ 03> 3.5482e + 03 3.5628e + 03< 3.3786e + 03>
f30 3.5856e+ 03> 3.8147e + 03 3.6982e + 03> 3.7041e + 03>
> 28 — 19 28
< 0 — 6 0
� 2 — 5 2
Te number of optimal values 29 2 3 5
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Figure 4: Continued.
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Figure 4: Continued.
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algorithm on each function. Te bold data in Table 4 are the
optimal values.

It can be seen from Table 4 that for functions f1 and f2, the
ICSO algorithm directly reduces the order of magnitude of
optimization accuracy from 5 and 7 to 3 and 2, respectively.
In addition, from the number of optimal values that can be
found, the number of optimal values that can be found by
CSO and GA is 2. AFSA and PSO can fnd 3 and 9 optimal
values, respectively. Te optimal value of ICSOII and BFA is
both 6. Te number of optimal values that can be found by
the ICSO algorithm is 18, which shows the superiority of the
ICSO algorithm in optimization accuracy.

4.3.2. Te Superiority Comparison in Convergence
Performance. To verify the superiority of the ICSO algorithm
in convergence performance, in this section, we give the
average convergence curves of 30 test functions on the
CEC2014 function test suite optimized by the above-
mentioned seven algorithms (each algorithm is independently
run 30 times on each test function). Te parameter settings in
this section are shown in Section 4.1.2. As mentioned in
Section 4.2.2, the ordinates in Figure 5 are the logarithms of
the average ftness function values, and subgraphs in some
convergence curves are locally magnifed renderings, so as to
show the convergence efect of each algorithm more clearly.

It can be seen from Figure 5 that the convergence
performance of the ICSO algorithm is the best on functions
f1, f5∼f7, f11, f14, f15, f17, f19, f21, f22, f24, f25, and f27, among
which, on the functions f5, f6, f11, f25, and f27, the convergence
advantage of the ICSO algorithm is particularly obvious. On

functions f2, f3, f8, f9, and f20, the convergence performance
between ICSO and PSO algorithms is very close, the per-
formance of the PSO algorithm is slightly better, and they all
outperform the performance of the other algorithms. On
functions f13 and f26, the convergence performance of ICSO
and CSO algorithms is the best, and the performance of the
ICSO algorithm is slightly inferior to that of the CSO al-
gorithm, ranking second. On the function f16, ICSOII has the
best convergence performance and the ICSO algorithm
ranks second. Only on functions f4, f12, f18, f23, and f28∼f30,
the convergence performance of the ICSO algorithm is not
as good as that of BFA, AFSA, and GA, ranking 3rd or 4th.
From this, we can see the superiority of the ICSO algorithm
proposed in this paper in terms of convergence
performance.

4.3.3. Friedman Test of Algorithms. To compare the per-
formance of various algorithms more reasonably, this section
uses the Friedman test to test the performance of the
abovementioned 7 algorithms (ICSO, ICSOII, PSO, CSO, GA,
BFA, andAFSA) from a statistical point of view.Te Friedman
test is a nonparametric test method, which is often used to test
the performance of algorithms due to its simple operation and
lax requirements on the test data [32, 33, 36]. For the mini-
mum optimization problem, the smaller the average ranking
of the algorithm, the better its performance. Table 5 is the
Friedman test results of 7 algorithms on 30 functions.

It can be seen from Table 5 that the average ranking of
the ICSO algorithm is 1.90, ranking the highest, 0.87 lower
than that of ICSOII, 2.70 lower than that of the CSO
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Figure 5: Convergence curves of 7 algorithms on 30 test functions.

14 Computational Intelligence and Neuroscience



algorithm and 1.38 lower than that of the PSO algorithm,
which fully demonstrates the efectiveness of the improved
strategy in this paper.

To sum up, the reason why the ICSO algorithm is superior
to CSO, PSO, and BFA may be that it greatly enhances the
ability of the algorithm to jump out of the local extrema by
innovative cooperation between the chicken swarm and
particle one to achieve information interaction and improves
the depth searchability of the algorithm by integrating the
replication and elimination-dispersal operations of BFA. Te
reasonwhy the ICSO algorithm is superior to ICSOII, GA, and
AFSA may be that the ICSO algorithm has a mechanism of
subgroup division and multiswarm cooperation based on
chicken swarm and particle one, which realizes parallel op-
timization through group cooperation. Although the ICSOII
algorithm has subgroup division, its population cooperation is
limited to the cooperation within the chicken swarm, so its
optimization ability is weaker than that of the ICSO algorithm.

4.4. Experimental Comparison between ICSO and ICSOII.
To further compare the performance between the ICSO
algorithm proposed in this paper and the ICSOII algorithm
proposed in the literature [30], we set the parameters of the
algorithm according to the literature [30] in this section.
Te statistical results of the abovementioned two

algorithms running 51 times independently on the
CEC2014 function test suite are shown in Table 6. Te
experimental data of the ICSOII algorithm comes from its
corresponding literature.

It can be clearly seen from Table 6 that the number of
optimal values obtained by the ICSOII algorithm is 18, and
the theoretical optimal values are obtained on 10 functions.
While the number of optimal values obtained by the ICSO
algorithm is 21, and its theoretical optimal values are ob-
tained on 12 functions.

4.5. Experimental Comparison between ICSO and a State-of-
the-Art Algorithm. To further verify the performance of the
ICSO algorithm, DMSDL-QBSA which is a state-of-the-art
algorithm proposed in the literature [18] is also used to
compare with the ICSO algorithm in this section. In order to
make the experimental comparison fairer and more rea-
sonable, the parameter settings of the ICSO algorithm are
the same as those of DMSDL-QBSA, that is, the population
size is set to 30, and the maximum number of iterations is set
to 100000. Other parameter settings can be seen in Section
4.1.2.

Te experimental data including the maximum (Max),
minimum (Min), mean (Mean), and variance (Var) values
are shown in Table 7, where the optimal results are shown in

Table 4: Te optimization accuracy comparison of 7 intelligent algorithms.

Function ICSO CSO ICSOII BFA PSO AFSA GA
f1 2.5963e+ 03 7.4764e + 05 2.6050e + 05 7.8186e + 05 3.0053e + 03 3.4393e + 06 4.4127e + 04
f2 728.1158 1.5107e + 07 1.0659e + 03 8.9827e + 03 599.1427 4.3975e + 08 3.9775e + 03
f3 300.0813 957.7185 857.3808 1.5267e + 04 300.0106 1.7089e + 03 3.3396e + 03
f4 411.1957 431.2580 409.3101 404.7945 418.4158 499.9456 410.1793
f5 517.9530 519.9147 519.5907 520.0342 520.1769 520.1581 519.9999
f6 600.7149 602.1075 600.9178 609.8307 601.0835 609.2003 602.9651
f7 700.0947 701.4794 700.3004 700.3424 700.0974 722.0824 700.2899
f8 800.1327 808.6386 800.5306 847.2295 800.0663 842.1636 802.7196
f9 904.7067 911.8049 905.7401 951.4788 904.5150 932.2919 915.1409
f10 1.0499e + 03 1.1771e + 03 1.0717e + 03 1.8578e + 03 1.0897e + 03 2.1799e + 03 1.0321e+ 03
f11 1.2233e+ 03 1.4489e + 03 1.2524e + 03 2.0745e + 03 1.2969e + 03 2.2376e + 03 1.6340e + 03
f12 1.2001e+ 03 1.2005e + 03 1.2001e+ 03 1.2001e+ 03 1.2002e + 03 1.2005e + 03 1.2001e+ 03
f13 1.3001e+ 03 1.3001e+ 03 1.3001e+ 03 1.3002e + 03 1.3001e+ 03 1.3007e + 03 1.3004e + 03
f14 1.4001e+ 03 1.4003e + 03 1.4001e+ 03 1.4003e + 03 1.4001e+ 03 1.4006e + 03 1.4004e + 03
f15 1.5007e+ 03 1.5011e + 03 1.5008e + 03 1.5083e + 03 1.5009e + 03 1.5398e + 03 1.5021e + 03
f16 1.6015e+ 03 1.6020e + 03 1.6015e+ 03 1.6038e + 03 1.6015e+ 03 1.6035e + 03 1.6027e + 03
f17 2.6873e+ 03 3.6491e + 03 3.1426e + 03 9.7385e + 03 3.1797e + 03 2.8286e + 03 3.5779e + 04
f18 2.6243e + 03 5.1907e + 03 2.1108e + 03 7.3224e + 03 4.7427e + 03 1.9077e+ 03 1.4040e + 04
f19 1.9008e+ 03 1.9023e + 03 1.9008e+ 03 1.9222e + 03 1.9013e + 03 1.9092e + 03 1.9014e + 03
f20 2.0053e + 03 2.0848e + 03 2.0067e + 03 6.8899e + 03 2.0040e+ 03 2.1115e + 03 8.6438e + 03
f21 2.1390e+ 03 2.3364e + 03 2.1546e + 03 5.9637e + 03 2.1501e + 03 2.5022e + 03 5.3393e + 03
f22 2.2045e+ 03 2.2244e + 03 2.2063e + 03 2.4322e + 03 2.2077e + 03 2.2462e + 03 2.2689e + 03
f23 2.6122e + 03 2.6138e + 03 2.5766e + 03 2.5000e+ 03 2.6295e + 03 2.5000e+ 03 2.6295e + 03
f24 2.5148e+ 03 2.5258e + 03 2.5159e + 03 2.5769e + 03 2.5153e + 03 2.5745e + 03 2.5312e + 03
f25 2.6629e+ 03 2.6923e + 03 2.6766e + 03 2.6965e + 03 2.6871e + 03 2.6952e + 03 2.6890e + 03
f26 2.7001e+ 03 2.7001e+ 03 2.7001e+ 03 2.7002e + 03 2.7001e+ 03 2.7007e + 03 2.7003e + 03
f27 2.8314e+ 03 2.9131e + 03 2.9066e + 03 2.8737e + 03 2.9798e + 03 2.8807e + 03 3.0434e + 03
f28 3.1761e + 03 3.1878e + 03 3.1799e + 03 3.0000e+ 03 3.2304e + 03 3.0000e+ 03 3.2409e + 03
f29 3.2961e + 03 3.5482e + 03 3.3122e + 03 3.1000e+ 03 1.1433e + 05 3.1064e + 03 1.1836e + 05
f30 3.5856e + 03 3.8147e + 03 3.6306e + 03 3.2000e+ 03 3.6875e + 03 3.2197e + 03 3.8617e + 03
Te number of optimal values 18 2 6 6 9 3 2
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bold. It is worth noting that the experimental data of
DMSDL-QBSA are extracted from its corresponding
literature.

By analyzing the data in Table 7, we can see that our
ICSO algorithm can get all the best values on functions f1∼f3,
f5∼f9, f12∼f21, f26, and f29. On functions f4, f11, f22, f24, f25, and
f30, the ICSO algorithm has the best results in terms of the
maximum, minimum, and mean values but is slightly in-
ferior to DMSDL-QBSA in variance value. DMSDL-QBSA
only achieves relatively good results on functions f23, f27, and
f28. To sum up, our ICSO algorithm has advantages in most

test functions due to the improvement of global and deep
search abilities.

4.6. Welded Beam Design Problem. To verify the perfor-
mance of the ICSO algorithm to solve practical optimization
problems, a welded beam design problem is considered,
which has been described in detail in the literature [4, 37]
and [38]. Te problem is a minimum problem, which can be
formulated as follows:

Minimize f(x) � 1.10471x
2
1x2 + 0.04811x3x4 14.0 + x2( ,

Subject to g1(x) � τ(x) − τmax ≤ 0,

g2(x) � σ(x) − σmax ≤ 0,

g3(x) � x1 − x4 ≤ 0,

g4(x) � 0.10471x
2
1 + 0.04811x3x4 14.0 + x2(  − 5.0≤ 0,

g5(x) � 0.125 − x1 ≤ 0,

g6(x) � δ(x) − δmax ≤ 0,

g7(x) � P − Pc(x)≤ 0,

(9)

where 0.1≤ x1, x4 ≤ 2, 0.1≤ x2, x3 ≤ 10,
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P � 6000lb, L� 14in., E� 30×106 psi, G� 12×106 psi,
τmax � 13600 psi, σmax � 30000, δmax � 0.25 in.

Te comparison results of optimal solutions obtained by
diferent algorithms are shown in Table 8. Te statistical
results are shown in Table 9, where “Worst,” “Mean,” “Best,”
and “SD” stand for the worst, mean, best, and standard
deviation values obtained by 30 independent runs, respec-
tively. In addition, the optimal results are shown in bold. It is
worth noting that the experimental results of comparison
algorithms are extracted from their corresponding literature.

For HFPSO [4] and EPSO [37], because the optimal
solutions of the four parameters are not given in the liter-
ature [4, 37], they are not listed in Table 8. It can be seen
from Tables 8 and 9, ICSO and MBA [38] have obvious
advantages over the other two algorithms in terms of the
worst, mean values, standard deviation, etc. Although the
stability of the ICSO algorithm is slightly inferior to that of
MBA [38], it has a higher optimization accuracy, which
preliminarily shows that ICSO can be used to solve the
welded beam design problem.
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Table 5: Friedman test results of 7 algorithms.

Algorithm Average ranking Ranking
ICSO 1.90 1
ICSOII 2.77 2
PSO 3.28 3
CSO 4.60 4
BFA 5.07 5
GA 5.13 6
AFSA 5.25 7

Table 6: Te experimental results between ICSO and ICSOII.

Function ICSO ICSOII
f1 3.74e+ 03 ± 4.81e± 03 5.55e + 04± 4.75e ± 04
f2 8.63e+ 02± 5.85e+ 02 1.08e + 03± 2.71e + 02
f3 3.00e+ 02 ± 1.19e− 01 7.71e + 02± 2.86e + 02
f4 4.14e + 02± 1.45e + 01 4.00e+ 02± 1.88e− 01
f5 5.18e+ 02± 4.75e+ 00 5.19e + 02± 5.97e + 00
f6 6.00e+ 02 ± 9.13e− 01 6.00e+ 02± 1.24e+ 00
f7 7.00e+ 02± 4.93e− 02 7.00e+ 02± 1.00e− 02
f8 8.00e+ 02 ± 5.16e− 01 8.03e + 02± 3.77e + 00
f9 9.05e+ 02± 1.94e+ 00 9.06e + 02± 4.06e + 00
f10 1.05e+ 03 ± 6.31e+ 01 1.06e + 03± 2.36e + 02
f11 1.25e+ 03± 1.13e+ 02 1.46e + 03± 2.01e + 02
f12 1.20e+ 03± 1.46e− 01 1.20e+ 03± 3.14e− 02
f13 1.30e+ 03± 2.95e− 02 1.30e+ 03± 6.97e− 02
f14 1.40e+ 03± 2.42e− 02 1.40e+ 03± 7.79e− 02
f15 1.50e+ 03± 2.56e− 01 1.50e+ 03 ± 1.81e− 01
f16 1.60e+ 03 ± 4.21e− 01 1.60e+ 03 ± 3.18e− 01
f17 2.83e + 03± 7.98e + 02 2.16e+ 03± 2.47e+ 02
f18 3.07e + 03± 1.78e + 03 1.91e+ 03± 6.00e+ 01
f19 1.90e+ 03± 7.00e− 01 1.90e+ 03± 3.48e− 01
f20 2.00e+ 03± 5.27e+ 00 2.10e + 03± 6.34e + 01
f21 2.12e+ 03± 4.53e+ 01 2.36e + 03± 6.19e + 00
f22 2.20e+ 03± 9.25e+ 00 2.22e + 03± 7.12e + 01
f23 2.50e + 03± 3.07e + 01 2.40e+ 03 ± 7.12e+ 01
f24 2.51e+ 03± 3.71e+ 00 2.52e + 03± 4.68e + 00
f25 2.67e + 03± 3.33e + 01 2.61e+ 03± 9.46e+ 00
f26 2.70e+ 03± 2.35e− 02 2.70e+ 03± 4.46e− 02
f27 2.84e + 03± 1.67e + 02 2.70e+ 03 ± 6.15e+ 01
f28 3.17e + 03± 4.05e + 01 3.00e+ 03± 6.35e+ 01
f29 3.26e + 03± 9.56e + 01 3.14e+ 03± 9.52e+ 01
f30 3.60e + 03± 8.94e + 01 3.47e+ 03± 6.87e+ 01
Te number of optimal values 21 18
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Table 7: Te experimental results between ICSO and DMSDL-QBSA.

Function Term ICSO DMSDL-QBSA

f1

Max 1.2436e+ 03 9.6209e + 08
Min 102.9899 1.7687e + 05
Mean 447.9202 1.9320e + 06
Var 7.9873e+ 04 1.3093e + 07

f2

Max 226.3723 1.7326e + 10
Min 200.0070 1.4074e + 05
Mean 206.8620 4.8412e + 07
Var 51.1127 4.2984e + 08

f3

Max 300 5.3828e + 06
Min 300 6.3986e + 02
Mean 300 3.0848e + 03
Var 3.2679e− 25 8.0572e + 04

f4

Max 436.1827 4.3338e + 03
Min 400.0000 4.1267e + 02
Mean 406.3343 4.3261e + 02
Var 153.6519 8.5548e+ 01

f5

Max 520.2256 5.2110e + 02
Min 500 5.2007e + 02
Mean 518.7619 5.2014e + 02
Var 26.0152 9.9700e− 02

f6

Max 603.1944 6.1569e + 02
Min 600 6.0257e + 02
Mean 601.0094 6.0358e + 02
Var 0.9590 1.3117e + 00

f7

Max 700.3289 9.3907e + 02
Min 700.0246 7.0069e + 02
Mean 700.1142 7.0290e + 02
Var 0.0038 1.3815e + 01

f8

Max 800.9950 9.3391e + 02
Min 800 8.0877e + 02
Mean 800.1327 8.1676e + 02
Var 0.1183 9.7968e + 00

f9

Max 908.9546 1.0366e + 03
Min 900.9950 9.1537e + 02
Mean 904.9416 9.2335e + 02
Var 3.3100 9.3860e + 00

f10

Max 1.2722e+ 03 3.4795e + 03
Min 1.0151e+ 03 1.4316e + 03
Mean 1.1078e+ 03 1.6111e + 03
Var 8.5848e + 03 2.2195e+ 02

f11

Max 1.6046e+ 03 3.7357e + 03
Min 1.1119e+ 03 1.2811e + 03
Mean 1.2712e+ 03 1.4869e + 03
Var 2.0085e + 04 2.6682e+ 02

f12

Max 1.2003e+ 03 1.2044e + 03
Min 1.2000e+ 03 1.2017e + 03
Mean 1.2001e+ 03 1.2018e + 03
Var 0.0062 2.1603e− 01

f13

Max 1.3001e+ 03 1.3061e + 03
Min 1.3000e+ 03 1.3004e + 03
Mean 1.3001e+ 03 1.3006e + 03
Var 7.4041e− 04 2.9913e− 01

f14

Max 1.4001e+ 03 1.4493e + 03
Min 1.4000e+ 03 1.4005e + 03
Mean 1.4000e+ 03 1.4009e + 03
Var 2.7722e− 04 2.8527e + 00
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Table 7: Continued.

Function Term ICSO DMSDL-QBSA

f15

Max 1.5015e+ 03 1.9050e + 05
Min 1.5004e+ 03 1.5026e + 03
Mean 1.5008e+ 03 1.5816e + 03
Var 0.0731 2.7233e + 03

f16

Max 1.6026e+ 03 1.6046e + 03
Min 1.6001e+ 03 1.6019e + 03
Mean 1.6014e+ 03 1.6024e + 03
Var 0.3295 3.6883e− 01

f17

Max 3.4698e+ 03 8.4770e + 06
Min 1.7150e+ 03 2.0097e + 03
Mean 2.2377e+ 03 2.1095e + 04
Var 1.9496e+ 05 2.0329e + 05

f18

Max 1.1217e+ 04 6.6050e + 08
Min 1.8094e+ 03 1.8288e + 03
Mean 3.2529e+ 03 1.9475e + 05
Var 5.4030e+ 06 1.0139e + 07

f19

Max 1.9025e+ 03 1.9555e + 03
Min 1.9000e+ 03 1.9028e + 03
Mean 1.9011e+ 03 1.9036e + 03
Var 0.6471 1.4209e + 00

f20

Max 2.0095e+ 03 1.2708e + 08
Min 2.0003e+ 03 2.0241e + 03
Mean 2.0025e+ 03 4.5834e + 04
Var 3.7953 2.1988e + 06

f21

Max 2.2435e+ 03 2.6897e + 07
Min 2.1000e+ 03 2.2314e + 03
Mean 2.1591e+ 03 7.4587e + 03
Var 3.7630e+ 03 2.8735e + 05

f22

Max 2.2207e+ 03 3.2211e + 03
Min 2.2000e+ 03 2.2314e + 03
Mean 2.2064e+ 03 2.2687e + 03
Var 85.7389 5.1234e+ 01

f23

Max 2.6295e+ 03 2.9923e + 03
Min 2500 2.5000e+ 03
Mean 2.6208e + 03 2.5015e+ 03
Var 1.0788e + 03 1.7156e+ 01

f24

Max 2.5213e+ 03 2.6369e + 03
Min 2.5088e+ 03 2.5251e + 03
Mean 2.5149e+ 03 2.5338e + 03
Var 12.8783 1.1715e+ 01

f25

Max 2.7015e+ 03 2.7327e + 03
Min 2.6000e+ 03 2.6635e + 03
Mean 2.6657e+ 03 2.6894e + 03
Var 1.2703e + 03 1.2571e+ 01

f26

Max 2.7002e+ 03 2.7116e + 03
Min 2.7000e+ 03 2.7002e + 03
Mean 2.7001e+ 03 2.7003e + 03
Var 9.1541e− 04 3.5003e− 01

f27

Max 3.1009e+ 03 3.4144e + 03
Min 2.7004e+ 03 2.7054e + 03
Mean 2.8927e + 03 2.7219e+ 03
Var 1.9303e + 04 6.1325e+ 01

f28

Max 3.2796e+ 03 4.8154e + 03
Min 3.1597e + 03 3.0000e+ 03
Mean 3.1994e + 03 3.0065e+ 03
Var 1.2209e + 03 5.3483e+ 01
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5. Conclusion and Future Directions

To overcome the premature convergence problem of the
standard CSO algorithm when solving complex optimi-
zation problems, an ICSO algorithm is proposed in this
paper. For the chicks with the weakest optimization
ability, we introduce the reproduction and elimination-
dispersal operations of BFA to improve the deep
searchability of the CSO algorithm. In addition, in order
to improve the global convergence speed of the algorithm,
the theory of PSO is integrated to construct a hybrid CSO
algorithm. Te experimental results show that the ICSO
algorithm proposed in this paper can signifcantly im-
prove the optimization accuracy and convergence
performance.

Te disadvantage of the proposed algorithm is that
with the increase of the dimension of the optimization
problem, the optimization ability of the algorithm will
decrease, which makes it not suitable for dealing with
large-scale optimization problems. Terefore, in the fu-
ture research work, how to dynamically adjust the limited
number of role updates in the chicken swarm according to
the number of iterations and how to improve the indi-
vidual position update formula for hens with relatively
weak search ability to further improve the optimization
ability still need further research. In addition, we will also
consider applying the ICSO algorithm to deal with
practical problems, such as path planning in logistics
distribution, workshop scheduling, and land use forecast
[39].
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