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For personal safety and crime prevention, some research studies based on deep learning have achieved success in the object
detection of X-ray security inspection. However, the research on dangerous liquid detection is still scarce, and most research
studies are focused on the detection of some prohibited and common items. In this paper, a lightweight dangerous liquid detection
method based on the Depthwise Separable convolution for X-ray security inspection is proposed. Firstly, a dataset of seven
common dangerous liquids with multiple postures in two detection environments is established. Secondly, we propose a novel
detection framework using the dual-energy X-ray data instead of pseudocolor images as the objects to be detected, which improves
the detection accuracy and realizes the parallel operation of detection and imaging. )irdly, in order to ensure the detection
accuracy and reduce the computational consumption and the number of parameters, based on the Depthwise Separable
convolution and the Squeeze-and-Excitation block, a lightweight object location network and a lightweight dangerous liquid
classification network are designed as the backbone networks of our method to achieve the location and classification of the
dangerous liquids, respectively. Finally, a semiautomatic labeling method is proposed to improve the efficiency of data labeling.
Compared with the existing methods, the experimental results demonstrate that our method has better performance and
wider applicability.

1. Introduction

At present, nondestructive testing technology has been
widely applied in various fields [1–4], among which the
application of X-ray detection technology in airports, cus-
toms, railway stations, and other transportation depart-
ments reduces criminal behavior effectively. However, the
technology requires security inspectors to determine
whether prohibited items are hidden in baggage. During the
rush hours, the passing frequency of baggage increases
greatly, and the security inspectors have to complete the
detection in a very short time. Moreover, the images of
prohibited items are often distorted or corrupted. )ese
factors make detection more difficult and bring great
challenges to security detection. Up to now, manual de-
tection has been widely used in the field of X-ray security
detection, but this method mainly relies on the experience of

security inspectors. Meanwhile, the detection results of
different security inspectors are also different. )e accuracy
of manual detection cannot be assured [5]. Accordingly, a
fast and effective automatic object detection method for
X-ray security inspection is significant.

In the early stage of the automatic object detection
method for X-ray security inspection, some feature ex-
traction algorithms are often used. Common feature ex-
traction algorithms include Scale-invariant Feature
Transform (SIFT), Histogram of Oriented Gradient (HOG),
Haar-like features (Haar), etc. [6]. In addition, for the single-
energy X-ray image, a method using the visual vocabulary
and an occurrence structure generated from a training
dataset were proposed in [7]. A new approach called
Adaptive Sparse Representation (XASR+) was proposed in
[8], and several patches were extracted from X-ray images to
construct representative dictionaries in this method. For the
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dual-energy X-ray pseudocolor images, Franzel et al. [9]
used the visual vocabulary and the SVM classifier to detect
handguns in hand luggage. Wang [10] et al. proposed a
method by combining the Taruma feature based on the
contourlet transform and the histogram, which applied the
random forests classifier to classify these features from the
illegal objects. In [11], Uroukov et al. used textural signatures
to recognize and characterize materials. However, due to the
wide variety of objects in X-ray security inspection, the fast
detection requirement, the noise, the perspective imaging,
the geometric distortion, and the objects placed closely
together, these detection methods based on these manual
features are not satisfactory.

In recent years, deep learning in image analysis and
processing, especially the convolutional neural networks
(CNNs), has achieved great success [12–14]. Compared with
the manual feature extraction algorithms, the methods based
on deep learning could automatically provide the most
descriptive and differentiated features for each classification
by training on a large dataset for a long time. For the object
detection of natural optical images based on the convolu-
tional neural network, the methods are mainly divided into
two classifications. One is the two-stage method, such as
R-CNN [15], Fast R-CNN [16], Faster RCNN [17], R-FCN
[18], and FPN [19]. Such methods generate a set of candidate
region suggestions firstly, and these candidates are classified,
filtrated, and refined again. So far, the accuracy of the two-
stage method still has been the highest among the object
detection methods. )e other is the one-stage method that
directly predicts the classification and bounding box by a
single convolutional network, such as YOLO methods
[20–23] and SSD [24]. )is kind of method has a faster
detection speed, but the accuracy is lower than the two-stage
method. Both of them have achieved brilliant achievements
in the object detection of natural optical images and have
been applied in various fields [25–27].

Compared with natural optical images, object detection in
X-ray security inspection is still a huge challenge since X-ray
images are very different from natural optical images. In [28],
Mery et al. used transfer learning to classify three kinds of
threat objects based on X-ray images and compared the
experimental results with traditional computer vision
methods. )e experimental results showed that the X-ray
image classification method based on deep learning is ef-
fective and potential. Akcay et al. [29] tested and evaluated
several existing networks and object detectionmethods for six
classifications of objects based on X-ray images, and the result
showed the object detection methods with deep learning are
better than the methods without deep learning. In [30], the
researchers proposed a method that is more accurate and
robust when dealing with the dense cluttered background in
X-ray security inspection.)e method adopted a specific data
enhancement technique, the feature enhancement modules,
and the multiscale fusion regions of interest (ROI). However,
the current researches focused on a few common types of
prohibited items due to the difficulty of establishing and
extending a complete dataset. In response to this question,
Zhang et al. [31] proposed amethod of X-ray prohibited items
image generation using Generative Adversarial Networks

(GANs). In [32], Zhu et al. proposed a method based on Cycle
GAN to transform the item natural images into X-ray images.
)ese methods provide a new research direction for dataset
expansion and lay a foundation for more accurate object
detection in X-ray security inspection. Meanwhile, the high
hardware requirements of these methods based on deep
learning also limit their application.

At present, most researches are focused on the detection
of some prohibited and common items, such as guns, knives,
batteries, laptops, and bottles. )e shapes and materials of
these items are diverse. )e above researches have made
some contributions to the object detection of these items.
Due to the high similarity of liquid pseudocolor images, the
above researches can only detect bottles, not liquid types.
However, for some special security occasions, only detecting
the bottle is not enough. In these occasions, it is necessary to
detect whether the liquid is harmful or even detect the type
of the liquid. As far as we know, there is no research using
dual-energy X-ray data to detect dangerous liquids. A
possible solution to the classification of dangerous liquids is
Energy dispersive X-ray diffraction (EDXRD). In [33],
Zhong et al. found that Energy dispersive X-ray scattering
profile is unique to each specific liquid material through
experiments with three types of liquids. Tianyi et al. utilized
EDXRD with hybrid discriminant analysis to classify the
liquids in [34]. However, there are many problems in these
researches. For instance, the sample must be a small dose,
the container has specific requirements, the detection time is
long, and the sample must be placed in a fixed position.

To solve these problems, we design an effective, light-
weight dangerous liquid detection method, and it does not
require high hardware requirements. )e main contribu-
tions are as follows:

(i) We propose a novel framework using the dual-
energy X-ray data instead of pseudocolor images as
the objects to be detected, which improves the
detection accuracy and realizes the parallel opera-
tion of detection and imaging

(ii) We design a lightweight object location network as
the backbone network of object location, which
ensures the object location accuracy and has fewer
parameters and less computational consumption

(iii) We design a lightweight dangerous liquid classifi-
cation network as the backbone network of classi-
fication, which has higher accuracy, fewer
parameters, and less computational consumption

(iv) A dataset of seven common dangerous liquids
containing multiple postures in two detection en-
vironments is established

(v) A semiautomatic labeling method is proposed to
reduce the cost of manual labeling

)e rest of the paper is organized as follows: Section 2
describes the creation and processing of the dataset. In
Section 3, the proposed method is described. Section 4
presents the experiments and results. Finally, Section 5
concludes the paper and discusses some directions for
future work.
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2. Dataset

)e dual-energy X-ray method has been widely used in
X-ray security inspection systems [35]. In the method, the
high-energy and low-energy data are converted into a
pseudocolor image by a lookup table to facilitate the in-
terpretation of the detected objects. In order for security
inspectors to better distinguish the material of the detected
object, orange represents organic matter, green represents
mixture, and blue represents inorganic matter in the pseudo
color image. In this paper, the dual-energy X-ray data used
in this work are manually collected using X-ray security
inspection equipment from Shenyang DT Inspection
Equipment Co. Ltd. in China. )e X-ray tube voltage and
current are 140 kV and 0.75mA, respectively. )e X-ray
security inspection equipment is shown in Figure 1. )e
value range of the dual-energy X-ray data is 0-15200. )e
size of each data is 600× 600× 2.

A total of 7 kinds of dangerous liquids samples pur-
chased from Sinopharm Chemical Reagents Shenyang Co.,
Ltd. without further purification are measured for our work.
)e samples are as follows: ethanol (≥ 75%), ethanol (≥ 95%,
CP), methanol (≥ 99.7%, GR), acetone (99.5%, AR),
methylbenzene (≥ 99.5%, AR), sulfuric acid (95–98%), and
hydrochloric acid (36–38%). For descriptive convenience,
the names of the liquids are substituted by chemical for-
mulas in the latter part of this paper. Our X-ray dataset is
divided into two parts to simulate two detection environ-
ments. One is to simulate the open-bag security inspection
termed XD-O. )is type of inspection is common in im-
portant situations such as airports. )e other is to simulate
the normal security inspection termed XD-N. For the XD-O,
the samples with different postures are placed in the foam
box and transferred to the security inspection machine
through the conveyor belt. A total of 2318 dual-energy X-ray
data are collected in the XD-O. For the XD-N, to simulate
the real situation, the different baggage with the samples is
packed and then sent into the security inspectionmachine. A
total of 3596 dual-energy X-ray data are collected in the XD-
N. )e grayscale images of the dual-energy X-ray data are
shown in Figure 2. )e pseudo color images observed by the
security inspectors are shown in Figure 3. Figure 4 shows the
samples of the different liquids in the foam boxes and the
real baggage.

From Figure 4, we can find that the similarity between
sulfuric acid and hydrochloric acid is high and the other four
liquids are also very similar under the conditions of our imaging
method.Moreover, the pseudocolor images of these liquidsmay
be more similar under the different levels of obscuration of
different items. Considering this situation, it is difficult for the
conventional algorithms based on the pseudocolor images to
achieve the detection of these liquids. )erefore, our method
uses the dual-energy X-ray data containing more detailed in-
formation instead of the pseudo color images as the objects to be
detected. As a crucial part of the training network process, the
dataset will directly affect the performance of deep learning
methods. In order to improve the accuracy and robustness of
our method, our dataset was augmented to 17308 samples by
the translation, replication, and random noise injection.

3. Methods

In this section, the method proposed in this paper is de-
scribed in detail. It is well known that some object detection
methods, such as YOLO methods and Faster RCNN, are
applied to various object detection tasks. However, the
number of parameters and computational consumption is
large for our detection task. In order to achieve a good
balance between the number of parameters, computational
consumption, and detection accuracy for our detection
task, we propose a lightweight dangerous liquid detection
method for X-ray security inspection (DLDX) with higher
accuracy, fewer parameters, and less computational con-
sumption. Firstly, we design the framework of the DLDX.
Secondly, we design two lightweight networks as the
backbone networks of the DLDX to achieve the object
location and classification, respectively. )en, we design a
semiautomatic labeling method for our dataset to improve
the efficiency of data labeling. Finally, we give the training
strategy of the DLDX.

3.1. (e Framework of the DLDX. Our DLDX is designed
based on the two-stage method. For the existing two-stage
detection method, the candidate region suggestions are
generated by the specific pooling operation (such as Roi-
pooling and Roialign) on the candidate areas of the feature
map, and then these candidates are classified, filtrated, and
refined again. Although this approach is successful in the
object detection of natural images, it causes a large amount
of information loss in the process of object extraction, which
is unfavorable to the dangerous liquid detection. At the same
time, a large number of candidates also bring a large amount
of computational consumption, which limits the application
of this method.

To solve these problems, we propose the DLDX. )e
dual-energy X-ray data are used instead of pseudocolor
images as the objects to be detected in the DLDX, which
improves the detection accuracy and realizes the parallel
operation of detection and imaging. )e detection process
is mainly divided into three parts: object localization, object
extraction, and classification. Firstly, an object location
network is used to precisely locate dangerous liquids.
Secondly, to ensure the integrity of the extracted objects
information, the objects are directly extracted from the
dual-energy X-ray data through the position information of
the objects output by the lightweight object location net-
work, instead of extracting the objects on the feature map
like the Roipooling and the Roialign. )en, in order to
improve the classification accuracy, the extracted objects
are padded to a fixed size. Considering the distance be-
tween the objects, the size of the objects, and the rationality
of the network design, we use 15200 to pad the extracted
objects to 256 ×192 instead of directly extracting the data
with the size of 256 ×192 from the dual-energy X-ray data.
)irdly, these padded data are classified through a dan-
gerous liquid classification network. Eventually, a pseu-
docolor image with the detection result is presented to the
security inspectors. )e overall architecture of the pro-
posed method is shown in Figure 5.
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(a) The samples of the XD-O.

(b) The samples of the XD-N.

Figure 2: Some grayscale images of the dual-energy X-ray data. ()e left side of each image is the low-energy image and the right side is the
high-energy image.) (a) )e sample of the XD-O. (b) )e sample of the XD-N.

(a) (b)

Figure 1: (a) )e X-ray security inspection equipment. (b) )e control station.

(a)

(b)

Figure 3: Some pseudocolor images of the dual-energy X-ray data. (a) )e sample of the XD-O. (b) )e sample of the XD-N.
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Figure 4: Some pseudocolor images of the different liquids. (a) Some samples of H2SO4. (b) Some samples of HCL. (c) Some samples of
C7H8. (d) Some samples of CH3OH. (e) Some samples of CH3COCH3. (f ) Some samples of C2H5OH.
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Figure 5: )e framework of the DLDX.
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3.2. A Lightweight Object Location Network. )e design of
the backbone network is significant for the accurate pre-
diction of object locations.)erefore, this subsection focuses
on developing a lightweight object location network of
dangerous liquids that has both high detection accuracy and
low computational cost. For the two-stage detection
methods, taking Faster RCNN as an example, the Region
Proposal Network (RPN) generates the candidate region
suggestions with various scales and ratio aspects on the
feature map to coarsely regress the bounding box location
and classify the foreground and background. And then these
candidates are fed into the next network to refine the
bounding box location and classification accuracy. Finally,
the bounding box coordinates, class labels, and classification
accuracy are output. Although this method ensures detec-
tion accuracy, it also brings a large amount of calculation
consumption due to the processing of a large number of
candidates from the RPN. It is worth noting that the image
data is three-dimensional with a value range of 0–255, while
our data is two-dimensional with a value range of 0–15200.
)is means that our dataset is quite different from the
ImageNet dataset and the fine-tuning of the networks
pretrained on the ImageNet dataset is impossible. Mean-
while, designing a new network with lots of parameters
makes training difficult and requires a huge dataset. Based
on the above discussion, we design a lightweight object
location network fitting our dual-energy X-ray dataset. It has
fewer parameters and can be trained from scratch with our
dataset.

In our lightweight object location network, the
Depthwise Separable convolution composed of the
Depthwise convolution (DWC) and the Pointwise con-
volution (PWC) is employed. )e DWC is operated by
channel-wise fashion and the PWC is the standard con-
volution with 1× 1 kernels. )e operation process of the
Depthwise Separable convolution is shown in Figure 6. To
illustrate the advantages of the Depthwise Separable con-
volution, we compare the Depthwise Separable convolution
and the standard convolution in terms of the number of
parameters (Params) and the number of multiply-accu-
mulate operations (Madds).

Given an input feature map Xin ∈ RH×W×C and an output
feature map Xout ∈ R

􏽥H× 􏽥W×􏽥C, the ratio of Madds between the
Depthwise Separable convolution and the standard con-
volution can be represented as follows:

RMadds �
Maddsds

Maddss

�
Dk × Dk × C × 􏽥H × 􏽥W + C × 􏽥C × 􏽥H × 􏽥W

Dk × Dk × C × 􏽥C × 􏽥H × 􏽥W

�
1
􏽥C

+
1

Dk × Dk

,

(1)

where Dk is the size of the convolution kernel, Maddsds is
the Madds of the Depthwise Separable convolution, and
Maddss is the Madds of the standard convolution. )e ratio
of Madds between the Depthwise Separable convolution and
the standard convolution can be represented as follows:

RParams �
Paramsds

Paramss

�
Dk × Dk × C + C × 􏽥C

Dk × Dk × C × 􏽥C

�
1
􏽥C

+
1

Dk × Dk

,

(2)

where Paramsds is the Params of the Depthwise Separable
convolution and Paramss is the Params of the standard
convolution.

We can find the Params and Madds of the Depthwise
Separable convolution have been greatly reduced. Based on
the computational advantage of the Depthwise Separable
convolution, it is employed in some successful lightweight
networks, such as MobilenetV1 [36] and MobilenetV2 [37].
In MobilenetV2, the inverted residual block was proposed
based on the DWC and the residual network. As the
Depthwise convolution is operated by channel-wise fashion,
the feature information can only be transferred in one
channel. Meanwhile, the ReLu6 activation function causes a
large amount of information loss in the inverted residual
block. )erefore, we improve the inverted residual block in
MobilenetV2, as shown in Figure 7. In the improved
inverted residual (IIRS) block, we replace the ReLu6 acti-
vation function of the first PWC with the LeakyRelu and
remove the activation functions after the DWC, which
ensures the effective transmission of the information.

Our lightweight object location network is designed
based on the IIRS block. )e architecture of the lightweight
object location network is shown in Table 1. First, a 3× 3
Conv +BatchNormalization + LeakyRelu block is used to
reduce the dimension of the input data and extract roughly
the features. As the network needs to be trained from
scratch, the use of the Batchnormalization and the Lea-
kyRelu makes the training of the network easier. )en, four
IIRS blocks are applied to extract the object features ac-
curately with fewer parameters. Subsequently, in order to
reduce the computational consumption, only two 3× 3
Conv +BatchNormalization + LeakyRelu blocks are used to
extract the features more accurately.

Next, we use the K-means clustering algorithm to obtain
the size of the anchor boxes. A total of six anchor boxes are
obtained for getting more precise object positions. It is well
known that feature maps with the larger size contain richer
location information. In order to make the prediction of the
object location more accurate and take into account the
computational consumption, the size of the feature map is

Input Output

DWC PWC

Figure 6: )e convolution process of the Depthwise Separable
convolution.
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set as 75× 75. )at is to say, the input data is divided into
75× 75 grids. In each grid, the prediction information from
the last convolutional layer consists of the position offset
(tx, ty), width offset tw, height offset th and confidence score
p of each anchor box. Using the sigmoid and exp function,
we can obtain the final output (tfx, tfy, tfw, tfh, pf) �

(S(tx), S(tx), etw , eth , S(p)), where S(·) is the sigmoid
function and e is the natural logarithm. )e actual coor-
dinates (x, y, w, h) and the normalized confidence score P

can be obtained through the following equation:

x

y

w

h

P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

tfx + cx􏼐 􏼑 × F

tfy + cy􏼐 􏼑 × F

Aw × tfw

Ah × tfh

pf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where F is the minification factor of the feature map, F �

600/75 (600 is the input size and 75 is the feature map size) in
this paper, (cx, cy) is the coordinate in the upper left corner

of each grid in the feature map, (Aw, Ah) is the width and
height of the anchors.

At the end of the lightweight object location network,
multiple overlapping candidate boxes will be suggested, and
we must choose the best one from these candidate boxes for
each object. )erefore, Soft-NMS algorithm [38] is used to
update the score of each boundary box. Define
B � b1, b2, . . . , bN􏼈 􏼉 as the set of the candidate boxes and V �

v1, v2, . . . , vN􏼈 􏼉 as the corresponding set of the scores. )e
choice criterion in Soft-NMS can be written as follows:

Vi �
Vi, IOU bm, bi( 􏼁<T,

Vi 1 − IOU bm, bi( 􏼁( 􏼁, IOU bm, bi( 􏼁≥T,
􏼨 (4)

where bm is the candidate box which has the highest score, bi

is the initial detection candidate box, and T is the threshold
value of the intersection over union (IOU). IOU is the ratio
of the intersection and union of two candidate boxes. When
the IOU values of the candidate boxes are smaller than the
threshold T, the scores of the candidate boxes remain un-
changed. Soft-NMS assigns lower scores to the neighboring
candidate boxes, whose IOU values are bigger than the
threshold T until the final prediction boxes are selected
instead of removing them.

)e loss function of the lightweight object location
network Lobject consists of the coordinate error Lboxes and the
confidence score error Lscore. )e coordinate error can be
defined as follows:

Lboxes � λcood 􏽘

M

i�1
􏽘

N

j�1
I

obj

ij tfxij − 􏽢tfxij􏼐 􏼑
2

+ tfyij − 􏽢tfyij􏼐 􏼑
2

􏼔

+ tfwij − 􏽢tfwij􏼐 􏼑
2

+ tfhij − 􏽢tfhij􏼐 􏼑
2
􏼕,

(5)

the confidence score error is defined as follows:

Lscore � − 􏽘
M

i�1
􏽘

N

j�1
I

obj
ij λobj pfi − 􏽢pfi􏼐 􏼑

2

+ λnoobj 􏽘
M2

i�1
􏽘

N

j�1
IIOU<Thresh pfi􏼐 􏼑

2
,

(6)

and the final loss function can be expressed as follows:

Lobject � Lboxes + Lscore, (7)

where λcood is the weight coefficient of the coordinate error
(set as 1), λobj is the weight coefficient of the confidence
error for the grids with an object (set as 5), λnoobj is the
weight coefficient of the confidence error for the grids with
the IOU less than the threshold (set as 0.5), M is the number
of the grids (set as 75× 75), N is the number of the anchor
boxes in each gird (set as 6), (􏽢tfxij,􏽢tfyij,􏽢tfwij,􏽢tfhij, 􏽢pfij) is
the true value for (tfxij, tfyij, tfwij, tfhij, pfij), I

obj
ij is 1 if the

j th anchor box predicted by grid i is responsible for the
prediction (0 otherwise), and IMaxIOU<Thresh is 1 if the IOU of
the j th anchor box predicted by grid i is less than the
threshold (0 otherwise).

Output

Add

Conv 1×1, Batchnormalization

DWC 3×3, Batchnormalization

Conv 1×1, Batchnormalization,
Leakyrelu

Conv 1×1, Batchnormalization,
Leakyrelu

Input

Stride=1

Input

Stride=2

Output

Conv 1×1, Batchnormalization

DWC 3×3, stride=2
Batchnormalization

Figure 7: )e structure of the improved inverted residual block.

Table 1: )e architecture of the lightweight object location
network.

Input Operator C T Stride
600× 600× 2 Conv +Bn+ LeakyRelu 16 — 2
300× 300×16 IIRS block 32 1 2
150×150× 32 IIRS block 32 3 1
150×150× 32 IIRS block 64 3 2
75× 75× 64 IIRS block 64 2 1
75× 75× 64 Conv +Bn+ LeakyRelu 64 — 1
75× 75× 64 Conv +Bn+ LeakyRelu 64 — 1
75× 75× 64 Conv 30 — 1
75× 75× 30 Sigmoid + Exp function — — —
Output 75× 75× 30
T is the multiplier of the input channel and C is the number of the last PWC
channels.
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3.3. A Lightweight Dangerous Liquid Classification Network.
After the object location and the data padding, these padded
data are classified through a dangerous liquid classification
network in our DLDX. )e design of the classification
network is very significant and it directly affects the per-
formance of our DLDX. At present, some public CNN
networks can be used for the image feature extraction, such
as Darknet [20, 21], Resnet [14], MobilenetV2 [37], Mobi-
lenetV3 [39], and SqueezeNet [40]. )ese networks have
outstanding performance in the object detection of natural
images, and they are usually used as the backbone networks
for feature extraction when dealing with practical problems
in the engineering field. Meanwhile, transfer learning is
often adopted to solve these problems. However, transfer
learning is not applicable for our dataset because our dataset
is completely different from the ImageNet dataset. In order
to ensure the accuracy of the classification and reduce the
computational consumption and the number of parameters,
we designed our lightweight dangerous liquid classification
network based on the IIRS block and the Squeeze-and-
Excitation (SE) block [41].

)e SE block can be understood as feature maps reca-
librated according to channels. )is recalibration makes the
network ignore those channels with less meaningful infor-
mation and focus on the ones that provide more meaningful
information. )e structure of the SE block is shown in
Figure 8. Given an input feature map X ∈ RH×W×C, we can
get the recalibrated feature map 􏽥X ∈ RH×W×C through the SE
block. X and 􏽥X can be expressed as X � [x1, x2, . . . , xC] and
􏽥X � [􏽥x1, 􏽥x2, . . . , 􏽥xC]. Firstly, the global average pooling is
used to generate a 1 × 1 × C feature map O � [o1, o2, . . . , oC]

to express X in general. )is process can be expressed as
follows:

Ok �
1

H × W
􏽘

H

i�1
􏽘

W

j�1
xk(i, j), k � 1, 2, . . . , C. (8)

Secondly, the channel-wise dependencies 􏽥O � [􏽥o1, 􏽥o2, . . .

, 􏽥oC] are extracted using fully connected (FC) layers and
nonlinearity layers. )e connection mode is shown in
Figure 8. We can obtain the following:

􏽥O � S W2σ W1O( 􏼁( 􏼁, (9)

where σ represents the Relu activation function,
W1 ∈ R(C/r)×C and W2 ∈ RC×(C/r) are the weights of the fully
connected layers, r is a ratio parameter. Finally, the reca-
librated feature map 􏽥X can be obtained by the following
equation:

􏽥X � Scale( 􏽥O, X) � 􏽥o1x1, 􏽥o2x2, . . . , 􏽥oCxC􏼂 􏼃, (10)

where Scale(·) refers to channel-wise multiplication between
the scalar 􏽥O and the feature map X.

Following, we combine the IIRS block and the SE block
into an IIRS + SE block. )e SE block is placed behind the
last PWC in the IIRS + SE block. )is approach can
recalibrate the information of the IIRS block better. )e
structure of the IIRS + SE block is shown in Figure 9.
Table 2 shows the architecture of our lightweight dangerous
liquid classification network.

First, like the lightweight object location network, a 3× 3
Conv +BatchNormalization + LeakyRelu block is used to
reduce the dimension of the input data and extract the
features roughly. Second, on the premise of effectively
extracting features, in order to reduce the computational
consumption and the difficulty of network training, the
IIRS + SE blocks with stride� 1 and stride� 2 are combined,
as shown in Table 2. After the last IIRS + SE block, a 1× 1
convolution filter is adopted to increase the dimension and
enrich the information of the extracted feature. And then,
the average global pooling is adopted to reduce computa-
tional consumption and prevent overfitting, like most net-
works. Finally, full connection and softmax are used to
output the final classification results. We use the cross en-
tropy function as the loss function:

Lclass � − 􏽘
K

k�1

􏽢Pcklog Pck( 􏼁, (11)

where K is the number of classes, 􏽢Pck is the actual label of the
input data, and Pck is the probability that the Softmax layer
predicts the input data belonging to the class k.

3.4.ASemiautomaticLabelingMethod. Information labeling
is the basis of building deep learning models and a necessary
process for supervised machine learning algorithms. For the
public datasets, the most common labeling method is
manually labeled by the crowdsourcing business model.
However, the datasets in the security field are highly pro-
fessional and confidential and cannot be transmitted via the
Internet. )is leads to a significant increase in the cost of
manual labeling. In order to reduce the cost of manual
labeling of our dangerous liquid dataset, a semiautomatic
labeling method based on active learning is designed to
improve the efficiency of dataset labeling, and the light-
weight object location network is fine-tuned in the process.

To introduce our algorithm clearly, the augmented dual-
energy X-ray dataset is defined as U � U1, U2􏼈 􏼉, where U1 is
the labeled dataset, U2 � 􏽥U1,

􏽥U2, . . . , 􏽥Un􏼈 􏼉 is the dataset with
classification labels but without location labels, and it is
divided into n datasets to be labeled. )e semiautomatic
labeling algorithm is shown in Algorithm 1.

In our semiautomatic labeling method, the initial state of
the dual-energy X-ray dataset with labels U is U1. Next, the
initialized object location network is trained on the labeled
dataset U1, and the trained object location network is used to
predict the subset in U2. For each subset of U2, the samples
with low confidence and the undetected samples are selected
and put into the manually labeled dataset Um, and the
samples with high confidence are updated with the labels of
the prediction. In the end, the manually labeled dataset and
updated dataset are combined into U for fine-tuning the
object location network until all subsets of U2 are processed.

3.5. Training Strategy of the DLDX. For our DLDX, two
networks need to be trained. )e object localization network
can be trained in the semiautomatic labeling process and can
also be directly trained by using the labeled dataset. After
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training the object localization network, the trained object
localization network is used to extract the dangerous liquid
objects from the dual-energy X-ray dataset as the training
dataset of the dangerous liquid classification network. In the

extraction process, the object location network outputs the
bounding boxes after shielding the Soft-NMS algorithm.
)en the IOU values of the generated bounding boxes and
corresponding labeled boxes are calculated and sorted, and
up to 10 bounding boxes are selected for each object. )ese
extracted objects are padded to 256×192 to form the
training dataset of the dangerous liquid classification net-
work. Finally, the dangerous liquid classification network
can be trained on the dataset.

4. Experimental Results and Analyses

In this section, we first test our semiautomatic labeling method,
then compare ourDLDXwith the existingmethods and analyze
the experimental results. )e experiments are run on a GPU
system with the following specifications: Intel Core i9-10900k
CPU, 64GB RAM and NVIDIA GeForce GTX 3090 GPU.

4.1. Evaluation Criteria. In this paper, average precision
(AP) andmean average precision (mAP) are used to evaluate
the performance of the methods. In addition, mIOU is the
average of the IOU values of all predicted boxes and object
boxes, and it is also used to evaluate the methods. Precision
and Recall are calculated using the following equations:

Pr �
TP

TP + FP
, (12)

Re �
TP

TP + FN
, (13)

where TP is the number of true positive samples, FP is the
number of false-positive samples, and FN is the number of
false-negative samples. High precision indicates high ac-
curacy of detection results, and high Recall means fewer
missed objects in the detection process. Average precision
can be calculated as follows:

AP �
1
11

􏽘
Re∈ 0,0.1,0.2,......,1{ }

max
􏽥Re: 􏽥Re≥Re

Pr(􏽦Re), (14)

where Pr(Re) is the measured precision at recall Re. Sub-
sequently, mAP can be defined as follows:

FC FC Sigmoid

Global
average
pooling

X

C

H

W W

H

C

~X

~O

Scale

O

RELU

1×
1×

C/
r

1×
1×

C

Figure 8: )e structure of the Squeeze-and-Excitation block.

Output

Add

SE block

Conv 1×1, Batchnormalization

Conv 1×1, Batchnormalization

DWC 3×3, Batchnormalization

Conv 1×1, Batchnormalization,
Leakyrelu

Conv 1×1, Batchnormalization,
Leakyrelu

Input

Stride=1

Input

Stride=2

Output

SE block

DWC 3×3, stride=2
Batchnormalization

Figure 9: )e structure of the IIRS + SE block.

Table 2: )e architecture of the lightweight dangerous liquid
classification network.

Input Operator C T Stride r
256×192× 2 Conv +Bn+ LeakyRelu 16 — 2 —
128× 96×16 IIRS + SE block 16 2 2 16
64× 48×16 IIRS + SE block 16 3 1 16
64× 48×16 IIRS + SE block 32 3 2 16
32× 24× 32 IIRS + SE block 32 3 1 16
32× 24× 32 IIRS + SE block 64 3 2 16
16×12× 64 IIRS + SE block 64 3 1 16
16×12× 64 IRS + SE block 128 3 2 16
8× 6×128 IRS + SE block 128 4 1 16
8× 6×128 Conv +Bn+ LeakyRelu 512 — 1 —
8× 6× 512 Globalpooling — — — —
1× 1× 512 Fully connected 6 — — —
Output Softmax
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mAP �
1
K

􏽘

K

k�1
APk. (15)

4.2. Results and Discussion. In order to verify the effec-
tiveness of our semiautomatic labeling method, we manually
labeled our dataset and randomly selected some data to form
the unlabeled dataset. )en, we used our semiautomatic
labeling method to train our lightweight object location
network and label the unlabeled dual-energy X-ray dataset.
In the process, U1 contained 8440 samples, U2 was divided
into four subsets (each subset contained 2000 examples), and
the confidence score threshold T was set as 0.9. Adaptive
moment estimation (Adam) optimization algorithm was
used for the training of all networks and the batch size was 8.
For U1, the initial learning rate was 0.001, the exponential
decay rate for the first moment estimate was 0.9, the ex-
ponential decay rate for the second moment estimate was
0.999, and the max epoch was 100. For the process of fine-
tuning, the learning rate was 0.0001, the max epoch was 20,
and other parameters were the same as above. Meanwhile,
we also trained our lightweight object location network on
the manually labeled dataset for comparison with our
method.)e results are given in Table 3.)e results show the
mIOU of the trained lightweight object location network
with our semiautomatic labeling is only 0.011 lower than the
network trained on manually labeled dataset. )e small gap
is entirely acceptable. )erefore, our semiautomatic labeling
method is effective.

And then, we prioritized training our DLDX on the
XD-O. )e samples in the XD-O all have simple back-
grounds and the training results can better represent the
feature extraction and classification abilities of our DLDX
for the different liquids. In the process, Adam optimization
algorithm was used. )e batch size was 64, the max epoch

was 30, the initial learning rate was 0.001, and other pa-
rameters were the same as above. Moreover, to further
evaluate the performance of our method, we also trained
the existing object detection methods and the existing
lightweight CNN networks as the backbone networks of the
DLDX to compare with our DLDX. Considering the
existing methods were designed based on images, we
converted the XD-O into a corresponding pseudocolor
images dataset and trained the existing methods on the XD-
O and the pseudocolor images dataset. )e detection re-
sults of each method are shown in Table 4.

Meanwhile, in order to compare the complexity of each
method, the Params and Madds of each method are shown
in Table 5. As the Params and Madds of Faster RCNN are
much more than others, they are not given in Table 5. In
addition, the Params and Madds of the method based on the
dual-energy X-ray dataset and pseudocolor images dataset
are almost equal. )erefore, only the Params and Madds of
the methods based on the dual-energy X-ray data are given
in Table 5.

From Table 4, we can find that the mAP of the methods
using the dual-energy X-ray data as the input is generally
better than the methods using the pseudocolor images as
input. )is proves that it is reliable for using the dual-energy
X-ray data as the objects to be detected. In terms of the
structures of the methods, using the same backbone net-
work, the mAP and the mIOU of our DLDX are higher than
those of YOLOV4_tiny and Faster RCNN. It is worth noting
that compared with using YOLOV4_tiny, the Params of
using the DLDX are reduced by 45% for mobileNetV2 and

Input: )e dual-energy X-ray dataset, U the lightweight object location network Nobj and the confidence score threshold T
Output: )e dual-energy X-ray dataset with labels 􏽥U and the trained lightweight object location network Nobj

(1) Train Nobj with Ul
(2) U � U1
(3) For i� 1, i≤ n, i++ do predict 􏽥Ui with Nobj, get confidence score Pi and Location Li;
(4) For Cj ∈ 􏽥Ui do
(5) If Pj <T or manually verify the existence of undetected object then
(6) Remove Cj into Um;
(7) Delete the corresponding object information;
(8) Else
(9) Update the labels of Cj;
(10) End if
(11) End for
(12) Label Um manually;
(13) U � U∪Um ∪ 􏽥Ui;
(14) Fine-tune Nobj with U;
(15) Empty Um;
(16) End for
(17) Return U and Nobj;

ALGORITHM 1: Semiautomatic labeling method.

Table 3: )e object location results.

Method MIOU AP
Semiautomatic labeling 0.878 100
Manually labeled dataset 0.889 100
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20% for mobileNetV3. Since our DLDX classifies objects
after locating them, the Madds of the DLDX is related to the
number of objects. For the DLDX with mobileNetV2 and
mobileNetV3, their Madds are the same as using
YOLOV4_tiny when each sample contains ten objects, the
Madds are reduced by 50% when each sample contains three
objects and the Madds are reduced by 67% when each
sample contains one object. In terms of the backbone
networks, the mAP of the DLDX with mobileNetV2 and
mobileNetV3 is almost equal to our method, but the Params
of our method are reduced by about 80%. Compared with
mobileNetV2 and mobileNetV3, the Madds of our light-
weight dangerous liquid classification network is reduced by
74% and 83%, respectively. According to the above analysis,
it can be concluded that our DLDX can accomplish highly
accurate dangerous liquid detection in the open-bag security
inspection and the fewer Params and Madds of our DLDX
can also greatly reduce the hardware requirements, which
makes our DLDX have wider applicability.

To further verify the performance of our DLDX in
complex environments, we trained our DLDX on the XD-N.
According to the experimental results based on the XD-O,
YOLOV4_tiny_MobileNetV2_X-ray, YOLOV4_tiny_Mo-
bileNetV3_X-ray, DLDX_MobileNetV2, and DLDX_Mo-
bileNetV3 were selected to compare with our DLDX. )e

detection results are shown in Table 6. From Table 6, we can
find that the mAP and the mIOU of these methods decrease
on the XD-N with complex background. However, the mAP

of our DLDX is still able to reach 90.96%, and using the same
backbone network, the mAP and the mIOU of our DLDX is
higher than those of YOLOV4_tiny. Among these methods,
our DLDX still has the highest mIOU and mAP, although
the AP of HCL, CH3OH, CH3COCH3, and C2H5OH are
slightly lower than that of the DLDX using MobileNetV2
and MobileNetV3 as backbone networks.

Except that, we adopted the t-distributed stochastic
neighbor embedding method (t-SNE) [42] as the feature
visualization method to demonstrate the feature extraction
ability of our method. )e results are shown in Figure 10.
)e visualization results indicate that our method can ex-
tract better features from the samples with simple back-
grounds in the open-bag security inspection to distinguish
the different liquid classes. )e quality of the extracted
features for the samples with complex backgrounds is
slightly inferior to that of the samples with simple back-
grounds, which is the reason for the decrease in the accuracy
of identifying the samples with complex backgrounds.
According to the above analysis, it can be concluded that our
method is more suitable for the detection of dangerous
liquids and has wider applicability than other methods.

Table 4: )e detection results of the different methods on the XD-O.

Method MIOU MAP (%)
AP(%)

H2SO4 HCL C7H8 CH3OH CH3COCH3 C2H5OH
YOLOV 4_tiny_X-ray 0.892 94.34 100 100 92.84 89.66 92.40 91.16
YOLOV4_tiny_MobileNetV2_X-ray 0.884 93.78 100 100 90.06 92.93 90.62 89.06
YOLOV4_tiny_MobileNetV3_X-ray 0.884 94.33 100 99.22 92.19 88.83 93.75 91.97
YOLOV4_tiny_image 0.892 92.68 98.44 96.88 91.28 91.41 89.80 88.24
YOLOV4_tiny_MobileNetV2_image 0.884 91.74 95.12 100 91.39 89.02 82.88 92.04
YOLOV4_tiny_MobileNetV3_image 0.885 92.38 93.75 98.44 92.19 86.72 89.70 93.48
FasterRCNN_MobileNetV2_X-ray 0.819 91.92 91.95 98.99 88.28 92.44 87.49 92.37
FasterRCNN_MobileNetV3_X-ray 0.821 92.03 91.35 98.44 92.19 90.59 86.72 92.88
FasterRCNN_MobileNetV2_image 0.821 89.95 92.91 98.44 86.67 88.25 85.91 87.49
FasterRCNN_MobileNetV3_image 0.822 90.73 93.75 98.44 92.13 85.12 86.64 88.27
DLDX_MobileNetV2 0.902 98.05 100 99.22 90.63 100 98.44 100
DLDX_MobileNetV3 0.902 97.43 100 100 90.24 99.82 96.88 97.66
DLDX 0.902 98.28 100 100 96.02 99.88 96.88 96.88

Table 5: )e Params and Madds of the different methods.

Method Params (m) Madds
YOLOV4_tiny 5.9 7144m
YOLOV4_tiny_MobileNetV2 4.3 3477m
YOLOV4_tiny_MobileNetV3 3.4 2832m
DLDX_MobileNetV2 2.4 856m+ 290m× n
DLDX_MobileNetV3 2.8 856m+ 195m× n
DLDX 0.4 856m+ 50m× n
m denotes million and n is the number of objects.
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5. Conclusion

In this paper, an effective lightweight, dangerous liquid
detection method for X-ray security inspection termed
DLDX is proposed. )e innovation is mainly reflected in
three major aspects. First, a novel detection framework
using the dual-energy X-ray data as the objects to be
detected is proposed to improve the detection accuracy
and realize the parallel operation of detection and imaging.
Different from the framework of existing two-stage
methods, the objects are directly extracted from the dual-
energy X-ray data and padded to a fixed size as candidates
in our DLDX, which ensures the integrity of the infor-
mation. Second, in order to ensure the detection accuracy
and reduce the computational consumption and the
number of parameters, a lightweight object location net-
work and a lightweight dangerous liquid classification
network using the Depthwise Separable convolution and
the SE block are designed. )ird, a semiautomatic labeling
method is proposed for our dataset to improve the effi-
ciency of data labeling. To demonstrate the effectiveness of
our method, we first verify the effectiveness of our
semiautomatic labeling method through the experiments.
And then, we conduct a series of experiments to compare
our DLDX with the existing methods. )e experimental
results demonstrate that our proposed method has fewer
Params and Madds and higher detection accuracy than the
existing methods.

In future work, we will focus on expanding the types of
dangerous liquids and containers and improving our
method with dual-view technology to detect dangerous
liquids more accurately.
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