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�rough the research and development of the regression prediction function of support vector machine, this paper applies it to the
prediction of drilling uid performance parameters and the formulation design of drilling uid. �e research in this paper can
reduce the experimental workload and improve the e�ciency of drilling uid formulation design. �e apparent viscosity (AV),
plastic viscosity (PV), API �lter loss (FLAPI), and roll recovery (R) of the drilling uid were selected as the inspection objects of the
drilling uid performance parameters, and the support vector machine was used to establish a model for predicting the drilling
uid performance parameters.�is predictive model was used as part of the overall drilling uid formulation optimization design
model. For a given drilling uid performance parameter requirement, this model can be applied to reverse the addition of various
treatment agents, and �nally, the prediction accuracy of the model is veri�ed by experiments.

1. Introduction

As a main tool, computer is introduced into the design and
management of drilling uid engineering. By combining
computer technology with the thinking of drilling uid
experts, the level of drilling uid design can be raised to a
new level, and the design speed and quality will be greatly
improved [1–5]. �e development of the drilling uid op-
timization design system can not only solve the problems in
the traditional drilling uid design but also has a more
prominent feature that the computer system can store the
design data for secondary use so that the experience accu-
mulated in the previous design can be absorbed and the
mistakes made in the past can be avoided in the new drilling
uid design process [6–9]. At the same time, the system can
also output a uni�ed design document. �e research on the
drilling uid optimization design system, the establishment
of a high-level drilling uid database, and the development
of e�cient drilling uid optimization design methods will
contribute to the learning and promotion of successful
drilling uid design experience, the realization of integrated
management of formulas, the improvement of information
utilization, the integration of modern computer technology

and drilling uid design, and the realization of automation,
standardization, and intelligence of drilling uid design.

�e research of drilling uid optimization design system
can collect and popularize the successful drilling uid design
case experience summarized by the previous drilling, guide
the new technicians to conduct drilling uid design, and
continuously promote the improvement of drilling uid
design technology.

Based on the research of case-based reasoning technology,
rule-based reasoning technology, and support vector machine
regression prediction technology, this paper also realizes their
fusion reasoning. It not only avoids the disadvantages of each
reasoning model operating in isolation and cannot fully apply
the relevant conclusions in each other’s reasoning to improve
the reasoning success rate but also realizes the complementary
advantages of each reasoning model and improves the design
success rate of the system.

2. The Concept of Support Vector Machine

�e support vector machine (SVM) is based on the Vapnik-
Chervonenkis dimension of statistical theory and the
structural risk minimization principle. It seeks the best
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compromise between model complexity (learning accuracy
for a specific training sample) and learning ability (ability to
identify random samples without error) based on limited
sample information to expect the best generalization ability.
)e most significant difference between it and the neural
network is that it only needs to build a support vector
machine model based on limited training samples by mining
the corresponding relationship between the input and
output data, to realize the prediction of unknown data.
Support vector machines not only perform well in pro-
cessing language, text, face recognition, etc., but also achieve
good results in regression, such as using logging data to
predict formation porosity and reservoir properties in the
field of well logging [10–13]. Support vector machine is
influencing various areas of machine learning through this
new method of intelligent machine learning. Support vector
machines originated from solving classification problems.
)e support vector machine introduces an insensitive loss
function to solve the regression estimation problem of linear
and nonlinear systems, which also achieves the same effect as
the classification problem. Based on the principle of the
support vector machine, this section will gradually explain
the regression prediction principle of the support vector
machine in detail.

2.1. Basic#eory. )e basic idea of statistical learning theory
is to estimate limited or small-scale sample data, mainly to
study the relationship between experience minimization and
empirical risk, expected risk, and how to seek new learning
methods and principles based on existing ones. Statistical
learning theory has apparent advantages in studying the
learning laws of limited samples. It also effectively avoids the
shortcomings of traditional statistical theory that quickly
make the model fall into the local minimum due to over-
fitting and too many dimensions. Its progressive nature
makes statistical theory develop rapidly under the efforts of
many researchers [14, 15].

An essential concept in statistical theory, the Vapnik-
Chervonenkis dimension (VC dimension), can measure the
generalization ability of the model trained by the support
vector machine [16–19]. Under limited training samples, the
larger the VC dimension of the learning machine, the more
complex the learning machine will be, and the larger the
confidence interval will be, which will eventually lead to a
larger gap between the actual risk and the empirical risk,
which means the model is more generalizable.

If there is a sample set with n data samples, which can be
separated by a function set in all possible 2n ways, then the
function set is said to be able to break up the sample set with
n samples. )erefore, the VC dimension of the indicator
function set is the maximum number of sample sets that can
be broken up. In short, if there are n samples of sample sets
that this function set can separate, and this function set
cannot separate n + 1 samples of sample sets, the dimension
of the function set is n. In particular, if a corresponding
function set can be found to separate the sample set of any
number of samples, then the VC dimension of this function
set is infinite. )e VC dimension of the general function set

can be defined based on the indicator function VC di-
mension. )e basic principle is to define a threshold to
convert a real-valued function into a binary indicator
function.

Besides VC dimension theory, structural risk minimi-
zation is the second factor that has a great impact on ma-
chine learning. To achieve better generalization ability in
machine learning, the traditional theory reduces the em-
pirical risk to make it reach the minimum value. Based on
statistical learning theory, it is found that the quality of
generalization ability is also related to the VC dimension,
which is used to narrow the confidence range. Since there
have been many shortcomings in the past in relying on
empirical risk to evaluate the generalization ability of
learning machines, Vapnik et al. proposed the method of
applying structural risk minimization to solve this problem
when they studied support vector machines. )e basic idea
of structural risk minimization theory is to arrange the
function set into a sequence of subsets in order of VC di-
mension size and then minimize the actual risk by calcu-
lating each subset’s empirical risk and confidence range.

One of the ideas to achieve structural risk minimization
is to design a particular structure of the function set so that
each subset can achieve the minor empirical risk (such as
making the training error 0) and then select the appropriate
subset to minimize the confidence range. )e function that
minimizes the empirical risk in this subset is the optimal
function. )e support vector machine method is a concrete
realization of this idea.

2.2. Classification. In the period of popular application of
neural network systems, some scholars began to study the
machine learning method with limited samples and first
proposed the theory of statistical knowledge [20]. With the
continuous progress in machine learning, new approaches
are emerging. At the same time, it has been found that neural
networks also have some drawbacks in dealing with practical
problems, such as overlearning, underfitting, the curse of
dimensionality, and falling into a local minimum. It is also
not suitable for small samples of drilling fluid experimental
data. With the continuous efforts of researchers, support
vector machine theory has been paid more and more at-
tention and developed rapidly with its unique processing
methods for limited sample problems, nonlinear problems,
and high-dimensional recognition problems.

In the early days of the emergence of support vector
machines, it was considered that only two classification
problems could be handled. Its basic idea was to find an
optimal classification hyperplane to divide the data samples.
Later, as classification requirements increased, support
vector machines were developed to handle multi-
classification problems [21–23]. )e classification problem
theory will be introduced in the following.

Suppose there are linearly separable samples, as shown in
the formula given below:

xi, yi( , xi ∈ R
(N)

, yi ∈ +a, −a{ }, i � 1, 2, . . . l. (1)
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Since the sample is linearly separable, it can be expressed
as y�+a or y� −a. If xi belongs to the first category, y�+a;
otherwise, y� −a. )e basic idea of the support vector
machine classification machine is to introduce a classifica-
tion plane to separate the two samples as accurately as
possible. If the classification plane found can completely
separate the two types of samples and produce the most
significant classification distance, then this plane is called the
optimal separating hyperplane.

)e optimal separating hyperplane is expressed as
follows:

ω · x + b � 0. (2)

Since these two types of samples are linearly separable,
they satisfy the relationship of formulas (3)-(4):

ω · xi + b≥ a, yi � ± a, i � 1, 2, 3 . . . l. (3)

In the formula, ω · xi are the inner product of two
vectors. If the values of ω and b are appropriately adjusted,
then the support vector that satisfies the formula (3) and is
the closest point to the hyperplane (the point that falls on the
two dashed lines) can be calculated.

According to the definition of the optimal separating
hyperplane, its decision function is obtained as shown in the
following formula:

f(x) � sign(w · x + b). (4)

Convert the optimal hyperplane into a quadratic pro-
gramming problem solution, as shown in formula given
below:

Min
1
2

‖ ω‖
2

s.t. yi(w · x + b)≥ 0, i � 1, 2, . . . l

. (5)

)e method described above is where the data samples
are linearly separable. Still, if the vector distribution is
linearly inseparable, then slack variables must be introduced
to solve this problem [24–26]. )e specific method is to take
a positive number for the introduced slack variable, select a
nonlinear mapping function ϕ(x), and convert the original
problem from a two-dimensional to a high-dimensional
space for processing so that the nonlinear samples can be
linearly divided in the high-dimensional space.

To avoid the cumbersome inner product calculation in
high-dimensional space, the concept of kernel function can
be introduced to replace the internal product operation so
that the calculation amount is no longer proportional to the
space dimension, which significantly improves the calcu-
lation efficiency. )is paper uses the radial basis function as
the kernel function, so the nonlinear optimization classifi-
cation method becomes

1
2

‖ ω‖
2

+ C 

l

i�1
ξiyi ω · φ xi(  + b( ≥ 1 − ξiξi ≥ 0, i � 1, 2, . . . l . (6)

Its corresponding dual form is as follows:

Max 
l

i�1
ai −

1
2



l

i�1


l

j�1
aiajyiyjK xi · xj 



l

i�1
aiyi � 0

s.t. 0≤ ai ≤C, i � 1, 2 . . . l

. (7)

From the KKT (Karush–Kuhn–Tucker) condition, we
can get the formula given below:

ai yi ω · φ xi(  + b − 1 + ξi(   � 0

C − αi( ξi � 0, i � 1, 2, l
. (8)

From formulas (7) and (8), algebraic formula for b can be
obtained, which is given below:

yi  ajyjK xi, xj  + b − 1 � 0 

s.t. 0≤ ai ≤C
. (9)

By bringing formula (8) into the support vector, b can be
obtained, and finally, the classification function is obtained,
which is given below:

f(x) � sign 
l

i�1
aiyiK xi, x(  + b⎛⎝ ⎞⎠. (10)

2.3. Regression Prediction. With the continuous expansion
of the application scope of support vector machines in
classification problems, people began to explore their ap-
plication methods for regression prediction of problems
[27, 28]. In this section, the regression principle of the
support vector machine will be described in detail.

In the support vector machine processing regression
prediction problem, the value of the output result may cover
the entire real number domain and is no longer as single as
the classification problem. )e most intuitive description of
the regression prediction problem is that the support vector
machine establishes the correspondence between the input
data X and the output result Y through the given training
samples and then uses this correspondence to predict the
unknown data. At the same time, the model can be trained
repeatedly so that the support vector machine has the self-
learning ability.

During the training and learning process, the SVM finds
a specific function, which enables it to find the corre-
spondence between any input and the corresponding output
data. )e loss function is defined in the support vector
machine regressionmachine. In statistics, the loss function is
a function to measure the loss and the degree of error. )e
more common applications are the Huber loss function, the
quadratic loss function, and the insensitive loss function.
Compared with other loss functions, the insensitive loss
function has fewer support vectors, reducing the calculation
amount, and is the most widely used.
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Suppose there is a set of data sample sets
(x1, y1), (x2, y2), (x3, y3), . . . , (xn2

yn) , xi ∈ Rn, yi ∈ Rn,
then the insensitive loss function selected in this paper is
expressed as formula given below:

L xi, yi, ε(  � yi − f xi( 


ε � Max 0, yi − f xi( 


 − ε . (11)

Given a set of training samples (xk, yk), k � 1, 2, 3 . . . n,
the regression problem is establishing a function corre-
spondence between x and y through the given training
samples, y� f (x), which satisfies the minimum insensitive
loss function. When the difference of y� f (xi) between yi is
less than the defined insensitive loss function ε, the error is
not included in the loss function.)e principles of linear and
nonlinear regression will be introduced separately below.

2.3.1. Linear Regression Model of Support Vector Machine.
In linear regression [29–31], the insensitive loss function of a
certain precision is defined to satisfy ε≥ 0 and relaxation
factors ξk ≥ 0ξ

∗
k ≥ 0 and parameter C are introduced (penalty

factor C meets C≥ 0, indicating the degree of penalty for
samples exceeding ε). )e problem of the optimal hyper-
plane that is difficult to solve is transformed into an easy-to-
implement quadratic programming problem. )e objective
function is as follows:

Min ϕ(w, b) �
1
2

‖ w‖
2

+ C 
n

k�1
ξk + ξ∗k( 

s.t. yk − w · xk + b≤ ε + ξk

w · xk − b − yk ≤ ε + ξ∗k , k � 1, 2, . . . , n

. (12)

)e first term in the formula makes the function
smoother and improves the model’s generalization ability,
and the second term reduces the model error. )e intro-
duction of the penalty factor c balances these two terms.
After introducing the Lagrange multipliers, α,α∗ and
Lagrange functions, (12) becomes:

L w, b, α, α∗, ξk, ξ∗k , ηk, η∗k( 

�
1
2

‖ w‖
2

+ C 
n

k�1
ξk + ξ∗k( 

− 
n

k�1
αk ε + ξk − yk + w · xk − b( 

− 
n

k�1
α∗k ε + ξ∗k + yk − w · xk + b( 

− 
n

k�1
ηkξk + η∗kξ

∗
k( 

. (13)

Solving the above Lagrange problem, the dual problem is
obtained as follows:

MaxQ α, α∗(  � −
1
2



n

k,s�1
αk − α∗k(  αs − α∗s(  xk · xs( 

−ε 
n

k�1
αk + α∗k(  + 

n

k�1
αk − α∗k( yk

s.t.


n

k,s�1
αk − α∗k(  � 0

0≤ αk, α∗k ≤C

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

. (14)

Solving the above dual problem, the optimal regression
decision function can be obtained as follows:

f(x) � 
n

k�1
α∗i − αi(  xi · x(  + b. (15)

2.3.2. Nonlinear Regression Model of Support Vector
Machine. )e method of solving the nonlinear regression
problem of the support vector machine is similar to the
method of dealing with the nonlinear classification problem.
By mapping the original nonlinear fitting data to a high-
dimensional space for calculation, for the training sample
(xk, yk), k � 1, 2, . . . , n, the nonlinear regression problem is
transformed into the following model:

Min ϕ w, ξ, ξ∗(  �
1
2
w

T
w + C 

n

i�1
ξk + ξ∗k( 

st. yk − w
Tφ xk( ≤ ε + ξk

w
Tφ xk(  − yk ≤ ε + ξ∗k

ξk ≥ 0, ξ∗k ≥ 0, k � 1, 2, . . . , n

. (16)

)is constrained optimization problem is solved using
the Lagrange multiplier method, and a kernel function is
introduced, which is defined as follows:

K(x, z) � <φ(x) · φ(z)> . (17)

Introducing this function to the solution of the dual
problem, the SVM regression estimation function can be
written as follows:

f(x) � 
n

k�1
α∗i − αi( K xi, x(  + b. (18)

3. Support Vector Machine Kernel Function
Selection and Parameter Optimization

3.1. Kernel Function Selection. Support vector machine is a
machine learning method based on limited samples, and its
generalization ability is highly related to the selected kernel
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function, kernel parameter, and penalty factor C. )e kernel
function realizes the nonlinear mapping of the sample data
from the input space to the feature high-dimensional space.
However, it is still impossible to establish a direct rela-
tionship between the parameters and the generalization
ability of the learning machine. )erefore, choosing the
kernel function and parameters is a complex problem in the
application field of support vector machines.

If a function can satisfy the Mercer condition, it can be
used as a kernel function [25, 29]. Currently, many scholars
are devoted to the research of kernel function construction.
Still, so far, there is no general method to determine the
kernel function, so linear kernel (LK), polynomial kernel
(PK), radical basis function (RBF), and sigmoid kernel (SK)
are still generally selected in practical applications. As the
representative of the global kernel function, the polynomial
kernel is characterized by allowing the sample points far
away from the fitting function curve to influence the kernel
function’s value significantly. )e representative of the local
kernel function is the radial basis function, characterized in
that the samples with farther distances have less influence on
the value of the kernel function.

Using the support vector machine of the drilling fluid
optimization design system to predict the performance
parameters of the drilling fluid, different kernel functions are
used to predict the 15 groups of drilling fluid API fluid loss
with other formulations. )e results are shown in
Figures 1–3.

)e support vector machine uses the Squared correlation
coefficient to measure the model’s prediction accuracy. )e
radial basis kernel function has achieved a high data pre-
diction accuracy, as shown in Table 1. It is found that if there
is no prior understanding of the regularity of the sample
data, it is more reasonable to choose the radial basis function
as the kernel function of the support vector machine.

3.2. Kernel Parameter Optimization Method. Although the
choice of the kernel function will lead to different prediction
performances of the support vector machine, it is found that
the selection of the kernel parameter has a more noticeable
impact on the results in the practical application of the
regression prediction of the support vector machine. In
many cases, it plays a crucial role in the performance of the
learning machine [28, 30]. Many scholars have used random
search algorithms to determine nuclear parameters. )e
generally recognized algorithms include the particle cluster
algorithm, genetic algorithm, and ant colony optimization.
Although these random search algorithms that have been
developed can accurately calculate the optimal kernel pa-
rameters of support vector machines, there are some
problems in application. For example, the parameter opti-
mization process of the genetic algorithm needs to go
through generations of evolutionary calculus to determine
the optimal parameters, so these methods still require a high
amount of training for the support vector machine.

)e grid search is one of the most direct kernel pa-
rameter optimization methods. Its fundamental theory is to
divide the parameters to be searched into several grids
within a specific range and find the optimal parameters by
traversing all the points in the grid.)is method can find the
optimal global solution when the optimization interval is
large enough, and the step size is small enough. At the same
time, the grid search method is easy to implement and easy
to use. )erefore, this paper selects the radial basis function
as the kernel function of the support vector machine and
uses the grid search to determine the kernel parameters. )e
specific process is given below.

For the penalty factor C and kernel function parameter g

that need to be determined, all possible values of C and g are
used as the range of grid search, and the grid of values of C
and g is discretized. )en, with fixed step size, the grid is
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Figure 1: LK function prediction result.
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generated along the different growth directions of the two
parameters C and g, which are represented by nodes in the
grid. First, choose a rough search in an extensive range, and

then finely search around the optimal value. Using the cross-
validation method, the training data is divided into n subsets
of the same size, and the n− 1 subsets are used as training
samples to obtain a decision function, which is used to
predict the subset that has not participated in the training.
)is cycle is repeated n times until all subsets are predicted as
test samples. Take the average accuracy obtained from n
predictions as the final accuracy, as shown in Figure 4.
Studies have shown that exponentially growing grids are a
reasonable and efficient search method.
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Figure 3: SK function prediction result.
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Figure 2: RBF function prediction result.

Table 1: Model prediction accuracy.

Model LK PK RBF SK
Accuracy (%) 74.88 cannot fit 97.31 85.36
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4. Case Study

According to the above analysis of the support vector
machine, since the influence of the drilling fluid treatment
agent on the performance of drilling fluid is multifaceted, the
performance data of the three treatment agents added to the
drilling fluid were measured in the laboratory. Using the
data based on support vector machine, a calculation model
of a multifactor nonlinear problem is established based on
the requirements of drilling fluid performance. Using this
model, the drilling fluid formula that meets the requirements
can be quickly calculated.

In this paper, the radial basis function is selected as the
kernel function, vb.net is used to design the program, and
the grid search algorithm is used to realize the optimization
of model parameters, to establish a model for predicting the
dosage of drilling fluid treatment agent based on support
vector machine.

Taking the commonly used strong inhibitory water-based
drilling fluid in an oilfield as an example, the formula is 4%
bentonite+ 0.2% Na2CO3+1%KOH+2%SMP-2+2%
SPNH+coating agent +fluid loss agent+ 0.3%
CaO+ inhibitor+ 0.5%CMC-LV+5%PHT+1%liquid lubri-
cant+barite. )ree key treatment agents were selected as the
investigation objects, namely inhibitors KCI, fluid loss reducers

JT888, and coating agents IND10. )e added amount of each
treatment was used as the input, and a support vector machine
model withAV, PV, FLAPI, and R as the output was established,
respectively. Its structure is shown in Figure 5.

)rough experiments, AV, PV, FLAPI, and R of drilling
fluids of 50 groups of the above 3 treatment agents were
measured in different dosages and combinations. Forty groups
of data were randomly selected as SVM model training
samples, and the remaining 10 groups of data were used as
model test samples. Experimental data are listed in Table 2.

SVM training

Whether the
end conditions

are met

Whether the
end conditions

are met

Update the range of C
and g

and step size

Update step size

No

Yes
Yes

No

SVM training

End

Best C and g

Initialize C and g and
determine the search

step size

Figure 4: Parameter optimization of grid search.

KCI

K (x1, x) K (x2, x) K (x3, x) K (xn, x)

JT888 IND10

Yes

AV, PV, FLAPI, ...

No

Figure 5: SVM prediction model structure.
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Use the remaining 10 groups of experimental data to
check the predictive ability of the model, and the mean
squared error (MSE) is commonly used in the support vector
machine to measure the predictive accuracy of the training
gained model, and the MSE calculation formula is (19). )e
smaller the value of MSE, the better the accuracy of the

prediction model in describing the experimental data.
Table 3 compares the prediction results of themodel with the
experimental results.

MSE �
1
n



n

i�1
xm − xp 

2
. (19)

Table 2: Experimental data.

Number
Dosage of key treatment agent (%) )e performance parameters of drilling fluid obtained from the

experiment
KCl JT888 IND10 AV (mPa∗s) PV (mPa∗s) FLAPI (mL) R (%)

1 0 0 0 29.12 27.12 7.02 37.92
2 0 0 0.5 37.29 29.79 6.49 54.79
3 0 0 1.0 45.13 38.13 6.63 67.13
4 0 0 1.5 50.79 45.79 6.19 78.79
5 0 0.5 0 33.12 26.12 5.22 38.12
6 0 0.5 0.5 37.79 30.79 4.69 54.79
7 0 0.5 1.0 47.13 40.13 5.13 70.13
8 0 0.5 1.5 48.79 41.79 4.79 80.79
9 0 1.0 0 39.12 31.12 4.72 39.12
10 0 1.0 0.5 39.79 31.79 4.19 55.79
11 0 1.0 1.0 46.13 39.13 4.53 68.13
12 0 1.0 1.5 52.79 48.79 3.99 81.79
13 0 1.5 0 46.12 37.12 3.32 41.12
14 0 1.5 0.5 46.79 38.79 2.99 55.79
15 0 1.5 1.0 49.13 40.13 3.23 69.13
16 0 1.5 1.5 51.79 45.79 2.79 82.79
17 3 0 0 29.12 27.12 7.02 46.12
18 3 0 0.5 37.79 28.79 6.59 56.79
19 3 0 1.0 45.13 38.13 6.93 68.13
20 3 0 1.5 49.79 45.79 6.49 83.79
21 3 0.5 0 33.12 25.12 5.22 44.12
22 3 0.5 0.5 37.79 30.79 4.89 57.79
23 3 0.5 1.0 46.63 41.13 5.13 71.13
24 3 0.5 1.5 47.79 40.79 4.79 85.79
25 3 1.0 0 38.12 31.12 4.62 43.12
26 3 1.0 0.5 38.79 30.79 4.19 58.79
27 3 1.0 1.0 45.13 38.13 4.63 72.13
28 3 1.0 1.5 51.79 46.79 4.19 82.79
29 3 1.5 0 44.12 36.12 3.32 46.12
30 3 1.5 0.5 46.79 37.79 2.99 54.79
31 3 1.5 1.0 49.13 39.13 3.23 74.13
32 3 1.5 1.5 51.79 45.79 2.89 80.79
33 5 0 0 29.12 26.12 7.02 50.12
34 5 0 0.5 36.79 28.79 6.69 58.79
35 5 0 1.0 43.13 35.13 6.93 73.13
36 5 0 1.5 47.79 42.79 6.59 84.79
37 5 0.5 0 34.12 25.12 5.12 58.12
38 5 0.5 0.5 37.79 31.79 4.79 59.79
39 5 0.5 1.0 45.13 38.13 5.23 73.13
40 5 0.5 1.5 46.79 38.79 5.09 87.79
41 5 1.0 0 37.12 30.12 4.52 50.12
42 5 1.0 0.5 37.79 28.79 4.39 58.79
43 5 1.0 1.0 44.13 36.13 4.33 75.13
44 5 1.0 1.5 49.79 43.79 4.09 84.79
45 5 1.5 0 44.62 34.12 3.32 50.12
46 5 1.5 0.5 44.79 36.79 3.29 58.79
47 5 1.5 1.0 47.13 37.13 3.23 73.13
48 5 1.5 1.5 49.79 42.79 3.09 81.79
49 7 0 0 27.12 25.12 6.92 51.12
50 7 0 0.5 35.79 27.79 6.69 60.79
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In the formula

xm-experimental test value;
xp-parameter values for predicting performance.

From Table 3, it can be seen that themodel established by
the support vector machine to predict the performance
parameters of the drilling fluid has high prediction accuracy
and can meet the requirements of drilling fluid design. It can
be used to build the subsequent drilling fluid formulation
optimization design model.

On the basis of obtaining the SVM prediction model of
drilling fluid performance parameters, this prediction model
is used as a part of the model for inversion of the treatment
agent dosage in the entire drilling fluid formula, and the
drilling fluid performance required in different situations is
used as the target parameter.)e dosages of KCI, JT888, and
IND10 are calculated by inputting the control variables into
the prediction model. If the error between the output results
of the prediction model and the target parameters is within
the allowable range, it is considered that the dosages of the
three treatment agents at this time canmeet the performance
requirements of the drilling fluid and output the result of
adding this group. )e computational structure model is
shown in Figure 6.

A calculation example is as follows.

4.1. Drilling Fluid Formulation Design. Under the drilling
fluid formulation optimization design model, the AV, PV,
FLAPI, and R of the drilling fluid (40mPa∗s, 37.0mPa∗s,
4.2mL, and 85.0%, respectively) are treated as the target
performance parameters of this drilling fluid.)e commonly

used dosages of KCl, JT888, and IND10 are 0–20.0%,
0–2.0%, and 0–2.0%, respectively, which are the trial cal-
culation ranges, and this model is used for calculation. If the
errors of the calculated AV, PV, FLAPIR, and the target
performance parameters are within 5%, 5%, 3%, and 5%,
respectively, the requirements of the target performance
parameters are met. At the same time, the amount of
treatment agent reversed by the model is output.

Under the given calculation step, the model calculates a
total of 9238 sets of data. Excluding some formulas with
excessive addition, the formulas that meet the error range
are shown in Table 4.

4.2. Experimental Verification Model. Although the support
vector machine has good generalization ability, it can be seen
from the error data of the previous prediction model es-
tablishment and test that its prediction accuracy also has a
certain deviation, so the experimental verification is carried
out on the reversely deduced treatment agent dosage for-
mula. )e experimental results are shown in Table 5.

It can be seen from the above chart that under the
SVM model, a target drilling fluid performance may
obtain a variety of drilling fluid formulations that meet the
requirements, of which groups 1 and 3 are the preferred
formulations, and their SVM calculation results are
similar to the experimental results. However, there may
also be unqualified treatment agent dosages. As can be
seen in Figure 6, the AV and PV of groups 5 of treatment
agents have a large gap with the target parameters after
experimental verification, and they are unsatisfactory
formulas.

Target P

P

KCI

K (x1, x) K (x2, x) K (x3, x) K (xn, x)

JT888 IND10

Optimal
result

Yes

Yes

No

No

Compare

Figure 6: Drilling fluid formulation optimization design model structure.

Table 3: Model prediction error table.

Error AV PV FLAPI R
Mean squared error 1.23 1.65 1.32 0.26
Maximum error (%) 6.02 6.71 4.24 2.82
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5. Conclusions

In order to improve the quality of drilling fluid design, using
computer to assist the design and introducing artificial
intelligence system into the design is a common method to
solve these shortcomings in the traditional drilling fluid
design. At the same time, with the rapid development of oil
and gas exploration and development technology and the
increasing demand, modern drilling technology has put
forward newer and higher requirements for drilling fluid,
and various new drilling fluid technologies have been ap-
plied and developed. Today, in pursuit of high efficiency and
low cost, intelligent drilling fluid design and management
technology has also received more attention. )erefore, it is
necessary to develop more practical software for modern
drilling fluid design and drilling fluid datamanagement.)is
paper introduces the basic theory of support vector machine
and the principle of regression classification in detail, and
analyzes and explains the two difficult problems of support
vector machine kernel function selection and kernel pa-
rameter determination. Finally, the method of SVM applied
to drilling fluid formulation design is studied, and a SVM
model for predicting drilling fluid formulation is con-
structed, and it is verified by experiments that the model has
good prediction accuracy.

Data Availability

)e dataset can be obtained from the corresponsing author
upon request.
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