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Alzheimer’s Disease (AD) is a silent disease that causes the brain cells to die progressively, in�uencing consciousness, behavior,
planning ability, and language to name a few. AD increases exponentially with aging, where it doubles every 5-6 years, causing
profound implications, such as swallowing di�culties and losing the ability to speak before death. According to the Ministry of
Health in Saudi Arabia, AD patients will triple by 2060 to reach 14 million patients worldwide. �e rapid rise of patients is caused
by the silent progress of the disease, leading to late diagnosis as the symptoms will not be distinguished from normal aging a�ect.
Moreover, with the current medical capabilities, it is impossible to con�rm AD with 100% certainty via speci�c medical ex-
aminations.�e literature review revealed that most recent publications used images to diagnose AD, which is insu�cient for local
hospitals with limited imaging capabilities. Other studies that used clinical and demographical data failed to achieve adequate
results. Consequently, this study aims to preemptively predict AD in Saudi Arabia by employing machine learning (ML)
techniques. �e dataset was acquired from King Fahad Specialist Hospital (KFSH) in Dammam, Saudi Arabia, containing
standard clinical tests for 152 patients. Four ML algorithms, namely, support vector machine (SVM), k-nearest neighbors (k-NN),
Adaptive Boosting (AdaBoost), and eXtreme Gradient Boosting (XGBoost), were employed to preemptively diagnose the disease.
�e empirical results demonstrated the robustness of SVM in the pre-emptive diagnosis of ADwith accuracy, precision, recall, and
area under the receiver operating characteristics (AUROC) of 95.56%, 94.70%, 97.78%, and 0.97, respectively, with 13 features
after applying the sequential forward feature selection technique. �is model can assist the medical sta� in controlling the
progression of the disease at low costs.

1. Introduction

Alzheimer’s disease (AD) is a prevalent form of dementia in
which brain cells progressively die, in�uencing conscious-
ness, behavior, planning ability, language, and others [1]. It
develops silently over a long period that may range from
three to ten years before reaching a high level of severity [2].
�is may lead to late diagnosis as the symptoms will not be
distinguished from normal aging a�ect. Additionally, AD

patients are signi�cantly expected to su�er from several
chronic diseases compared to healthy older adults [3]. �e
authors of [4] claimed that the AD infection rate increases
exponentially with aging and doubles every 5-6 years. �e
Ministry of Health in Saudi Arabia mentioned that 130
thousand of the population were diagnosed with AD in 2020.
�e Ministry of Health also anticipated that the patients’
number would triple by 2060 to reach 14 million patients
worldwide [5]. �e resources demanded to deliver the best
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nursing services for the patients which is tremendous and
cost-intensive [6]. As a result, numerous researches were
conducted to investigate potential treatment procedures to
cure or maintain the complication of AD. Most of these
studies concluded the importance of early diagnosis and its
relevance to executing the optimal treatment plan [7].
Furthermore, according to the World Health Organization
(WHO), the development of the disease was proven to be
connected with environmental factors [6]. Consequently,
this study aims to establish an AD early predictive assistant
by employing machine learning (ML) techniques on a Saudi
dataset obtained from King Fahad Specialist Hospital.

Currently, it is impossible to confirm AD with 100%
certainty via specific medical examinations. Screening and
other available diagnostic tools used to identify patients with
AD are expensive and not suitable for hospitals with limited
resources [6]. $erefore, involving the latest technologies
such as ML can assist doctors in achieving a more accurate
and efficient diagnosis. With the increasing amount of
medical data and the evolving capabilities of ML, physicians
will be able to identify hidden patterns that humans are
incapable of detecting [8]. $erefore, it can significantly
improve the AD patients’ lifestyle and boost their prevention
chances. Considering Saudi Arabia’s recent principle of
employing the latest technology, numerous studies were
conducted to support the health industry. Researchers in
reference [9] obtained a dataset from King Abdulaziz
University (KAU) Hospital, Saudi Arabia, to diagnose AD
earlier using cerebral catheter angiogram neuroimaging,
achieving an accuracy of 99.14%. Furthermore, researchers
in references [10–13] utilized various ML techniques to
perform a pre-emptive diagnosis of diabetes mellitus,
chronic kidney disease, schizophrenia, and thyroid cancer,
attaining the highest accuracies of 98.00%, 98.00%, 90.70%,
and 90.91%, respectively. $e promising results of these
studies have encouraged us to consider expanding the work
to build a prediction model for AD using simple clinical and
demographical data.

As health care began to adopt ML, several algorithms
were established to achieve adequate results. In this study, a
total of four ML algorithms were utilized, namely, support
vector machine (SVM), k-nearest neighbor (k-NN), Adap-
tive Boosting (AdaBoost), and eXtreme Gradient Boosting
(XGBoost), each with robust characteristics. Aside from
SVM’s flexibility in addressing classification problems, it has
been used recently to diagnose precision psychiatry, brain
disorders, and many others achieving superior performance
[14]. Conversely, k-NN is well known for its simplicity,
rapidity, and scalability in handling complex data [15], while
AdaBoost is also popular due to its high compatibility and
low complexity [16]. XGBoost exceeds AdaBoost in terms of
scalability and speed. $is method leverages parallelized
techniques to accelerate computation by ten times [17].

Empirical results demonstrated that SVM outperformed
all the other classifiers achieving an accuracy of 95.52%,
followed by k-NN, AdaBoost, and then XGBoost. With only
six features and a negligible difference in accuracy, k-NN
exceeded the performance of SVM by reducing the required
number of clinical tests. However, it is crucial to consider a

higher recall value that focuses on reducing false negatives as
the misdiagnosis of AD induces severe complications.
Hence, it is concluded that the optimal model for pre-
emptively diagnosing AD is SVM attaining the highest recall
of 97.78% and an area under the receiver operating char-
acteristics (AUROC) of 0.97 using 13 features after applying
the sequential forward feature selection technique.

$e remaining sections in this paper are arranged as
follows. Section 2 involves the reviewed literature, whereas
Section 3 includes the technical description of the four
utilized machine learning algorithms. $e empirical study is
demonstrated in Section 4, containing dataset description,
statistical analysis, an experimental setup, performance
measures, and an optimization strategy. Section 5 illustrates
and discusses the experiment outcomes, while the last
section presents the conclusion and future work
recommendations.

2. Review of Related Literature

Several publications utilized various ML and deep learning
(DL) algorithms to develop early diagnosis models for AD.
Below are some of the literature reviews conducted to
identify the gaps in the studies and observe the optimal
classifiers. Table 1 represents a summary of the literature
reviews with their major limitations.

Alzheimer’s Disease Neuroimaging Initiative (ADNI)
provides several datasets with different data types for re-
searchers to benefit from while employing ML and DL
techniques [31]. $e authors in reference [18] utilized the
ADNI dataset to enhance the AD prediction accuracy by
using the VGG-16 architecture convolution neural network
(CNN) model for feature extraction. $e empirical results
showed that SVM, linear discriminate, and k-NN achieved
the highest accuracy of 100% when trained using the
functional magnetic resonance imaging (fMRI) images, while
k-NN attained the highest accuracy of 76.56% when trained
using the positron emission tomography (PET) images.

In another study [19], the authors developed a novel
architecture for the early prediction of AD. $e proposed
3DMgNet architecture was trained with two magnetic res-
onance images (MRI) datasets. $e first was obtained from
the ADNI database, and the other was collected from a
hospital located in China.$e empirical results revealed that
the intended model achieved the highest classification ac-
curacy of 92.133%.

Similarly, the study [20] utilized the ADNI dataset to
diagnose AD using three ML classifiers. $e features in the
dataset were standardized and normalized. $e authors
concluded that logistic regression (LR) achieved the best
results with accuracy, specificity, and sensitivity of 98.12%,
95%, and 90%, respectively.

$e authors in reference [21] also used one of the ADNI
datasets to propose a state-of-the-art technique that auto-
mates the early detection of AD’s three stages. Various
methods were employed for feature extraction, followed by
using the principal component analysis (PCA) to reduce the
number of features. $e empirical results showed that
random forest (RF) achieved the highest accuracy of 98.42%.
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$e study [22] also proposed prediction and detection tools
for the early diagnosis and classification of AD using MRI.
$e CNN algorithm was employed to classify 1512 mild,
2633 normal, and 2480 AD patients, achieving a 99%
accuracy.

In another study [23], the authors proposed a technique
for detecting AD early using blood plasma proteins. $e
dataset was acquired from the ADNI portal, containing 146
blood plasma proteins from three clinical groups. A corre-
lation-based feature selection technique was used on the first
dataset based on brute force search to form feature panels.
Ten-fold cross-validation was used on the first dataset. $en,
the resulted models were tested with the second dataset. $e
empirical results showed that SVM achieved the best results
with a sensitivity higher than 80%, specificity above 70%, and
at least 0.80 for AUROC for both datasets.

Similarly, using ML, the authors in reference [24] used
psychological parameters including education, age, number
of visits, and the mini mental state examination to predict
AD. $e empirical results indicated that SVM achieved the
highest accuracy of 85%.

Open Access Series of Imaging Studies (OASIS) datasets
were also employed in several studies [32]. $e authors in
reference [25] detected AD in its early stages using a dataset
obtained from OASIS, containing MRI data of 373 imaging
sessions for 62 men and 88 women. Feature selection was
applied through the Boruta algorithm. $e results indicated
that RF achieved the best performance among the 12 pro-
posed models with accuracy, sensitivity, specificity, and
AUROC of 94.39%, 88.24%, 100.00%, and 94.44%,
respectively.

Furthermore, the authors in reference [26] used a data
augmentation method to collect AD braining images to
implement a robust computer-vision-based prediction
model using an 8-layer CNN with leaky ReLU and max
pooling. $e model attained an accuracy, sensitivity, and
specificity of 97.65%, 97.96%, and 97.35%, respectively.

On the other hand, the proposed method in the study
[27] used the extracted spectrogram features from speech
data to detect AD’s early stages. $e technique utilized two
datasets, where the first dataset consisted of 36 subjects,
while the second dataset consisted of 32 subjects. LR-CVwas
proved to be the best classification model in both datasets.
$e results after parameter optimization reached a precision,
recall, F1 score, and accuracy of 87.5%, 91.3%, 89.4%, and
86.1%, respectively.

$e authors in reference [28] utilized four ML algorithms
to classify AD patients. $ree datasets were used, with each
dataset involving 28 mild AD or cognitive impairment pa-
tients and 50 cognitively healthy adults. Five-fold cross-val-
idation and leave-one-out were used for evaluation.
Moreover, SelectKbest was employed for feature selection,
where SVM attained the best outcomes with accuracy,
specificity, and sensitivity of 91.08%, 94%, and 85.71%,
respectively.

More recently, the authors in reference [29] used clinical
data for AD early prediction. To increase the prediction
accuracy, two-stage categorization techniques were applied.
$e first stage entailed investigating the impact of diabetes

and high blood pressure on the cognitive decline; conse-
quently, they trained SVM and RF. After that, the cognitive
function with possible dementia was examined in the second
step utilizing a neuropsychological test called the cognitive
ability test (CAT).$emultinomial LR approach was used to
analyze CAT findings to forecast the likelihood of cognitive
deterioration later in life. $e proposed work achieved an
accuracy of 0.86 with SVM for the first stage, while RF
attained an accuracy of 0.71 for the same stage. Multinomial
LR attained an accuracy of 0.89 for the second stage.

Furthermore, 3D-CNN was utilized in reference [30] for
the early prediction of AD. $e dataset was taken from the
MIRIAD dataset, and it contained MRI scans of 46 AD and
23 non-AD controls. $e 3D-CNN model achieved a testing
accuracy of 100% with a loss of 12.74%, validation accuracy
of 98.08% with a loss of 14.59%, and training accuracy of
100% with a loss of 9.5%, and precision, recall, and F1 score
of 100%.

Based on the literature reviews related to this study, it
was observed that several classifiers achieved good perfor-
mance, such as conventional neural networks (CNN),
support vector machine (SVM), random forest (RF), and
logistic regression (LR). It was also observed that most of the
reviewed papers utilized imaging datasets, which increased
the workload of collecting data and the inconvenience of
using high-complexity assembled models by nontechnical
individuals. Additionally, it was noted that most of the
studies achieved low sensitivity rates, whereas other studies
achieved insufficient classification accuracy. To overcome
these limitations, this work aimed to construct a model using
simple clinical features and obtain high accuracy and recall
rates with minimal computation time using a dataset col-
lected from a Saudi hospital. $erefore, local hospitals with
limited equipment can benefit from the pre-emptive diag-
nosis models. In addition, it sought to resolve the problem of
imbalanced data that may reduce sensitivity by applying the
Synthetic Minority Oversampling Technique (SMOTE).

3. Materials and Methods

Python programming language was utilized in this experi-
ment to develop the pre-emptive diagnosis models for AD
using Google Colaboratory. $e Sklearn library was utilized
to perform data preprocessing and modeling. Four ML al-
gorithms were used, including support vector machine
(SVM), eXtreme Gradient Boosting (XGBoost), k-nearest
neighbor (k-NN), and Adaptive Boosting (AdaBoost). Other
steps, including balancing the dataset, optimizing the algo-
rithms using GridSearchCV, and feature selection using
Sequential Forward Feature Selection, were performed using
the Sklearn and Mlxtend libraries with stratified 10-folds
cross-validation. $e random state was set to 0 for all the
implemented steps. Figure 1 illustrates the study’s framework,
and the following sections explain the flow of the study in
detail.

3.1. Dataset Collection and Cleaning. $e Saudi Alzheimer’s
disease dataset was obtained from King Fahad Specialist
Hospital (KFSH), Dammam, Saudi Arabia. It initially

4 Computational Intelligence and Neuroscience



consisted of 11 features and 53522 instances, where it had to
be filtered to extract the laboratory test for each patient in a
single row. $erefore, a filtering code was proposed for
Alzheimer’s dataset, where parallelism techniques were
employed to reduce the computation complexity. $e
parallel computing paradigm involved executing several
instructions simultaneously to reduce computation com-
plexity and time. $e multiprocessing library is one of
Python’s most commonly used modules to implement
parallel computing. It performs process-based parallelism
through a fork system call where all processes share the same
memory [33]. $e module provides various approaches to
execute code blocks concurrently, including Process, Pool/
Map, Pool/apply_async, and others.

To conduct this experiment, we utilized the Pool
method, a class that assembles a pool of processes, along with
the map method, which traverses the input element list in
parallel [34]. Assuming a system with N processors or nodes,
the speedup in comparison with one processor can be es-
timated as follows:

Speedup �
T1

TN

, (1)

where T1 is the code runtime for one processor and TN is the
runtime for N processors. TN depends on the number of
computing nodes and the proportion of serial code. Hence,
the total runtime of the parallelized code can be measured
using Amdahl’s law:

TN � TS +
TP

N
+ TSync, (2)

where TS represents the execution time of the serial code, TP

represents the runtime of the parallel code, and TSync rep-
resents the time needed for synchronization operations such
as I/O operations [34].

In this study, patients’ records in the dataset were or-
ganized using the proposed pseudocode presented in Al-
gorithm 1. $e map function provided by Python was
employed with seven cores instead of the complete number
of processors to avoid freezing the program.

As demonstrated in Algorithm 1, we began by defining
the dataset, creating the pool, and mapping it to the data
filtering function with the list of intended columns. $e data
filtering function presented in Algorithm 2 traverses through
every patient record to fill their information in parallel. After
filling the columns, the pool was closed, and the results
obtained were transferred to the dataset variable.

3.2. Dataset Description. After applying the filter code and
removing the duplicate records, the dataset contained
standard clinical tests for 152 patients, where 63 were
positively diagnosed with AD and 89 were negatively di-
agnosed with AD. $e dataset also incorporated 435 clinical
features. However, only 18 attributes were utilized to build
the AD prediction model after removing the columns
containing missing values exceeding 30% of the total
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number of instances. Table 2 outlines the attributes used in
this study.

3.3. StatisticalAnalysis. Statistical analysis provides essential
tools for visualizing and understanding the data patterns for
better preprocessing and modeling. Table 3 displays the
statistical analysis for the Saudi AD dataset’s numerical
features, including the mean, standard deviation (STD),
minimum (Min), first quartile (25%), median (50%), and
third quartile (75%), and maximum (Max) values for each
feature. Moreover, it outlines the count of missing values in
each column.

Statistical analysis tools can show the presence of outliers
in the data. For instance, the significant difference between
the minimum values and the first quartile of the BP-systolic,
respiratory rate, BP-diastolic, and pulse ox attributes shows
the presence of outliers. Additionally, the considerable
difference between the maximum value and the third
quartile of the platelet attribute indicates the presence of an
outlier. $e standard deviation shows a wide spread of data
in the platelet, BP-systolic, pulse, and BP-diastolic. In

contrast, it demonstrates a considerably low distribution of
the other attributes around the mean.

3.4. Dataset Preprocessing. $e data fed into ML algorithms
require several preprocessing steps to enhance the learning
process of the algorithms. In our study, the Sklearn library
was utilized to preprocess the data starting by transforming
all entries into numerical values, either float or integer, and
the platelets values mentioned as “normal limit” were set to
250. $e following preprocessing steps included treating
outliers, filling the missing values, and scaling the data.

(1) Outlier removal: $e outliers were treated by
replacing the minimum values of the pulse ox and
respiratory rate attributes and the maximum value of
the platelet attribute with their mean:

Mean �
 X

n
, (3)

where x denotes the data points and n is the number
of points.

(1) Define the dataset as a dataFrame
(2) Create pool with 7 processes
(3) Results:�map the pool to data_filtering function with the set of patient test names
(4) Close pool
(5) Join pool
(6) count:� 0
(7) For i⟶ first patient test name To last patient test
(8) Dataset[i]:� results[count]
(9) count:� count + 1
(10) EndFor

ALGORITHM 1: Data filter parallelized pseudo code.

(1) Funtion data_filtering(i)
(2) Found:� false
(3) Temp_lst:� []
(4) For j⟶ first patients To last patients
(5) Found:� false
(6) Temp:� []
(7) For ind⟶ first dataset raw To last dataset raw
(8) If j� � dataset [patient id column] [ind] and i� � dataset [patient test name][ind] then
(9) Found:� true
(10) Add dataset [test results] [ind] in temp
(11) EndIf
(12) EndFor
(13) If found!� true then
(14) Add “nan” in temp
(15) EndIf
(16) Extend temp in temp_lst
(17) EndFor
(18) Return temp_lst
(19) EndFunction

ALGORITHM 2: Data filter process pseudo code.

6 Computational Intelligence and Neuroscience



(2) Missing values imputation: A k-NN imputer replaces
missing values with the mean estimation of the
nearest neighbor based on a specific similarity
measure [35]. In our study, the missing values were
treated with the nearest neighbor’s value set to 3 and
the metric set to Euclidean distance. $e k-NN
imputer operates as follows:

(1) Define the n_neighbors.
(2) Calculate the Euclidean distance:

d(p, q) �

�����������


n

i�1
qi − pi( 

2




, (4)

where p and q correspond to different points and
n denotes the n-space.

(3) Impute the missing values using equation (3).

(3) Data Scaling: $e MinMaxScaler operates by scaling
the values of the attributes to a specific range. In our
study, the attributes were scaled in the range of 0 to 1
as

MinMaxScaler v′i( 

�
vi − minA

maxA − minA

new maxA − new minA(  + new minA.

(5)

where vi represents the data point, maxA and minA

represents the maximum and minimum values of an
attribute, and new maxA and new minA denotes the
values 0 and 1, respectively.

Table 2: Features description.

Feature Description
Sex Male or female
Age Age in years
Temperature $e body temperature in degrees Celsius (C)
White blood cells (WBC) $e WBC count in a body
Red blood cells (RBC) $e RBC count in a body
Pulse ox $e measurement of oxygen in the blood (oxygen saturation)
Platelet $e platelet count in a body
MPV $e measurement of platelet size
RDW $e measurement of red cells size variance
MCH $e hemoglobin average in a single RBC
MCHC $e average quantity of hemoglobin in a single RBC per unit volume, considering the cell volume
MCV $e average size of RBCs
Hematocrit $e ratio of the volume of RBCs in the overall amount of blood
Hemoglobin $e measurement of hemoglobin level in the blood
Pulse $e number of heart beats per minute is also called the heart rate
Respiratory rate $e measurement of breathing rate per minute
BP-systolic $e highest blood pressure during ventricular contraction
BP-diastolic $e lowest pressure that is measured immediately before the subsequent contraction

Table 3: $e statistical analysis of numerical attributes.

Features Mean STD Min 25% 50% 75% Max Missing values
Age 55.79 20.58 11.00 37.00 59.00 74.00 92.00 0.00
Pulse 80.35 12.45 49.00 72.00 78.50 88.75 117.00 18.00
BP - systolic 121.15 18.66 51.00 110.00 120.00 135.00 172.00 19.00
Temperature 36.70 0.33 35.40 36.50 36.70 36.80 38.30 19.00
Respiratory rate 20.15 2.68 0.00 20.00 20.00 20.00 35.00 19.00
BP-diastolic 72.90 11.24 27.00 66.00 73.00 79.00 110.00 19.00
WBC 6.92 2.81 0.70 4.90 6.60 8.10 16.10 37.00
RBC 4.39 0.75 2.20 4.13 4.46 4.84 5.87 37.00
Hemoglobin 12.23 2.18 5.00 11.45 12.50 13.70 17.40 37.00
Hematocrit 36.83 6.49 14.20 34.00 37.60 40.55 50.80 37.00
MCV 84.26 7.70 59.10 80.05 85.00 89.50 99.70 37.00
MCH 27.89 2.81 17.50 26.55 28.10 30.00 33.80 37.00
MCHC 33.17 1.27 28.60 32.50 33.40 34.00 35.40 37.00
RDW 14.91 2.33 11.70 13.50 14.30 15.55 24.00 37.00
MPV 8.80 1.13 6.00 8.00 8.80 9.40 12.90 38.00
Platelet 238.65 82.46 5.00 186.25 243.00 289.75 517.00 38.00
Pulse ox 98.24 3.78 65.00 98.00 99.00 100.00 100.00 40.00
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3.5. Description of the Utilized Machine Learning Techniques.
$e sections below represent a theoretical background of the
classifiers utilized to pre-emptively predict the possible in-
cidence of Alzheimer’s disease.

3.5.1. Support Vector Machine (SVM). Support vector ma-
chine (SVM) is a trendy statistical-based supervised machine
learning algorithm introduced in the late 1990s by Vapnik,
Cortes, and Boser to solve classification and regression
problems [36]. It has a distinctive ability to model complex
relationships between variables and merge generalization
control with a procedure to address the curse of dimen-
sionality, which arises when a model examines a dataset with
various features and limited samples, allowing the algorithm
to perform superbly well with limited instances [14]. For
linearly separable data, the SVM algorithm explores the
training instances belonging to a particular class and then
constructs a boundary that divides the training data into two
separated classes.$is boundary is known as the hyperplane,
which is a subspace with dimension p-1 [37]. Equations (6)
and (7) represent the formulas for finding the maximum
margin hyperplane, where w

→ represents a vector of m di-
mensions, b denotes a scalar, g represents the slack variable,
c denotes the penalty parameter, and yi is the class label [38].

min: P(w
→

, b, g) �
1
2

w
→T

.w
→

+ c 
l

i�1
g, (6)

subject to:
yi w

→T∅ x
→

i(  + b≥ 1 − g,

g≥ 0, i � 1, 2, . . . , l.

⎧⎪⎨

⎪⎩
(7)

In order to find the optimal hyperplane, the margin,
which is the distance between the hyperplane and support
vectors, should be maximized. On the other hand, the
separation of nonlinear data is enabled by introducing the
kernel functions, where the SVM algorithm utilizes a kernel
trick that finds an optimal boundary for the probable
outputs.

3.5.2. K-Nearest Neighbor (K-NN). K-nearest neighbor (K-
NN) is a supervised machine learning algorithm developed
by Evelyn Fix and Joseph Hodges in 1951 and then expanded
by $omas Cover [39]. It is often referred to as a non-
parametric, instance-based, memory-based, and lazy learner
technique as each term represents a characteristic of K-NN.
$e principle of this classifier concentrates on using the
nearest data points (neighbors) to predict classes or con-
tinuous values for hidden data.$e quality of the predictions
depends on the distance measurement. Executing k-NN
begins with recognizing the number of neighbors (K) that
have the minimum distance between the data points and the
target point. Subsequently, a majority voting mechanism is
implemented to choose an appropriate class or value for the
new data. Equation (8) represents the Minkwiski distance
measure that can be generalized to calculate other distance
measures:

d(x, y) � 
k

i�1
xi − yi


 

p⎛⎝ ⎞⎠

1/p

, (8)

where x and y correspond to different points and p turns the
formula to Manhattan distance if set to 1 and Euclidean
distance if set to 2.

3.5.3. Adaptive Boosting (AdaBoost). Adaptive Boosting
(AdaBoost) is an ensemble technique that implements
boosting to construct a robust algorithm from a combina-
tion of weak algorithms in series. $is method was first
introduced by Freund and Schapire in 1997 [16]. It is mainly
used to enhance the decision tree’s performance for clas-
sifying binary problems. In the training process, each model
concentrates specifically on the weakness of the previous
model by adjusting the weights of the data points. $e
misclassified samples’ weights will be boosted, whereas the
weights of the accurately classified samples will be decreased.
After applying the same procedure to each model, the results
will be aggregated into a robust classifier [16]. $e steps for
the AdaBoost algorithm are explained briefly along with the
mathematical equations below.

$e dataset is represented in the following equation,
where n represents the number of features, x is the set of
instances, and y is the binary target attribute:

xi ∈ R
n
, yi ∈ −1, 1{ }. (9)

All instances have the same weighted sample w at the
beginning, where N is the total number of instances:

w �
1
N
∈ [0, 1]. (10)

$en, the classifier’s influence in classifying the instances
is calculated using the equation below, where α represents
the influence and TotalError represents the error rate:

α �
1
2
ln

(1 − TotalError)
TotalError

. (11)

After calculating α, the sample weights are updated using
the following equation, where α is positive if the instance was
classified correctly and α is negative if it was misclassified:

wi � wi−1 ∗ e
±α

. (12)

$e sample weight will be reduced if the classification
was accurate and increased if it was inaccurate to avoid
misclassification repetitions [40].

$e final equation for AdaBoost classification is dem-
onstrated below, where h represents the weak classifier and α
represents its corresponding weight [41]:

H(X) � sign 
T

t�1
αtht(x)⎛⎝ ⎞⎠. (13)

3.5.4. eXtreme Gradient Boosting (XGBoost). eXtreme
Gradient Boosting (XGBoost) is a robust ensemble classifier
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introduced in 2014 by Chen and Guestrin to solve classi-
fication and regression problems [42]. It is extended from
the gradient boosting trees, which trains trees sequentially to
reduce the error of the prior model. $e output y is cal-
culated by summing the scores predicted by trees. Equation
(14) represents the formula for calculating the outcome [43]:

y � 
K

k�1
fk xi( , fkϵF, (14)

where k represents the number of trees, fk(xi) denotes the
kth tree’s score, and F is the function’s space compromising
the trees.

XGBoost refines the gradient boosting trees by intro-
ducing several algorithmic enhancements. It is capable of
improving the convergence speed of the model’s training by
utilizing the second derivative and performing the second-
order Taylor expansion, allowing more profitable model
exploration and efficient usage of memory resources. Ad-
ditionally, XGBoost effectively reduces the overfitting
problem by employing regularization techniques and in-
troducing column sampling. Equation (15) represents the
formula for optimizing the objective function by adding the
regularization technique [44]:

obj(θ) � 
n

i�1
l yi, yi(  + 

K

k�1
Ω fk( , (15)

where l denotes the loss function, 
n
i�1 l(yi, yi) the differ-

entiable loss whereas 
K
k�1Ω(fk) signifies the regularization

technique added.

3.6. SMOTE. $e Synthetic Minority Oversampling Tech-
nique (SMOTE) is an oversampling approach introduced by
Chawla, Bowyer, Hall, and Kegelmeyer in 2002. It is con-
sidered one of the most effective data sampling techniques in
classification tasks due to its simplicity and robustness.
SMOTE aims to reduce data imbalance in the training data
and enhance models’ generalization on the testing data. It
operates by generating synthetic samples of the minority
class to make them approximately equal to the majority
class’s samples [45]. An abstract of the method is shown in
equation (16), where xi is a minority class’s sample, x

p
i are

randomly chosen samples of its nearest neighbors with
p � 1, . . . N, u is a random value between [0, 1], and x

∗p
i is

the new synthetic sample:

x
∗p
i � xi + u x

p
i − xi . (16)

$e previous steps are applied when the features contain
numeric values. In the case of nominal values, one of two
values is selected at random.

4. Establishment of Alzheimer’s Disease
Prediction Model

4.1. Performance Measures. $is study employed three
performance measures: accuracy, precision, and recall to
evaluate the models’ performance. Precision computes the

number of true positive predictions that belong to the
positive class:

Precision �
TP

TP + FP
. (17)

Recall calculates the number of true positive predictions
assembled out of all positive examples:

Recall �
TP

TP + FN
. (18)

Accuracy is the primary performance measure that as-
sesses the correct number of predictions. Equation (19)
presents the mathematical representation for calculating the
accuracy:

Accuracy �
TP + TN

TP + TN + FP + FN
, (19)

where true positive (TP) indicates the instances classified
with AD correctly, false positive (FP) represents the in-
stances classified with AD incorrectly, true negative (TN)
denotes the instances classified with nonAD correctly, and
false negative (FN) presents the instances classified with
nonAD incorrectly.

In addition to the aforementioned performance mea-
sures, the receiver operating characteristics curve (ROC) was
plotted to measure the accuracy in the sense of the capability

Table 4: $e optimal hyperparameters of each classifier with the
original and oversampled data.

Classifier Hyperparameter Without
oversampling

With
oversampling

SVM
Cost 5 4

Gamma 1 1
Kernel Linear RBF

K-NN N_neighbors 5 5
Metric Minkowski Minkowski

Adaboost N_estimators 100 300
Learning rate 0.1 0.1

XGBoost
N_estimators 100 500

Booster Gbtree Gbtree
Learning_rate 0.1 0.1

Table 5: Classifiers accuracy, precision, and recall using the op-
timal hyperparameters.

Classifier Dataset Accuracy
(%)

Precision
(%)

Recall
(%)

SVM Original 92.21 92.44 92.14
Oversampled 93.33 93.32 95.56

k-NN Original 87.63 86.54 84.29
Oversampled 88.24 85.43 94.44

AdaBoost Original 90.92 90.95 89.05
Oversampled 91.16 92.32 92.22

XGBoost Original 91.63 92.07 90.95
Oversampled 91.60 91.42 93.33
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to compare the performance of the classifiers across the
whole range of class distributions. In other words, the ROC
curve measures how well a model can differentiate between
two objects [46].

4.2. Optimization Strategy. Performing hyperparameter
optimization mechanisms helps in improving the model to
obtain better results. $erefore, the GridSearchCV with
stratified 10-folds cross-validation has been utilized to
identify the optimal hyperparameter to obtain the highest
possible accuracy for each model. GridSearch operates by
trying all the hyperparameter values in all combinations to
produce the most accurate outputs.

$e hyperparameter grid for SVM consisted of cost,
gamma, and kernel. $e range of cost values was between 1
and 30. $e gamma included the values {1, 0.1, 0.01, 0.001,
0.0001}. Additionally, the grid included the kernel functions
{RBF, Sigmoid, Linear}.

$e hyper-parameter grid for k-NN consisted of
n_neighbors and metrics. $e range of the n_neighbors
included the odd numbers between 5 and 39. Additionally,
the grid included the metrics {Minkowski, Euclidean,
Manhattan}.

$e hyperparameter grid for AdaBoost consisted of
N_estimators and learning rate. $e range of the N_esti-
mators values included {100, 200, 300, 400, 500, 600, 700,

800, 900, 1000} and learning rate values included {0.001,
0.01, 0.1, 0.0001}.

$e hyperparameter grid for XGBoost consisted of
N_estimators, Booster, and learning rate. $e range of the
N_estimators values included {50, 100, 200, 300, 400, 500,
600, 700, 800}. $e booster values included {Gbtree,
Gblinear, Dart}. Furthermore, learning rate included the
values {0.0001, 0.001, 0.01, 0.1}.

Table 4 outlines the optimal hyperparameters produced
by the GridSearchCV algorithm applied using the original
and oversampled datasets to compare their results.

5. Results and Discussion

To assess the utility of performing SMOTE, the Grid-
searchCV algorithm was applied to the algorithms while
training them on the sampled and original data to obtain the
optimal hyperparameters for each experiment. Stratified 10-
folds cross-validation was utilized to assess the models’
performance in terms of the previously outlined performance
measures. Table 5 compares the results of the proposed
models before and after applying the SMOTE technique.

$e results demonstrate an inconsequential difference in
the accuracy and precision before and after applying the
SMOTE algorithm. In contrast, they reveal a significant
difference in the recall after applying the SMOTE sampling
technique. $is is a consequence of the disproportion be-
tween the number of positive and negative patients in the
dataset, in which the models are biased toward predicting
the negative class correctly and mispredicting the positive
class. Since AD is a critical disease that must be identified
pre-emptively to avoid further complications, it is necessary
to consider the increment in the recall rate that focuses on
reducing the number of FN. $erefore, it is concluded that
the SMOTE algorithm positively impacted the performance
of the models, where SVM attained the best outcomes with
an accuracy of 93.33%, precision of 93.32%, and recall of
95.56%. $e subsequent experiments were conducted with
the models trained on the sampled data.

5.1. Feature Selection. Feature selection plays a vital role in
reducing the computational power of building models as it
dismisses irrelevant features that can negatively impact a
model’s performance. In this study, the Sequential Forward
Feature Selection algorithm was utilized to automatically
choose the feature subset that results in the best performance
for each algorithm [47]. $e Sequential Forward Feature
Selection algorithm operates by training an algorithm using

Table 6: $e best feature subset obtained for each classifier.

Classifier Number of
features Features selected Accuracy

(%)

SVM 13 {Sex, age, pulse, respiratory rate, BP–diastolic, white blood cells, red blood cells, hemoglobin,
hematocrit, MCV, MCH, RDW, MPV} 95.56

K-NN 6 {Sex, age, respiratory rate, hematocrit, MCH, RDW} 95.52
Adaboost 10 {Sex, age, BP–systolic, temperature, BP–diastolic, hematocrit, MCH, RDW, platelet, pulse ox} 95.00
XGBoost 6 {Sex, age, respiratory rate, white blood cells, MCV, MCHC} 94.38

(1) Create a null set: Yn⟶ ∅{ },n←0
(2) Select the optimal remaining features in a set:

y+ � argmaxy+∈Yn
[(Yn + y+)]

(3) If modelaccuracy(Yn+y+) >modelaccuracy(Yn)

(a) Update Yn+1←Yn + y+

(b) n⟶ n + 1
(c) Continue with step 2

ALGORITHM 3: Sequential forward feature selection algorithm.

Table 7: $e performance of the final selected models.

Classifier Accuracy (%) Precision (%) Recall (%)
SVM 95.56 94.70 97.78
k-NN 95.53 95.81 96.67
AdaBoost 95.00 96.00 94.44
XGBoost 94.38 94.18 95.56
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the best feature decided by a specific criterion function. In
each sequential forward step, the feature that improves the
accuracy is added to the features subset as represented by
Algorithm 3. Table 6 exhibits the best feature subset yielded
by the Sequential Forward Feature Selection algorithm.

$e authors in reference [48] aimed to investigate the
significance of two feature selection techniques, namely,
principal component analysis (PCA) and linear discriminant
analysis (LDA). It was concluded that datasets with low
dimensionality produce better results when ML algorithms
are used without dimensionality reduction. Despite the low
dimensionality of the dataset, our study showed that the
Sequential Forward Feature Selection algorithm improved
the ML algorithms’ performance.

It is concluded from Table 6 that SVM achieved the
highest accuracy of 95.56% with 13 features, followed by
k-NN with an accuracy of 95.52% using six features. Since
the difference in accuracy is insignificant, it is concluded that
k-NN outperformed SVM in terms of the number of the few
clinical tests needed to achieve high accuracy, which can
reduce the lab test costs. Additionally, it is indicated that the
critical attributes for pre-emptively predicting AD are “age”
and “sex” as they were utilized in all models.

5.2. Further Discussion of the Results. Table 7 evaluates the
proposed models with the optimal hyperparameters and
feature subsets in terms of the previously defined perfor-
mance measures. It is indicated that SVM achieved the
highest accuracy of 95.56%, followed by k-NN almost

reaching the same accuracy rate with a difference of only
0.03%. In contrast, XGBoost obtained the lowest accuracy of
94.38%. It is also noted that the highest precision rate of 96%
was attained by AdaBoost, while XGBoost achieved the
lowest precision rate of 94.18%. Correspondingly, the
highest recall rate of 97.78% was achieved by SVM, whereas
Adaboost attained the lowest recall rate of 94.44%. Figure 2
illustrates the confusion matrices of the final selected
models.

It is observed from Figure 2 that the lowest FN and FP
corresponding values of 2 and 4 were achieved by SVM and
AdaBoost, respectively. On the other hand, the highest FN
value of 5 was obtained by AdaBoost, whereas SVM and
XGBoost attained the highest FP value of 6. As a result of the
proposed models achieving similar outcomes, it is chal-
lenging to deduce the underperforming model from the
observed values. Nevertheless, FN result in the misdiagnosis
of Alzheimer’s disease leading to severe consequences such
as losing the opportunity for early treatment and potentially
escalating the disease’s progression [49]. Hence, it is critical
to attain the lowest possible FN value when considering the
best-performing model, determining that SVM out-
performed the other models pre-emptively diagnosing
Alzheimer’s disease.

Figure 3 demonstrates the Area Under the Receiver
Operating Characteristics (AUROC) generated using
stratified 10-fold cross-validation to evaluate the models’
capability to distinguish between patients with AD and those
who do not. It is suggested that SVM, AdaBoost, and
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Figure 2: (a) SVM confusion matrix, (b) k-NN confusion matrix, (c) AdaBoost confusion matrix, (d) XGBoost confusion matrix.
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XGBoost models attained the same excellent AUROC of
0.97, followed by k-NN with a slightly less AUROC value of
0.96. In general, the achieved results indicate the proposed
models’ outstanding discrimination ability in producing
excellent predictions.

$is study aims to employ machine learning algorithms
for the pre-emptive diagnosis of AD by utilizing simple
clinical data. $e study demonstrated SVM’s superior
performance to the proposed models in respect of accuracy
and recall rates of 95.56% and 97.78%, respectively, followed
by k-NN with slightly lower accuracy of 95.53% and a lesser
recall of 96.67%. Although k-NN achieved comparable ac-
curacy using only six features, leading to fewer clinical tests,
which may contribute to reducing the costs, it falls short
regarding recall rate. A high recall rate ensures fewer FN
presence as the FN predictions lead to severe consequences
due to misdiagnosis. For further analysis of the best two
models, AUROC was generated to evaluate the ability of the
proposed models to classify Alzheimer’s patients. SVM
outperformed k-NN with an AUROC of 0.97, whereas k-NN
obtained a slightly less AUROC of 0.96. Overall, SVM is
concluded to be the best-performing model in the early

diagnosis of Alzheimer’s with superior accuracy, recall, and
AUROC.

A delay in AD diagnosis results in rapid disease pro-
gression and potentially risks the patients’ lives as the disease
gradually develops. $e utilization of simple clinical data in
the proposed models aids in the early diagnosis of Alz-
heimer’s due to its fewer risks and costs compared to MRI
scans. For instance, patients with implanted medical devices,
such as a pacemaker, are restricted from taking MRI scans
due to the danger of burns, undesirable device movements,
and device malfunctions. Moreover, MRI scans can po-
tentially pose harm to the patient’s body if used inade-
quately, along with other safety concerns [50]. $erefore,
developing an accurate machine learning model using
clinical data can benefit hospitals in the pre-emptive pre-
diction of AD at a lower cost.

6. Conclusion and Recommendations

$is project was undertaken to develop an ML model that
pre-emptively predicts AD to enhance the prevention
procedures and decrease the mortality rate induced by this
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Figure 3: (a) SVM ROC-AUC curve, (b) K-NN ROC-AUC curve, (c) AdaBoost ROC-AUC curve, (d) XGBoost ROC-AUC curve.
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illness. Four algorithms were trained using a Saudi dataset
that was obtained from King Fahad Specialist Hospital,
including support vector machine (SVM), k-nearest
neighbor (k-NN), Adaptive Boosting (AdaBoost), and eX-
treme Gradient Boosting (XGBoost). Results confirmed the
robustness of machine learning in predicting AD using
simple clinical features. SVM achieved the best performance
among the other classifiers, considering the accuracy of
95.56%, recall of 97.78%, and AUROC of 0.97. Although the
number of features required to attain these results was al-
most double the number needed for k-NN to accomplish an
accuracy of 95.53%, the recall value of SVM is prioritized in
the medical field. Consequently, future work may include
investigating approaches to reduce the number of features
while maintaining high accuracy and recall. $e experiment
can also be expanded to address other chronic disorders.
Moreover, it is recommended to use the least computational
techniques and datasets available while experimenting with
medical problems. $is would facilitate adapting the pre-
emptive prediction tool in most healthcare facilities while
addressing the economic concerns.
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Alzheimer’s disease clinical data used to support the findings
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