
Research Article
Dynamic and Static Features-AwareRecommendationwithGraph
Neural Networks

Ninghua Sun ,1,2 Tao Chen ,1 Longya Ran ,1 and Wenshan Guo 1

1School of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China
2Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China

Correspondence should be addressed to Tao Chen; chentao15@163.com

Received 16 March 2022; Revised 27 March 2022; Accepted 28 March 2022; Published 21 April 2022

Academic Editor: Zhongxu Hu

Copyright © 2022 Ninghua Sun et al. is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recommender systems are designed to deal with structured and unstructured information and help the user e�ectively
retrieve needed information from the vast number of web pages. Dynamic information of users has been proven useful for
learning representations in the recommender system. In this paper, we construct a series of dynamic subgraphs that include
the user and item interaction pairs and the temporal information. en, the dynamic features and the long- and short-term
information of users are integrated into the static recommendation model. e proposed model is called dynamic and static
features-aware graph recommendation, which can model unstructured graph information and structured tabular data.
Particularly, two elaborately designed modules are available: dynamic preference learning and dynamic sequence learning
modules. e former uses all user-item interactions and the last dynamic subgraph to model the dynamic interaction
preference of the user.e latter captures the dynamic features of users and items by tracking the preference changes of users
over time. Extensive experiments on two publicly available datasets show that the proposed model outperforms several
compelling state-of-the-art baselines.

1. Introduction

e amount of information on the Internet continues to
grow rapidly, and determining useful information has
become increasingly di�cult. Fortunately, the advance-
ment of recommender systems can substantially help
people deal with the information overload problem.
Collaborative �ltering (CF) is one of the most famous
methods in recommendation algorithms. erefore, col-
laborative learning latent representations of users and
items from user-item interactions is an important step in
CF-based models. However, poor latent representations of
users and items remain the factors limiting further
performance.

erefore, researchers have adopted di�erent methods to
capture latent representations. Till now, the most commonly
used approach for CF is to learn latent features in the em-
beddings space generated from the user-item rating matrix,
such as matrix factorization [1] and deep learning-based CF

[2–4]. Some researchers [5, 6] use a bipartite graph to rep-
resent user-item interactions to further enhance the latent
representations; hence, the topological features of the graph
are introduced through graph neural networks (GNNs) [7].
e underlying assumption in leveraging the bipartite graph
as input to obtain e�ective recommendations is as follows:
nodes that are connected can spread information by aggre-
gating their neighbors, thereby potentially contributing to
capturing high-order features.

Latent representations obtained from dynamic user-item
interactions serve as another method. Traditional CF usually
de�nes a decay function of temporal information [8, 9], such
as the exponential decay function e−ωt, to capture these
dynamic features, while graph-based CF obtains a series of
user-item bipartite graphs based on interaction time [10].
e underlying assumption in using temporal information is
that the behaviors of users on items are a dynamic interactive
process; consequently, the long- and short-term preferences
of users are captured.

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 5484119, 11 pages
https://doi.org/10.1155/2022/5484119

mailto:chentao15@163.com
https://orcid.org/0000-0001-7509-9883
https://orcid.org/0000-0003-2801-3340
https://orcid.org/0000-0003-3336-9763
https://orcid.org/0000-0002-9726-1041
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5484119

It is unclear, however, which of these approaches—static
recommendation versus dynamic recommendation—is better
for predicting user preference on items. ,e former ig-
nores that user preference is dynamic, thus changing over
time. ,e latter usually requires more parameters and
training time than the static recommendation, which
limits its application. Furthermore, the introduction of
temporal information may bring additional noise, which
can hinder the performance and scalability of the model.
Two important problems must be solved to deal with
these challenges:

(1) How to represent the behaviors of users with a
dynamic graph? Temporal information is vital for
capturing the dynamic preference of users. To avoid
introducing additional noise data, utilizing temporal
information data more efficiently should be
priorities.

(2) How to obtain the dynamic features simply and
swiftly? In addition to the interaction pairs of users
and items, the dynamic graph also includes side
information (e.g., temporal information). However,
additional information will introduce an increase in
the number of parameters and high computational
complexity.

To this end, a simple and effective graph-based al-
gorithm is proposed to introduce dynamic features into a
static recommender system called dynamic and static
features-aware graph recommendation (DSAGR). Firstly,
rather than simply timestamps, the dynamic graph of
users and items is constructed based on Takens’ time
embedding theorem [11] to use temporal information
efficiently. ,is work employs the graph convolution
network (GCN) [7] to learn the long- and short-term
preferences of users because of the expressive graph-based
models. ,en, a novel module is proposed, that is, the
dynamic sequence learning module, to transform the
unstructured dynamic graph to structured sequence data
to decrease the dynamic model complexity. In particular,
convolutional neural networks (CNNs) [12, 13] are used
to capture the dynamic features from the sequence data.
Finally, the dynamic features and dynamic preference are
integrated to obtain the predictor for each user. Our main
contributions are as follows.

(1) ,is work can simply and swiftly capture the dy-
namic features from the constructed dynamic graph.

(2) A novel hybrid model is proposed in this work,
which can easily capture the users’ dynamic
preferences.

(3) An offline experiment is performed on real-world
datasets. ,e results show that the proposed model
successfully performs the personalized recommen-
dation task.

,e rest of the paper is organized as follows. Section 2
elaborates on relevant research. Section 3 presents the proposed
method, while Section 4 discusses the empirical study on the
public datasets. Finally, Section 5 contains the conclusions.

2. Related Work

Collaborative filtering- (CF-) based recommendation aims
to predict the preference of users and then return top-N
items of the user interests. Heuristic works, such as item-
and user-based models, predict the preferences of users on
items based on the k-nearest neighbor algorithm [14].
Model-based approaches usually learn the user and item
with low-rank latent representations through matrix fac-
torization [1]. ,e inner product between the two lower-
rank vectors is then used to obtain the probability of the user
clicking on the item.

Furthermore, deep learning has been shown to be
particularly well suited to representation learning tasks
[15, 16]. ,erefore, many deep learning techniques have
recently allowed CF to have expressive representation
vectors from the historical behaviors of users, such as the
multilayer perceptron (MLP), autoencoder (AE), recurrent
neural network (RNN), and CNN. Many researchers often
consider the combinations of matrix factorization and deep
learning techniques for CF recommendation. MLP-based
model Wide&Deep [17] captures linear and nonlinear latent
features effectively. NeuMF [2] integrates MLP and MF to
model high- and low-order interaction features. Further-
more, AE is used for recommendation tasks. Work [18]
employs a denoising recurrent AE network and then gen-
eralizes it to the CF setting. RNN has been widely used for
recommendation due to its excellent performance in
modeling sequential data. ,e variants of RNN, such as long
short-term memory (LSTM) [19]and gated recurrent unit
(GRU) networks [20], are often employed in practice to
overcome the vanishing gradient problem. For instance,
work [21] uses LSTM to model the long- and short-term
preferences of users. CNN is also a powerful tool [15]. Work
[22] uses two parallel CNNs to learn deep representations of
users and items. Work [23] integrates CNN and GRU
networks to obtain distributed representations of users and
items. ,ese representations are then used to regularize the
generation of latent features in matrix factorization.

In the last few years, GNN has been widely recognized as
a state-of-the-art approach because of its successful appli-
cations in recommendation tasks [24]. GNN can effectively
learn the structural representations of nodes by aggregating
their neighborhood information. A pooling operation is
typically used to output the node embeddings after an ag-
gregation function. Many graph-based models are also
proposed by using different aggregation and pooling
functions such as GCN [25], GraphSAGE [26], and Graph
Isomorphism Network (GIN) [27]. Among these models,
the most popular recommendation method is LightGCN [6]
coupled with NGCF [5]. LightGCN is an effective simplified
version of the NGCF by omitting the transformation
mechanism and applying the sum-based pooling layer. Some
researchers also consider dynamic representation learning to
model data. Work [28] employs matrix perturbation to
model the changes in graphs, such as the adjacency matrix.
Work [29] constructs the user-item interaction graph dy-
namically based on the users and items embeddings to
improve the diversity of recommendations. Furthermore,

2 Computational Intelligence and Neuroscience

many graph-based algorithms [24] have been proposed to
enrich the presentation of users and items with other
auxiliary information [30, 31]. ,erefore, this work tries to
introduce dynamic features as side information to improve
the recommendation performance.

,ese graph-based models have verified their superiority
for the recommendation task. However, these models
mainly focus on constructing static graph-based recom-
mendation models without considering their combinations
with dynamic graph features. As far as we know, there is no
study to introduce dynamic graph features into a graph-
based recommendation framework.

3. Proposed Method

In this part, the proposed DSAGR method is presented, and
its framework is illustrated in Figure 1. Four components are
included in the framework: (1) dynamic graph construction
aims to convert the behaviors of users into a dynamic graph;
(2) dynamic preference learning module is to learn the long-
and short-term preferences of users; (3) dynamic sequence
learning module aims to capture the user and item sequence
features as side information; and (4) prediction layer is to
obtain the predictors.

3.1. Dynamic Graph Construction. Given a user set U, an
item set I, and a set of time stamps T � t1, t2, t3, · · · , the
graph of the user-item interaction at the time stamp t1 can be
defined as Gt1

� (U∪ I,Et1
), where U∪ I is the set of nodes,

and edge e ∈ Et1
represents the interaction between the user

and the item at the time t1 ∈ T. ,erefore, the interactions of
users and items can be seen as a time series, that is,
{Gt1

, Gt2
, Gt3

· · ·}. Figure 2(b) shows different graphs at five
different time stamps.

To understand the behaviors of users with the effects of
temporal information, several time slices of user-item in-
teractions are generated based on Takens’ time embedding
theorem [11] using a given delay factor. Considering the
following example: given five timestamps [1–5], we assume
that the delay factor is equal to 1 and the number of the time
slices is 4. Takens’ time embedding theorem indicates that
the time series is embedded into R2 vector space as follows:
[[1, 2], [2, 3], [3, 4], [4, 5]]. Similarly, the user-item inter-
action time stamps can also be embedded into the vector
space and further be divided into l time slices
[T1, T2, T3 · · · , Tl]. ,erefore, an interaction graph for each
time slice can be obtained as previously mentioned. More
formally, the obtained interaction subgraphs are denoted as
{GT1

, GT2
, GT3

, · · · , GTl
}.

Figure 2 demonstrates the specific processes. Figure 2(a)
presents the example dataset, which is ranked based on the
interaction time in the order from small to large. For the sake
of convenience, the interaction time is indicated by numbers
1–5. In (b), the user-item interaction graph at different
timestamps can be observed. ,ese user nodes are marked
dark red, and item nodes are marked lilac color. In (c),
Takens’ embedding of temporal information generates three

time slices marked by orange color (i.e., T1: [1–3], T2:

[2–4], and T3: [3–5]), in which the element is the time ID.
,e interacted pairs in each time slice constitute a user-item
interaction subgraph.

3.2. Dynamic Preference LearningModule. ,e upper part in
Figure 1 shows the dynamic preference learning module. In
the recommendation task, the long-term preference of users
reflects their inherent features and general preference, which
can be learned from all interacted items of users. ,e short-
term signals of the user reflect his/her latest preference.
Furthermore, many studies [32] use the latest interaction
item embedding and the latest timestamp as short-term
information but ignore the dependence on historical in-
teractions. ,e long- and short-term collaboration can be
captured effectively by considering the same layer structure
with Siamese and information sharing components [33] on
all interaction graph G and the last subgraph GTl

. Siamese
networks can naturally introduce inductive biases for in-
variance modeling because of identical weight-sharing
subnetworks. ,en, the two graphs can be parameterized
using a GNN layer, such as LightGCN [6]. To offer a holistic
view of the long-term and short-term collaborative nodes
embeddings, we provide the matrix form.

Long-term:
Lu

Li

 � D
−1/2

AD
1/2

Eu

Ei

 ,

Elong,u

Elong,i

⎛⎝ ⎞⎠ � λ0
Eu

Ei

 + λ1
Lu

Li

 ,

A �
M 0

0 M
T

 ,

(1)

where M ∈ R|U|×|I| is the user-item rating matrix, in which
each element Mu,i is 1 if the user u interacted with the item i;
otherwise, it is 0. ,en, A is the adjacency matrix of the
graph G; D is a (|U| + |I|) × (|U| + |I|) diagonal matrix, in
which each entry Djj is the number of nonzero entries in the
jth row vector of the adjacency matrix A;
Eu ∈ R|U|×d, Ei ∈ R|I|×d are the initial weight matrix of users

and items, respectively. Eu

Ei

 denotes the concatenation

of Eu and Ei λ0, λ1 ∈ [0, 1], are the defined hyperparameters;
Elong,u and Elong,i are the final representations of users and
items for learning long-term preferences.

Short-term:

Su

Si

 � D
−1/2
last AlastD

1/2
last

Eu

Ei

 ,

Eshort,u

Eshort, i

 � λ0
Eu

Ei

 + λ1
Su

Si

 ,

(2)

whereAlast is the adjacency matrix of the latest subgraph GTl
;

Dlast is also the diagonal matrix calculated based on Alast.
Eshort,u and Eshort,i, respectively, denote the final represen-
tation of users and items in the short-term preference
learning.

Computational Intelligence and Neuroscience 3

user

item

(a)

Interaction
time ID 1 2 3 4 5

1 1 2 1 3User ID

Item ID 1 2 1 3 1

(b)

1 1

G1 G2 G3 G4 G5

Time stamp 1 Time stamp 2

1 2 2 1

Time stamp 3

1 3

Time stamp 4

3 1

Time stamp 5

(c)

1

2

1

2

1

2

1

3

2

1

2

1

3

3

T3 : [3,4,5]T2 : [2,3,4]T1 : [1,2,3]

GT3
GT2

GT1

Time embedding with delay=1, the number of time slices=3

Figure 2: ,e construction of the dynamic graph. (a) Dataset. (b) ,e graph of user-item interaction at different time stamps. (c) Dynamic
subgraphs.

G
N

N
 layer

G
N

N
 layer

pooling

Fusion layer

User degree
matrix P

Item degree
matrix Q

CN
N

CN
N

CN
N

CN
N

Prediction

Output layer Input layer

Dynamic preference learning module

Dynamic sequence learning module

Siamese network structure

Final
representation

Dynamic graph
construction

Unstructured data

pooling
pooling

Eshort

Pu

ŷui

Qu

u2

u1

u1

u2

u3

u3

u5

i2

i2

i1

…

u8

u9

i3

i5

i7
GTl

GT2

GT1

Elong

(Alast ,
Eu
Ei

)

(Along ,
Eu
Ei

)

Figure 1: Framework of our model.

4 Computational Intelligence and Neuroscience

3.3. Dynamic Sequence Learning Module. ,e degree of the
graph is shown to be effective for evaluating the popularity of
nodes [34, 35]. ,erefore, the degree matrixes of users and
items are proposed to track the dynamic changes in the user
and item nodes in constructed dynamic graph
{GT1

, GT2
, GT3

, . . . , GTl
}, respectively. For instance, the degree

matrix of items is denoted as Q � q1, q2, · · · , ql , in which
element qk is a |I| dimensional vector, its ith element qi,k is the
number of edges incident to the item i in the kth subgraph GTk

.
And the element qi,k means the popularity of item i in the time
slice Tk. Similarly, the user degree matrix is denoted as
P � p1, p2, . . . , pl , where pl ∈ R|U|. ,erefore, this study
offers a novel means of processing the unstructured graph data
and hence may shed light on the task of graph-based
recommendation.

,e lower part in Figure 1 shows the dynamic sequence
features learning modeled by two parallel CNN layers. ,e
input of themodule is the obtained user degreematrix and item
degree matrix P ∈ R|U|×l, Q ∈ R|I|×l. ,e CNNs generally
comprise a set of convolutional and pooling layers in their
architectures. In this work, two 1D-convolutional layers and
one pooling layer are designed to learn dynamic features. ,e
first and second convolutional layers with a set of f1, f2

filters with the kernel size of τ, shared weights
w1 ∈ Rf1×1×τ , w2 ∈ Rf2×f1×τ , as shown in the following
equations.

gt � pt ∗w1, (3)

ht � gt ∗w2, gt ∈ R
|U|×f1, (4)

where pt ∈ R|u| is the column vector of user degree matrix
P ∈ R|U|×l, ∗ is the convolution operator, and ht ∈ R|U|×f2

denotes a feature matrix for all users. After the 1D-con-
volutional operation, l feature matrixes can be obtained.
Inspired by graph-based models [5, 6], the weighted sum
operator is designed as the pooling layer and then nor-
malized by the sigmoid function σ. ,e output is shown in
the following equation.

Pu � σ h1 + h2 + · · · + hl(. (5)

Analogously, the items’ degree representations are de-
fined as follows.

gt
′ � qt ∗w1′, t � 1, 2, . . . , l,

ht
′ � gt
′ ∗w2′, gt

′ ∈ R
|I|×f1 , t � 1, 2, . . . , l,

Qi � σ
l

t�0
ht
′⎛⎝ ⎞⎠, ht
′ ∈ R

|I|×f2 ,

(6)

where qt ∈ R|I| is the column vector in item degree matrix Q,
∗ is the convolution operator, and w1′ ∈ Rf1×1×τ ,
w2′ ∈ Rf2×f1×τ are shared factors.

3.4. Prediction Layer. ,e embeddings and degree repre-
sentations of nodes of the user and item are obtained after
the dynamic preference learning module and dynamic

sequence learning module. ,en, a fusion layer is defined to
learn the final representations:

E
∗
u � Elong,u + Eshort,u, Pu , E

∗
i � Elong,i + Eshort,i, Qi , (7)

where (,) is the concatenation operator.
,ereafter, we use an inner product on the final em-

bedding of the users and items to predict the recommen-
dation results. ,e formula is as follows:

yu,i
|U|×|I|

� E
∗
u E
∗
i(

T
. (8)

3.5. Training. In this work, the Bayesian Personalized
Ranking (BPR) loss [36] is used, which is a pairwise loss that
encourages the prediction of an interacted entry to be higher
than its uninteracted counterparts:

LBPR �
(u,i,j)εO

−ln σ yu,i − yu,j ,
(9)

where O � (u, i, j)|(u, i) ∈ O+, (u, i) ∈ O− , is the dataset in
the training process, which consists of interacted pairs set O+

and uninteracted pairs set O− . What is more, L2 regulari-
zation is used to optimize the model parameter to prohibit
overfitting risk. ,erefore, the final objective function in our
model is combined by BPR loss and regularization:

Lour � LBPR + c1 Θ1
����

����
2
2 + c2 Θ2

����
����
2
2, (10)

where set Θ1 � Eu, Ei is the set of embedding parameters,
Θ2 � w1, w2, w1′, w2′ is the set of weights in CNN layers, and
c1, c2 are the hyperparameters to control the regularization.
Furthermore, the Adam [37] is used in a minibatch manner
to optimize the proposed model.

4. Experiments

Empirical results are proposed to evaluate the proposed
model. ,e experiments aim to answer the following re-
search questions:

RQ1: How does DSAGR perform as compared with
state-of-the-art models?
RQ2: How do dynamic features affect DSAGR?
RQ3: What are the effects of hyperparameters on the
DSAGR model?

4.1.Dataset. ,e dynamic preference learning module in the
proposed method requires implicit feedback and temporal
information; thus, the proposed model is evaluated on
ML_100k and ML_1M movie datasets (https://grouplens.
org/datasets/movielens/). Table 1 presents the statics of the
datasets. ,ese datasets have 5-level rating scores, and each
user has rated at least 20 movies. ,e ratings of the datasets
are binarized because the proposed model only requires
implicit feedback. Specifically, every element in the original
rating matrix (scores 1 to 5) is binarized to 1 and 0, where 1
indicates that the rating score is not less than 4, 0 indicates
the rating score is less than 4, and no interaction. ,is work

Computational Intelligence and Neuroscience 5

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/

also follows the same settings described in NGCF [5] to
select 20% of interaction recodes randomly from each user to
represent the test and valid sets and then treat the remaining
as the training set.

4.2. Experimental Settings

4.2.1. Baselines. ,e GSAGR model is compared with the
following methods:

(i) Item-based CF (ICF) [38]: ICF is usually a two-step
process: (1) determining the similarity set for target
items and (2) predicting rating scores based on the
most similar items. ,e rating scores of unseen items
for the user are predicted in the second phase
according to the weighted average rating of his k-
nearest neighbor.

(ii) PMF [1]: With the probabilistic matrix factorization
(MF) algorithm, this model maps the user-item
rating matrix into two low-dimensional matrixes.
,en, this algorithm predicts the preference of users
by the inner product between the two low-di-
mensional matrixes.

(iii) DMF [39]: DMF is an MF-based CF method, which
obtains the latent features of users and items
through deep representation learning, that is, MLP.
,is method then uses the inner product between
the two latent features to predict the preferences of
users on items.

(iv) Wide&Deep [17]: Wide&Deep is a famous deep
learning recommender system that combines wide
linear models and MLP neural network layers to
obtain latent representations of users and items.

(v) NGCF [5]: ,is work learns the representations of
users and items by aggregating the information of
high-order neighbors. Specifically, each node ob-
tains the transformed representation of neighbors
by propagating embeddings on the bipartite graph
structure. NGCF introduces collaborative signals in
the pooling layer to enhance high-order latent
features learning.

(vi) DGCF [40]: DGCF is an advanced graph-based CF
model.,is work focuses on the intentions of users for
interacting with different items. ,e implementation
of DGCF is based on the NGCF and graph attention
network to model different intents of users.

4.2.2. Evaluation Metrics. Unlike the previous studies
[17, 39] that perform metrics from sampled uninteracted
items, this experiment conducts metrics for all the items that

the user has not interacted with. Two widely used evaluation
protocols Recall@N and NDCG@N (normalized discounted
cumulative gain) (N� 20 by default) are adopted to evaluate
the effectiveness of top-N recommendation and preference
ranking. ,e specific formula is as follows:

Recall@N �
1

|U|

u

TP
TP + FN

. (11)

where TP (i.e., Ture Positive) indicates the number of items
in the top-N recommendation list that hit the target items
and FN (i.e., False Negative) is the number of the positive
items in the test set that are falsely identified as the negative
items.

N DC G@N �
1

|U|

u

DC G@N

I DC G@N
, (12)

where DC G@N �
N
i�1 2ri − 1/log2(i + 1); here, ri � 1 if the

test item is in position i, else 0; I DC G@N indicates the
ideal DC G@N such that the target items are present at the
top of the recommendation list.

4.2.3. Parameter Settings. ,e DSAGR model is imple-
mented in Python under the TensorFlow (https://www.
tensorflow.org) framework. For comparison algorithms,
the parameter settings are given in the original works of
literature. ,e proposed model uses the following parameter
settings: (1) a random normal distribution (the mean and
standard deviation are set to 0 and 0.01, resp.) is used to
initiate the embedding matrix of users and items. Fur-
thermore, the dimensionality of the embedding matrix is set
to 64; (2) the delay factor for dynamic graph construction is
set to one three-hundredth of the length of the dataset. (3)
GCN and pooling layers with the hyperparameter λ0 � λ1 �

1 are used to represent the interaction features of users and
items; (3) two GCN layers with 2 and 32 filter factors are
used, and the kernel size in each layer is 3; (4) following
NGCF [5] and DGCF [40], Adam optimization is used to
train the model. ,e learning rate of the Adam algorithm is
0.0003, which is set by experiments.

4.3. Results and Discussion

4.3.1. Performance Comparison (RQ1). To answer the first
research question, the proposed model is compared with six
other methods in terms of Recall@N and NDCG@N. Two of
the methods, ICF, and PMF are traditional and are fre-
quently used CF algorithms. DMF andWide&Deep are deep
learning-based CF models.,e remaining two, referred to as
DGCF and NGCF, are versions of GCN with graph struc-
ture. Table 2 reports the performance for each algorithm.
,e following observations from this table are presented.

(1) ,is table reveals that DSAGR has achieved the best
result onML_100k andML_1M datasets. Onmetrics
Recall@N and NDCG@N, DSAGR has improved the
performance by at least 2.72% and 4.81%, respec-
tively. For instance, DSAGR improves the NDCG@N
over the strongest baselines by 5.798% and 4.81% on

Table 1: Statistics of the datasets.

Statistics ML_100k ML_1M
Number of users 944 6040
Number of items 1683 3952
Number of ratings 100000 1000209

6 Computational Intelligence and Neuroscience

https://www.tensorflow.org
https://www.tensorflow.org

ML_100k and ML_1M, respectively. DSAGR can
employ the dynamic information simply to provide
additional side information for prediction by con-
structing the degree matrix. Meanwhile, DGCF and
NGCF only aggregate the presentations of adjacent
nodes in the graph. Significantly, DGCF uses multi-
intent-aware graphs but performs worse than the
proposed DSAGR model. ,e reason is that DGCF
ignores the dynamic features and the short-term
collaborative signals.

(2) DGCF, NGCF, DMF, and Wide&Deep achieve
better performance than traditional methods PMF
and ICF. ,erefore, compared with the CF only, the
employment of deep learning and GCN is advan-
tageous across the board. Wide&Deep and DMF fail
to go beyond NDCG@N despite outperforming
DGCF in Recall@N on the ML_100k dataset, im-
plying that the graph-based methods are more ef-
fective than the deep learning methods in modeling
the preference of users. In particular, the NGCF
model improves Recall@N compared with the
Wide&Deep model, with enhancements of 2.44%,
5.40%, on ML_100k and ML_1M datasets, respec-
tively. ,e NGCF model also outperforms the DMF,
with at least improvements of 2.68% and 18.61% on
Recall@N and NDCG@N, respectively. Such im-
provement might be attributed to the GCN module,
which captures more complex behavior patterns
than MLP.

Furthermore, the experiment is repeated for all methods
10 times.,erefore, the freedom degree of t-distribution is 9.
Specifically, this experiment accepts the hypothesis that
DSAGR achieves better performance than baseline models
on the two datasets for significance levels of 0.005. ,e
statistical tests and results for this analysis are shown in
Table 3. ,is table reveals that the method DSAGR suc-
cessfully enhances the representation of users and items by
considering the dynamic features and preferences.

4.3.2. Effect of the Proposed Technologies (RQ2). ,e pro-
posed DSAGR is compared with different variants on the
ML_100k and ML_1M datasets to investigate the superiority
of the key technologies proposed in this work. Table 4 re-
ports the variant models and their performances. ,e fol-
lowing findings are presented: DSAGR-L performs better

than DSAGR-S, which removes the long-term information.
,is finding is probably because the preference of users
cannot be captured by the short-term information alone.
DSAGR-DL, DSAGR-DG, and DSAGR also outperform
DSAGR-D and DSAGR-G. ,is phenomenon proves that
the captured dynamic features and short-term information
can effectively improve the model’s performance. Moreover,
DSAGR performs better than GRU-based [20] variant
DSAGR-DG and LSTM-based [19] variant DSAGR-DL.,is
result is probably due to the small length of the row vectors
of the dynamic matrix, allowing the CNN to model their
dynamic features effectively.

4.3.3. <e Sensitivity of Hyperparameters (RQ3). ,is work
investigates how four hyperparameters, namely, the number
of time slices, the filter factors in the first and second CNN
layers, and the embedding size, affect DSAGR to examine the
effect of the constructed dynamic graph among dynamic
preference of users. ,e experiments on two datasets are
conducted, providing similar rules, and only the results on
the ML_100k are presented herein.

Inspired by the work [41], the experiment also adopts
the orthogonal experimental design (OED) method to get
a reasonable combination of these hyper-parameters.
Specifically, the number of levels for the four parameters is
set as follows: four levels for the time slices {11, 21, 31, 41};
four levels for the filter factors in the first CNN layer {2, 4,
6, 8}; four levels for the filter factors in the second CNN
layer {8, 16, 32, 64}; and four levels for the embedding
factors {16, 32, 64, 72}. A full-factorial analysis needs 44 �

256 experiments. Taguchi’s method employs the or-
thogonal arrays to obtain the possible combinations of the
hyperparameters from the whole combinations, thus
bringing a minimum experimental run and the best es-
timation of parameters during the execution. In our ex-
periments, the orthogonal array L16(44) has only 16
experiments, as shown in Table 5. ,is table shows that
DSAGR can achieve better performance by setting time
slices as 31, filter factors in the first and second CNN layers
as 2 and 32, and embedding factors as 64.

,e average values of Recall@N are used to investigate
the effect of each factor. For example, the mean value of the
first 4 rows in Table 5 is calculated to investigate the effect of
time slice with level 11. ,e average values of Recall@N with
different factors are shown in Figures 3–6.

Table 2: Performance comparison of different methods.

Datasets

Metrics
ML_100k ML_1M

Recall@N NDCG@N Recall@N NDCG@N
ICF 0.1642 0.2913 0.1504 0.2030
PMF 0.2303 0.3061 0.1943 0.2301
DMF 0.3396 0.3562 0.2215 0.2472
Wide&Deep 0.3402 0.3797 0.2502 0.2613
NGCF 0.3487 0.4225 0.2637 0.2947
DGCF 0.3339 0.4057 0.2973 0.3264
Ours 0.3672 0.4470 0.3054 0.3421

Computational Intelligence and Neuroscience 7

(1) Effect of Time Slice Numbers. ,e number of time
slices determines the number of dynamic subgraphs
and the last subgraph. As shown in Figure 3, DSAGR
can achieve the best performance by setting the time
slice as 31. Figure 3 shows that when the number of
time slices reaches 31, adding more time slices
cannot improve the recommendation performance.
Also, more time slices will increase the dimension of
the row vectors of the degree matrix, and conse-
quently, there will be an increase in the training time
taken.

(2) Effect of Filter Factors in CNN. Figures 4 and 5 show
the recommendation performance of different filters
in the first and second CNN layers. Figure 5 reveals

that the performance gradually becomes better with
the increase of filter factors in the second CNN layer.
However, blindly increasing the filter factors does
not necessarily improve the performance of DSAGR.
,is is maybe because that more information is
encoded when the filter factors become larger, but it
may also bring a little overfitting.

(3) Effect of Embedding Factors. Figure 6 illustrates the
performance of DSAGR under the different em-
bedding factors. ,e figure reveals that the perfor-
mance of the model gradually improves as the
dimensionality increases. And the performance
tends to be stable when the embedding factors are set
as 64.

Table 4: Performance of compared with different variants of DSAGR (“—” indicates DSAGR removes the key technology).

Variants
Dynamic preference

Dynamic feature
ML-100k ML_1M

Long-term Short-term Recall@N NDCG@N Recall@N NDCG@N
DSAGR-S — GCN CNN 0.36013 0.44148 0.2891 0.3214
DSAGR-L GCN — CNN 0.36370 0.32779 0.3000 0.3325
DSAGR-G GCN — — 0.33217 0.4041 0.2345 0.2911
DSAGR-D GCN GCN — 0.36006 0.44097 0.2798 0.3154
DSAGR-DL GCN GCN LSTM 0.36184 0.44274 0.2921 0.3255
DSAGR-DG GCN GCN GRU 0.36456 0.44921 0.2966 0.3310
DSAGR GCN GCN CNN 0.3672 0.4470 0.3054 0.3421

Table 5: Performance of 16 experiments obtained from Taguchi’s method.

ID Time slices Filter-first CNN layer Filter-second CNN layer Embedding factors Recall@N NDCG@N
1 11 2 8 8 0.3422 0.4200
2 11 4 16 16 0.3552 0.4369
3 11 6 32 32 0.3617 0.4420
4 11 8 64 64 0.3540 0.4296
5 21 2 16 32 0.3560 0.4373
6 21 4 8 64 0.3626 0.4412
7 21 6 64 8 0.3451 0.4224
8 21 8 32 16 0.3438 0.4186
9 31 2 32 64 0.3672 0.4470
10 31 4 64 32 0.3660 0.4481
11 31 6 8 16 0.3463 0.4237
12 31 8 16 8 0.3469 0.4259
13 41 2 64 16 0.3547 0.4232
14 41 4 32 8 0.3483 0.41786
15 41 6 16 64 0.3533 0.4217
16 41 8 8 32 0.3491 0.4286

Table 3: ,e t-test for paired comparisons in terms of Recall@N on the datasets.

ICF PMF DMF Wide&Deep NGCF DGCF
ML_100k
337.98 181.01 17.19 14.98 12.88 57.77
<0.005 <0.005 <0.005 <0.005 <0.005 <0.005
ML_1M
305.99 141.38 225.11 73.34 67.96 14.95
<0.005 <0.005 <0.005 <0.005 <0.005 <0.005

8 Computational Intelligence and Neuroscience

5. Conclusion

In this work, a hybrid recommender system is proposed to
capture the dynamic preferences of users and dynamic
sequence features. ,e proposed model, namely, DSAGR,
combines GCN and CNN to obtain the latent represen-
tations of users and items and then makes a prediction.
,e dynamic preference is modeled by the long- and
short-term interaction graphs of users. ,e dynamic se-
quence includes the degree matrixes of users and items
captured from the dynamic graph. To our knowledge, this
type of modeling using the short-term interaction graph
and degree matrixes has not been previously applied to
predict users’ preferences. ,e experimental results show
that the DSAGR model significantly improves the per-
formance compared with baselines. Considering future
work, two feasible avenues are available: (1) ,e work
concentrates on learning the latent representation of users
and items via dynamic information. ,us, one direction of
further study is to design an effective way to aggregate the
long- and short-term representations to a single vector,
which is successful in maximizing deep learning. (2) ,e
method of capturing dynamic features provides a new idea
to many other unstructured data, such as social networks.
It is worth trying to improve the recommendation
performance.

Data Availability

,edata used includeML_100k andML_1Mmovie datasets.
,e movie dataset address is as follows: https://grouplens.
org/datasets/movielens/.

Conflicts of Interest

,e authors declare that they have no conflicts of interest
regarding the publication of this paper.

Authors’ Contributions

Tao Chen and Ninghua Sun conceived and designed the
experiments; Ninghua Sun proposed the method and per-
formed the experiments; Longya Ran analyzed the data;
Ninghua Sun prepared the original draft; and Longya Ran
and Wenshan Guo reviewed and edited the manuscript. All
authors have read and agreed on the published version of the
manuscript.

Acknowledgments

,is work was supported by the Fundamental Research
Funds for the Central Universities, China (HUST:
2020JYCXJJ036), Humanities and Social Science Fund of the
Ministry of Education of China (19YJA630010), National
Natural Science Foundation of China (71734002 and
72042016), and Key R&D Projects, Hubei Province
(2021BAA033).

0.355

0.354

0.353

0.352

0.351

0.350

m
ea

n
va

lu
e o

f R
ec

al
l

10 20 30 40 50 60
filter factors in second CNN layer

Figure 5: Effect of filter factors in the second CNN layer.

0.358

0.356

0.354

0.352

0.350

0.348

0.346

m
ea

n
va

lu
e o

f R
ec

al
l

10 20 30 40 50 60
embedding factors

Figure 6: Effect of embedding factors.

0.356

0.355

0.354

0.353

0.352

m
ea

n
va

lu
e o

f R
ec

al
l

10 15 20 25 30 35 40
the number of time slice

Figure 3: Effect of time slice numbers.

0.356

0.358

0.354

0.352

0.350

0.348

m
ea

n
va

lu
e o

f R
ec

al
l

2 3 4 5 6 7 8
filter factors in first CNN layer

Figure 4: Effect of filter factors in the first CNN layer.

Computational Intelligence and Neuroscience 9

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/

References

[1] R. Salakhutdinov and A. Mnih, “Probabilistic matrix fac-
torization,” in Proceedings of the 20th International Confer-
ence on Neural Information Processing Systems,
pp. 1257–1264, Red Hook, NY, USA, 2007.

[2] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. S. Chua,
“Neural collaborative filtering,” in Proceedings of the 26th
International World Wide Web Conference, WWW 2017,
International World Wide Web Conferences Steering Com-
mittee, pp. 173–182, Republic and Canton of Geneva, Geneva,
Switzerland, 2017.

[3] Y. Guo and Z. Yan, “Recommended system: attentive neural
collaborative filtering,” IEEE Access, vol. 8, 2020.

[4] H. Liu, Y. Wang, Q. Peng et al., “Hybrid neural recom-
mendation with joint deep representation learning of ratings
and reviews,” Neurocomputing, vol. 374, pp. 77–85, 2020.

[5] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural
graph collaborative filtering,” in Proceedings of the 42nd In-
ternational ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 165–174, ACM, New
York, NY, USA, 2019.

[6] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang,
“LightGCN: simplifying and powering graph convolution
network for recommendation,” in Proceedings of the 43rd
International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pp. 639–648, ACM, New
York, NY, USA, 2020.

[7] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 32, no. 1, pp. 4–24, 2021.

[8] A. Aji, Y. Wang, E. Agichtein, and E. Gabrilovich, “Using the
past to score the present,” in Proceedings of the 19th ACM
International Conference on Information and Knowledge
Management - CIKM ’10, p. 629, 2010.

[9] H. Takemura and K. Tajima, “Tweet classification based on
their lifetime duration,” in Proceedings of the 21st ACM In-
ternational Conference on Information and Knowledge
Management - CIKM ’12, p. 2367, 2012.

[10] M. Zhang, S. Wu, X. Yu, Q. Liu, and L. Wang, “Dynamic
graph neural networks for sequential recommendation,” IEEE
Transactions on Knowledge and Data Engineering, vol. 14, p. 1,
2022.

[11] J. C. Robinson, “,e takens time-delay embedding theorem,”
in Proccedings of the Dimensions, Embeddings, and Attractors,
pp. 145–159, Cambridge University Press, Cambridge, 2010.

[12] H. Yu, L. T. Yang, Q. Zhang, D. Armstrong, and M. J. Deen,
“Convolutional neural networks for medical image analysis:
state-of-the-art, comparisons, improvement and perspec-
tives,” Neurocomputing, vol. 444, 2021.

[13] S. Lawrence, C. L. Giles, and A. D. Ah Chung Tsoi, “Back, Face
recognition: a convolutional neural-network approach,” IEEE
Transactions on Neural Networks, vol. 8, 1997.

[14] D. Wang, Y. Yih, and M. Ventresca, “Improving neighbor-
based collaborative filtering by using a hybrid similarity
measurement,” Expert Systems with Applications, vol. 160,
p. 160, 2020.

[15] Z. Hu, Y. Zhang, Y. Xing, Y. Zhao, D. Cao, and C. Lv, “Toward
human-centered automated driving: a novel spatiotemporal
vision transformer-enabled head tracker,” IEEE Vehicular
Technology Magazine, 2022.

[16] Z. Hu, C. Lv, P. Hang, C. Huang, and Y. Xing, “Data-driven
estimation of driver attention using calibration-free eye gaze

and scene features,” IEEE Transactions on Industrial Elec-
tronics, vol. 69, no. 2, pp. 1800–1808, 2022.

[17] H.-T. Cheng, L. Koc, J. Harmsen et al., “Wide & deep learning
for recommender systems,” in Proceedings of the 1stWorkshop
on Deep Learning for Recommender Systems, 2016.

[18] H. Wang, X. Shi, and D.-Y. Yeung, “Collaborative recurrent
autoencoder: recommend while learning to fill in the blanks,”
in Proceedings of the 30th International Conference on Neural
Information Processing Systems, Red Hook, NY, USA, 2016.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[20] K. Cho, B. van Merrienboer, C. Gulcehre et al., “Learning
phrase representations using RNN encoder–decoder for
statistical machine translation,” in Proceedings of the 2014
Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 1724–1734, Association for Computa-
tional Linguistics, Stroudsburg, PA, USA, 2014.

[21] K. Sun, T. Qian, T. Chen, Y. Liang, Q. V. H. Nguyen, and
H. Yin, “Where to go next: modeling long- and short-term
user preferences for point-of-interest recommendation,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 01, pp. 214–221, 2020.

[22] L. Zheng, V. Noroozi, and P. S. Yu, “Joint deep modeling of
users and items using reviews for recommendation,” in
Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining, pp. 425–434, ACM, New York,
NY, USA, 2017.

[23] H. Wu, Z. Zhang, K. Yue, B. Zhang, J. He, and L. Sun, “Dual-
regularized matrix factorization with deep neural networks
for recommender systems,” Knowledge-Based Systems,
vol. 145, pp. 46–58, 2018.

[24] C. Gao, X.Wang, X. He, and Y. Li, “Graph neural networks for
recommender system,” in Proceedings of the Fifteenth ACM
International Conference on Web Search and Data Mining,
pp. 1623–1625, ACM, New York, NY, USA, 2022.

[25] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph con-
volutional networks: a comprehensive review,” Computa-
tional Social Networks, vol. 6, no. 1, p. 11, 2019.

[26] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive repre-
sentation learning on large graphs,” in Advances in Neural
Information Processing Systems, I. Guyon, U. v Luxburg,
S. Bengio et al., Eds., pp. 1025–1035, Curran Associates Inc.,
Red Hook, NY, USA, 2017.

[27] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in Proceedings of the International
Conference on Learning Representations, New Orleans, LI,
USA, 2019.

[28] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu, “At-
tributed network embedding for learning in a dynamic en-
vironment,” in Proceedings of the 2017 ACM on Conference on
Information and KnowledgeManagement, pp. 387–396, ACM,
New York, NY, USA, 2017.

[29] R. Ye, Y. Hou, T. Lei et al., “Dynamic graph construction for
improving diversity of recommendation,” in Proceedings of
the Fifteenth ACM Conference on Recommender Systems,
pp. 651–655, ACM, New York, NY, USA, 2021.

[30] H. Xu, C. Huang, Y. Xu, L. Xia, H. Xing, and D. Yin, “Global
context enhanced social recommendation with hierarchical
graph neural networks,” in Proceedings of the 2020 IEEE
International Conference on Data Mining (ICDM), pp. 701–
710, IEEE, Sorrento, Italy, 2020.

[31] W. Song, Z. Xiao, Y. Wang, L. Charlin, M. Zhang, and J. Tang,
“Session-based social recommendation via dynamic graph
attention networks,” in Proceedings of the Twelfth ACM

10 Computational Intelligence and Neuroscience

International Conference on Web Search and Data Mining,
pp. 555–563, ACM, New York, NY, USA, 2019.

[32] Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang, “STAMP：short-
term attention/memory priority model for session-based
recommendation,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining, pp. 1831–1839, ACM, New York, NY, USA, 2018.

[33] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah,
“Signature verification using a “siamese” time delay neural
network,” in Proceedings of the 6th International Conference
on Neural Information Processing Systems, pp. 737–744, San
Francisco, CA, USA, 1993.

[34] J. Son and S. B. Kim, “Academic paper recommender system
using multilevel simultaneous citation networks,” Decision
Support Systems, vol. 105, pp. 24–33, 2018.

[35] T. Pradhan and S. Pal, “A hybrid personalized scholarly venue
recommender system integrating social network analysis and
contextual similarity,” Future Generation Computer Systems,
vol. 110, pp. 1139–1166, 2020.

[36] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-
,ieme, “BPR: bayesian personalized ranking from implicit
feedback,” in Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, pp. 452–461, AUAI
Press, Arlington, Virginia, USA, 2009.

[37] D. P. Kingma and J. Ba, “Adam: a method for stochastic 7
optimization,” in Proceedings of the International Conference
on Learning Representations (ICLR), Ithaca, NY, USA, May
2015.

[38] G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative
filtering recommendation algorithms,” in Proceedings of the
10th International Conference on World Wide Web,
pp. 285–295, New York, NY, USA, 2001.

[39] H.-J. Xue, X. Dai, J. Zhang, S. Huang, and J. Chen, “Deep
matrix factorization models for recommender systems,” in
Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, pp. 3203–3209, International Joint
Conferences on Artificial Intelligence Organization, Cal-
ifornia, 2017.

[40] X. Wang, H. Jin, A. Zhang, X. He, T. Xu, and T.-S. Chua,
“Disentangled graph collaborative filtering,” in Proceedings of
the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2020.

[41] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang,
“Dendritic neuron model with effective learning algorithms
for classification, approximation, and prediction,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 30, no. 2, pp. 601–614, 2019.

Computational Intelligence and Neuroscience 11

