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Sports dance is a competition project and a kind of sports, with the characteristics of being smooth, generous, leisurely, and
comfortable, dance steps, smooth movements, and �owing clouds, and it can give full play to the indoor space. In the light of the
new era, sports dance is also playing an increasingly important role. ­rough the time series data and feature analysis of dance
sports movements through machine learning, the internal information is mined to �nd the trends and laws. Machine learning in
the era of big data is widely used in research as the main tool for data analysis and mining. ­e key di�culty of data mining has
always been time series data. Machine learning refers to a method of using the resulting data in a computer to derive a certain
model and then using this model to make predictions. ­e core is “using algorithms to parse data, learn from it, and then make
decisions or predictions about new data.”

1. Introduction

­is paper is based on how machine learning analyzes the
time series data prediction and characteristics of dance sport
movements. ­e process of machine learning is similar to
the learning process of human beings, such as people
learning mathematical theoretical models to establish logical
thinking skills, analyzing and predicting things [1]. For
example, chatbots–chatbots is one of the earliest forms of
learning that allows humans and machines to communicate
and dialogue, from which to �ll the communication gap
between humans and technology. For example, machines
can act according to human demands or requirements [2].
­e earliest is to write scripts, put the script in the machine
to compile and run so that these machines have a chat
function, and the script code run by the machine will make
the machine recognize and let the machine according to
what keywords to take what action. But there is another
member of the AI family, the acceptance of machines and
the use of language recognition (NLP) [3]. Let us take the
interactivity and productivity generated by chatting with
machines to the next level [4]. ­e new generation of

chatbots can more e¡ectively handle the needs of users and
move forward like human-to-human communication [5].
Machine learning’s algorithms are used in a wide variety of
digital assistants, and this technology can be applied to the
new B2C and C2C to �nd ways to update the traditional way
of chatting with robots [6]. Communicating with robots is
one of the most widely used machine learning applications
in the commercial world [7]. Some AI assistant scripting
languages can analyze when relevant questions need to be
asked and when to ask questions and demands from humans
identi�cation classi�cation [8]; multimedia live platform
chatbots can satisfy users’ use, search, and pass good music
to friends and family, and at the same time, they can also
enjoy the relevant music recommended by AI robots
according to their personal preferences for us to enjoy [9];
during the rush hour of tra�c jam, we need to take a taxi.
­en you can take a taxi online through the relevant soft-
ware, use the relevant software or other platforms or related
request services, and receive the basic information of the
driver and related vehicles that come to pick us up, such as
the license plate number, color, and model of the vehicle
[10]. Machine learning is also used in organizational
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structures, and sophisticated learning and neural networks
help them analyze images [11]. Machine learning-related
technologies like this which have a high breadth of appli-
cations in social media sites want to put signs on photos of
other media sites, as well as road cameras and store mon-
itoring [12]. Groups that maintain safety such as Sky Eye
conduct real-time monitoring, detection, and identification
of criminal behavior; later, driverless cars are driven on
smooth and wide roads. Retail investors also have many
applications in various aspects such as the classification of
images and the recognition and analysis of images. For
example, install cameras in warehouses, connect the cameras
to the computer, use the computer’s visual system and the
self-learning system to scan the relevant items on the current
shelves, and identify and determine whether there are items
that are misplaced, random, or out of stock; you can also use
the scanner to scan the goods taken out of the shopping cart
using image recognition technology to make the goods be
identified one by one.-is reduces the loss of sales formed in
an unintentional state; it can also be used to use image
recognition in the computer through cameras, surveillance,
sky eyes, and other devices to analyze whether there is
suspicious activity or illegal and criminal behavior (such as
smoking on high-speed rail or carrying unauthorized
dangerous goods or equipment) [13]. Although most of the
machine learning is highly specialized for a certain need,
most merchants still try the highly specialized technology of
machine learning to shorten the business process, making it
easy and fast to optimize the process of collaborative pro-
cessing of daily business, especially financial transactions
and software development such as banks, securities com-
panies, and other related financial transactions [14]. From
the early days to the present, the most widely used appli-
cations are in the financial organization, IM, and companies’
business processes, as well as software development and
testing. Most departments, such as VCs and operations, are
using machine learning techniques to improve the efficiency
of their own departments, thereby creating more value for
the company [15]. Because human energy is always limited,
machine learning techniques can be used to reduce work
cycles, reduce errors, and speed up work efficiency. In
machine learning, we can give it a time to form a cycle
according to the time we set, automatically troubleshoot
errors, detect problems, and give problems to the relevant
technicians in a cycle, so that we can reduce the effort on it,
thereby reducing unexpected problems and interference
caused by unplanned work [16]. In addition, in software
testing, machine learning techniques can be added to black
and white box testing and automated testing, which greatly
improves the speed of software testing so that software
development is faster and cheaper. Sometimes we need to
extract structured critical data in documents that cannot be
extracted directly, because not all data is structured and
stored in unstructured and semistructured formats; that is,
we need to apply NLP’s machine learning technology to help
us extract key structured data in related documents [17].
Experts say applying machine learning-related techniques to
understand documents is a great opportunity for all aspects
of life. Companies can do this, from tax returns to invoices to

statutory contracts, all of which can improve efficiency and
accuracy and free the work force [18] from positions that are
seen as day-to-day work. Most of the smartphone’s capa-
bilities also come frommachine learning. For example, voice
assistants, from setting alarm clocks to finding language
assistants in restaurants to decoding facial recognition
phones, Apple’s Siri, Xiaomi’s Little Love, and Google As-
sistant, establish a dance sport movement time series data
prediction and feature analysis based on machine learning to
explore the characteristics of them for overall development.

2. Machine Learning for Sports Dance
Movement Cognition

2.1. Obtain Sports Dance Movement Data. From the ap-
pearance of people, it is composed of several parts: head,
neck, body, limbs, and so forth, of which the skin is on the
surface of the body, and the subcutaneous tissue, muscles,
and bones are below the skin. Composed of 206 bones, it can
complete a variety of types, as well as uses of complex shapes;
based on this physical test structure, people can complete a
variety of actions; through the brain’s thinking coordination,
the human body in the completion of different movements
reflects a strong coordination, so the study of sports dance is
to make the AI system like a person have the abilities of
learning, reasoning, and thinking; according to the content
learned, knowledge judges what is actually going on online
and predicts what will happen, hence the research on sports
dance movements and intelligent control, human-computer
interaction, AI, and other fields of research hotspots [19].
-e capture of dances in sport includes contact and no
contact in equipment, electromagnetic, inertial, machine,
and optical terms, which record the movements through
specific man-machine instruments, and the noncontact type
includes a monocular RGB-D camera or a monocular RGB
camera and a depth camera.

2.2. Dance Sport Movement Data Files. -e dance sport
movement acquisition system stores the acquired data to
capture the movements in a file as BVH, which is parsed out
after the action capture, which is the general format of the
animation characteristic file through the human body
function. It is well supported on many well-known ani-
mation software programs (flash, TV Painter, Blender3D)
[20]. -e representation of the human body therein is the
skeleton model in the picture above, which is then expressed
through the structure of the tree. BVH contains data on the
movement of limb joints of characters performing dance
sport movements.

3. Machine Learning Time Series Data
Prediction Algorithm Implementation

3.1. Wavelet Transform. -e basic solution of the wavelet
transform (WT) is to represent the action signal as a set of
wavelets, which can obtain information about the time and
frequency domain of the action signal. -e two most
commonly used types of wavelet transform in WT include
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the continuous wavelet transform (CWT) and the discrete
wavelet transform (DWT) [21].

Continuous wavelet transforms are expressed as follows:

Ws ,τ(t) � ∫
∞

−∞
f(t)ψ∗s ,τ(t)dt, (1)

ψs,τ(t) �
1��
|s|

√ ψ
t − τ
s

( ). (2)

ψ∗s ,τ(t) is called a base wavelet or a mother wavelet; it is
called a scaling factor (or scale); τ is the ψ∗s ,τ(t) conjugate of
the translation factor. When the harmony can be contin-
uously changed, the wavelet change at this time is called the
continuous wavelet transform ψs,τ(t)sτ CWT. Due to the
complexity of the calculation of the continuous wavelet
transform and the high degree of redundancy, it is not
suitable for practical applications. ­erefore [22], the DWT
is obtained by discretizing the scaling factor in the CWT.
Bring it in (2) (s � sm0 τ � nτ0s

m
0 m, n ∈ Z) to get discrete

wavelets:

ψm,n(t) �
1���
sm0
∣∣∣∣
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√ ψ sm0 t − nb0( ), m, n ∈ Z. (3)

­e discrete wavelet transform is

Ws,τ(t) � ∫
∞

−∞
f(t)ψ∗s,τ(t)dt �

1����
s−m0
∣∣∣∣

∣∣∣∣
√ ∫

∞

−∞
f(t)ψ ∗ s−m0 t − nb0( ).

(4)

­e decomposition process of DWT is equivalent to
going through a high-pass �lter and a low-pass �lter, fol-
lowed by using a binary decimation algorithm for down-
sampling. ­e DWT decomposition and reconstruction
process is shown in Figure 1. H and L are decomposition
�lters, where H is a high-pass �lter and L is a low-pass �lter;
after decomposition, a downsampling operation is required.
H′, L′ is a reconstruction �lter; likewise, H′ is a high-pass
�lter and L′ is a low-pass �lter.

3.2. Static Wavelet Transform. Since the discrete wavelet
decomposition uses a binary decimation algorithm to
downsample the action, the wavelet coe�cient will be re-
duced by one-half after each decomposition, so the details of
the original action will be lost in each decomposition. ­e
stationary wavelet transform (SWT) that removes the

downsampling and upsamples the �lter solves this problem.
­e SWTdecomposition reconstruction process is shown in
Figure 2, in which the output components of the high-pass
�lter and the low-pass �lter are no longer downsampled, but
the upper �lter is upsampled to obtain a decomposition of
the high-pass �lter and low-pass �lter in each step [23]. ­e
detail and approximate components after each decompo-
sition of the static wavelet are the same as the length of the
original action signal, which ensures that the characteristics
of themovement are preserved to the greatest extent possible
and are also conducive to the analysis and study of sports
dance movements.

­e single-step multiscale static wavelet decomposition
process of the action signal is similar to the single-step
multiscale discrete wavelet decomposition process, as shown
in Figure 3.

3.3. ERD Models. ­e ERD model was proposed by Frig-
idaria [24]. It is an encoder-loop unit-decoder (ERD) model
used to identify and predict human posture in video and
motion capture [25]. ­e main way it runs is to obtain a new
prediction frame by continuously putting the prediction
frame of the previous step into themodel, so as to achieve the
e¡ect of multiframe prediction; the speci�c method he
achieves is to encode the human action data through the
fully connected network and put it into the recurrent neural
network to predict the next action state according to the
memory information of the previous time, and then the
obtained data vector is decoded through the corresponding
full connection layer, obtain the action data, and reconstruct
the action through a certain reconstruction method to
obtain the prediction result. Its main structure is shown in
Figure 4.

3.4. Conversion between Dance Sport Movement Data and
Trainable Data. Since the sports dance action data recorded
in the dataset is in the form of quaternions, the rotation
amplitude of one of the movements consists of four numbers
between −1 and 1, and the continuity in the number value is
not strong, so the original movement data needs to be
processed to a certain extent.

­at is, it proposes exponential mapping of raw data,
which can e¡ectively avoid data discontinuities and Vien-
tiane knot locks [26]. ­e process is as follows:

θ � r2,

r′x �
0 −r′[2] r′[1]
0 0 −r′[0]
0 0 0


,

r′x � r′x − r′XT,

rotationmat �
1 0 0

0 1 0

0 0 1


 + sin θ∗ r′x

+(1 − cos(θ)) ∗ r′x · r′x( ).

(5)

f (t)

H

L

2

2

HĎ

LĎ

+ f (t)Ď

decomposition refactoring

Figure 1: Disassembly and reconstruction of discrete wavelet
transforms.
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To �nd the rotation matrix rotationmat, where rota-
tionmat is the original exponential mapping matrix,
according to the rotation r matrix to �nd the rotation
quaternion, the process is as follows:

rotdiff � R − RT,

r � [−rotdiff[1, 2] rotdiff[0, 2] rotdiff[0, 1]],

sin θ � r2,

r0 �
r

r2
,

cos θ �
trace(R) − 1

2
,

θ � arctan
sin θ
cos θ
( ),

quaternion � cos
θ
2
( ) r0[0]∗ sin

θ
2
( ) r0[1][

∗ sin
θ
2
( ) r0[2]∗ sin

θ
2
( )]

(6)

In the above equation, R is the rotation matrix, which
eventually yields quaternion.

Due to the particularity of the heel node, if it controls the
rotation mode and angle of the entire human body, we hope
that the human body can have a certain stability, so the
human root node is unchanged for the translation of the
ground plane and for the rotation of gravity perpendicular to
the ground (assuming that the ground surface is horizontal).

4. Case Studies

4.1. Comparative Experiments. ­e experiment selected 30
personnel for dance steps, outer dance steps, preparatory
outside dance steps, re�exive movements, re�exive action po-
sitions, lifting, swinging, and other 7 kinds of sports dance
movements in the same time and place to complete the ex-
periment; the experiment does not constrain the behavior habits
of the testers; participating students who take the test only need
to complete the experiment in their own way. In this com-
parative experiment, the �rst adopts the traditional human
movement pattern information collection method, and the
second adopts the motion pattern recognition method of the
accelerator and the sensor.­ere is a sports dancemovement A,
a dance step T, an outer dance stepN, a preparatory outer dance
step W, and a re�exive movement A. ­e experimental results
of the re�exive action position of F lifting and descending to H
and swinging to M are shown in Tables 1 and 2.

According to Tables 1 and 2, we can conclude that the
di¡erence between the dance steps and several other

F (x)
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(H)

Low pass 
filter
(L)

U.S. h (x) HĎ
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Figure 2: Static wavelet decomposition reconstruction.
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Figure 3: Single-step multiscale SWT decomposition process.

4 Computational Intelligence and Neuroscience



movements is very high, so the recognition is 100%; the
di¡erence between the re�ex and re�exive action positions is
very small, so its recognition is very low. Speci�c parameters
are identi�ed as shown in Table 3.

As can be seen from Figure 5, traditional recognition
technology can identify a variety of action patterns, and its
recognition accuracy is balanced at 90.1%.­e recognition
of re�exive action and re�exive action position is low.
When integrated with the accelerometer, its recognition
accuracy can be balanced to 94.3%. Compared with the

previous recognition accuracy, its recognition accuracy is
balanced upward by 4.2 percentage points, and the result
is better.
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Figure 4: ERD model.

Table 1: Confusion matrix of the �rst set of dance sport
movements.

A T N W U F H M
T 190 4 2 1 2 1 0
N 1 180 7 5 7 0 0
W 0 7 81 5 6 0 1
U 0 6 7 83 4 0 0
F 2 6 3 2 87 0 0
H 5 0 0 0 3 92 0
M 5 1 0 1 0 0 93

Table 2: Confusion matrix of the second set of dance sport
movements.

A T N W U F H M
T 194 3 1 1 1 0 0
N 1 188 5 3 3 0 0
W 0 3 90 4 3 0 0
U 0 4 3 91 2 0 0
F 0 3 2 2 93 0 0
H 3 2 0 0 1 94 0
M 3 1 0 0 1 0 95

Table 3: Statistical table of identi�cation results.

Mode T
(%)

N
(%)

W
(%)

U
(%)

F
(%)

H
(%)

M
(%)

­e �rst group 100 95 90 81 83 87 92
­e second
group 100 97 94 90 91 93 94

Computational Intelligence and Neuroscience 5



40 students were selected to test the standard degree of
sports dance movements, and they were divided into two
groups; that is, the regular group completed the experiment
according to their own behavior, and the training group
conducted sports dance movement analysis and teaching.­e
two sets of results are then compared and analyzed. Because
the height, weight, and age of the students participating in the
test are basically the same, the P value is greater than 0.06, so
the elements related to the body will not a¡ect the experi-
mental results. ­eir situation is shown in Table 4.

From Table 5 and Figure 6, it can be seen that the in-
dicators of the conventional group and the training group
are basically the same, and after the t-test is carried out on
both groups, P is above 0.05, which depends on the initial
situation of the two groups.

From Table 6 and Figure 7, it can be seen that, under the
same initial conditions, the sports dance indicators of the
trained students can be improved.

­roughout the dance movements, the angle and speed
of each movement change periodically. After making ap-
propriate modi�cations to the movement predictions of the
time series data, the comparison curve of the angle and speed
of the movements during the process of performing the
dance sport movements is shown in Figure 8.

4.2. Data Processing. ­e experiments set the mean and
variance of the prediction accuracy as p and p(1 − p), re-
spectively. Due to di¡erent experiments, the prediction
reversibility of the algorithm is now statistically zero, so the
correct random variable with a mean of p is f, and its
variance decreases as p(1 − p)/N with the increase of the
repeated simulation experiment coe�cient N, and when
N>100, it is close to the normal distribution. ­is makes it
possible to construct a positive-tyrannous random variable:

f − p����������
p(1 − p)/N
√ . (7)

­e following equation is then passed with the con�-
dence level c determined:

P −z<
f − p����������

p(1 − p)/N
√ < z[ ] � 2∗ (1 − c). (8)

z values can be extrapolated from a probability table.­e
true value p can be obtained using the calculation method of
probability theory, with the interval boundary value c of the
probability approaching f .

p �
f + z2/2N ±

�������������������
f/N − f2/N + z2/4N2
√

( )

1 + z2/N( )
. (9)

± gives two values, the upper and lower bounds of the
con�dence.

When collecting data, the duration of each action is
relatively short, and it cannot correspond well to the data

Dance
moves

The
lateral
moves

Reverse
action

Reverse
action

position

lift swings
80

85

90

95

100

(%)

105

The second group
The first group

Figure 5: Statistical chart of recognition results.

Table 4: Student physical condition statistics.

General groups Training group P value T value
Height (cm) 175 2.00 ± 175 1.41 ± 1.100 −0.150
Weight (kg) 70.10 2.61 ± 70.10 2.17 ± 0.978 −0.087
Age 16.6 0.51 ± 17 0.00 ± 0.701 −2.049
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Figure 6: Evaluation results of preteaching SPI training indicators.

Table 6: Evaluation results of sports dance indicators in the training group.

Test the content General groups Training group P value T value
Quick squats 13.0 15.0 0.003 −3.578
Wave speed ball pilates 42.0 44.0 0.192 −1.372
Pick up 12.1 15.3 0.009 −3.026
Variable speed running (s) 4.6 4.2 0.000 5.062
Long Jump (m) 2.1 2.5 0.028 −2.456
Push-ups (times) 44.0 52.0 0.086 −1.864
Accelerate run (s) 18.9 17.1 0.018 2.677
Repeatedly crossed (times) 42.0 46.0 0.010 −2.973
Russian rotation (min) 4.4 4.36 0.335 0.998

Table 5: Evaluation results of regular dance sport training indicators.

Test the content General groups Training group P value T value
Quick squats 11.0 13.0 0.512 −0.673
Wave speed ball pilates 41.0 43.0 0.378 0.911
Pick up 9.5 14.5 0.611 −0.521
Variable speed running (s) 5.5 5.1 0.685 0.414
Long Jump (m) 1.9 2.3 0.920 0.102
Push-ups (times) 25.0 50.0 0.081 −1.880
Accelerate run (s) 18.2 17.5 0.495 −0.701
Repeatedly crossed (times) 40.0 44.0 0.262 1.168
Russian rotation (min) 4.59 4.35 0.887 −0.144
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obtained individually, so, by obtaining several pieces of
action cycle data, clustering is divided, and the results and
data are analyzed by curve comparison to determine the

action period to which the data belongs. As shown in
Figures 9 and 10, the clustering results correspond to the
two-dimensional three-point plot of the action.
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Figure 7: Statistics on the evaluation results of posttraining sports dance training indicators.
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Table 1 shows the type II prediction confusion matrix.
For one class, for example, the “Dance Sport” class in Table7,
set to T the correct class, and the other is the negative class F,
so that the true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) are veri�ed. So, the
correct rate of classi�cation of an action is

Kappa �
TP + TN

TP + TN + FP + FN
. (10)

­e maximum value is 1, and the action is the best.
Table 8 shows the cost matrix of the three classi�cation

projections. ­e cost matrix represents the cost caused by
prediction error and correctness, the correct cost is 0 and the
cost of error is 1, so the cost of the resulting statistical error is
the number of errors, as shown in Table 8.

­e �rst thing we need to consider for di¡erent
movement performances is the rising chart, which repre-
sents the total number of students testing SCORP move-
ments and the proportion of students practicing SCORP,
and the vertical axis represents the correct prediction rate, as
shown in Figure 11.

­e cost curve is an action corresponding to a straight
line, the purpose of which is that the action changes with the
distribution of the class, as shown in Figure 12; the hori-
zontal axis represents the probability of a certain class of
samples in the training sample, and the vertical axis rep-
resents the expected error. Predictions made for only one of
these types are represented by two diagonal lines, decisions
are always erroneously represented by horizontal dotted
lines, and horizontal lines indicate that predictions are al-
ways correct.

0.0075
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0.17

cluster0 cluster1 cluster2

Figure 9: ­e correspondence between clustering results (hori-
zontal axis) and action (number axis).

-54.025

15.77

85.565

Cluster0 Cluster1 Cluster2

Figure 10: ­e correspondence between the clustering results and
the action angle.

Table 7: Category II prediction confusion matrix.

Prediction class
Dance sport moves (T) Stationary (F)

Real
class

Action (T) Right (a�rmatively) Error (negation)
Stationary (F) Error (a�rmation) Right (negative)

Table 8: ­ree types of projected cost matrices.

Prediction class
a b c

Real class
a 0 1 1
b 1 0 1
c 1 1 0
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Table 9: Numerical projection indicators.

Performance measurement Formula

Mean square error (p1 − a1)
2 + · · · + (pn − an)

2/n

Root mean square error
�����������������������
(p1 − a1)

2 + · · · + (pn − an)
2

√
/n

Average absolute error |p1 − a1| + · · · + |pn − an|/n
Relative square error (p1 − a1)

2 + · · · + (pn − an)
2/(a1 − σ)2 + · · · + (an − σ)2

Relative square root error
����������������������������������������������
(p1 − a1)

2 + · · · + (pn − an)
2/(a1 − σ)2 + · · · + (an − σ)2

√

Relative absolute error |p1 − a1| + · · · + |pn − an|/|a1 − σ| + · · · + |an − σ|
P is the predicted value and a is the true value: σ + 1/n∑iai

Table 10: Action comparison indicators.

Index De�nition Signi�cance
Kappa statistic — Close to 100% is best
TP rate Correct proportions Close to 1 is best
Accuracy rate precision TP/TP + FP∗ 100% Close to 1 is best
Feedback rate recall TP Close to 1 is best
F-measure 2∗TP/2∗TP + FP + FN Close to 1 is best
ROC area — Close to 1 is best

Table 11: Dance sport movement model recognition accuracy.

1 (%) 2 (%) 3(%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%)
Multisensor motion analysis model 98 98.1 98.2 98.4 98.5 98.6 98.6 99
Support vector machine motion analysis model 97 97.2 97.4 97.6 97.7 97.8 97.9 98
Decision tree motion analysis model 96 96.2 96.3 96.4 96.4 96.5 96.7 96.8

95

96

97

98

99

100

(%)

2 3 4 5 6 7 81

Multisensor motion analysis model
Support vector machine motion analysis model
Decision tree motion analysis model

Figure 13: Dance sport movement model recognition accuracy.
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Weka simulation analysis will also use the working
metrics in numerical forecasting to identify and propose
each indicator, as shown in Tables 9 and 10.

4.3. Data Results Analysis. According to the experiment, the
model of the article is compared with the performance of the
support vector machine and the decision tree motion
analysis model, and the results of three different models are
observed from different aspects of accuracy and page re-
sponse, and the specific experimental data are shown in
Table 11.

As shown in Table 11, 8 images were taken at different
distances on the same circuit board; the closest one was set as
the template, and the remaining 7 groups of different images
were tested to calculate the matching accuracy of various
models. -e method of detecting the response time of
different models is to increase the number of tests and
observe the average response time of different models.

As can be seen from Figure 13, among the 8 image
samples used in our experiment, the multisensor motion
analysis model has the highest accuracy, followed by the
vector machine motion analysis model and the decision tree
motion analysis model.

5. Conclusion

-is paper mainly studies the use of machine learning to
predict the timing data of sports dance movements and
applies wavelet deformation and static wavelet variation
based on the characteristics of time series data in the
implementation of the algorithm. -rough the imple-
mentation of the algorithm of time series data prediction,
and then through the acquisition of the action data analysis
model, the acquired data is transformed, and then the
characteristics of the action are learned, including the en-
coder-loop unit-decoder (ERD) model.-en, a comparative
experiment was conducted to verify this method, and the
data collected were analyzed and processed to obtain the
advantages of time series data prediction and feature analysis
of dances in sport based on machine learning. -at is, the
action time series data prediction of machine learning is
suitable for sports dance moves. However, due to the fact
that the structure used does not have a higher level of su-
pervision, the effect is not ideal in some aspects, although
some results have been achieved here, but further research
can be carried out, for example,

(1) studying using seq2seq structure;
(2) a combination of time and space studied using

structure-run, a corresponding spatial attention
model;

(3) deeper use of Python and Unity3D for research.
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