
Research Article
Suitability Evaluation of Crop Variety via Graph Neural Network

Qiusi Zhang ,1,2 Bo Li ,3 Yong Zhang ,3 and Shufeng Wang 1

1Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
2National Engineering Research Center for Agroecological Big Data Analysis & Application,
School of Electronics and Information Engineering, Anhui University, Hefei 230601, China
3Beijing Key Laboratory of Multimedia and Intelligent Software Technology, Beijing Institute of Arti�cial Intelligence,
Department of Information Science, Beijing University of Technology, Beijing 100124, China

Correspondence should be addressed to Shufeng Wang; wangsf@nercita.org.cn

Received 26 May 2022; Revised 25 June 2022; Accepted 29 June 2022; Published 9 August 2022

Academic Editor: Dalin Zhang

Copyright © 2022 Qiusi Zhang et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the continuous growth of the global population, insu�cient food production has become an urgent problem to be solved in
most countries. At present, using arti�cial intelligence technology to improve suitability between land and crop varieties to
increase crop yields has become a consensus among agricultural researchers. However, there are still many problems in existing
works, such as limited crop phenotypic data and the poor performance of arti�cial intelligence models. In this regard, we take
maize as an example to collect a large amount of environmental climate and crop phenotypic traits data at multiple experimental
sites and construct an extensive dataset. �en, we introduce a graph neural network model to learn crop suitability evaluation and
�nally achieve a good evaluation e�ect. �e evaluation results of the model can not only provide a reference for expert evaluation
but also judge the suitability of the variety to other test trial sites according to the data of the current one, so as to guide future
breeding experiments.

1. Introduction

Crop variety suitability evaluation refers to the suitability of crop
variety growth for corresponding planting land. Soil conditions
and climatic environments vary signi�cantlyfrom place to place,
and the suitability of di�erent crop varieties di�ers greatly. Select
suitable varieties for planting, and then maximize the use of
limited land resources to produce more food. A�ected by many
factors such as the outbreak of new coronavirus pneumonia,
climate change, and frequent natural disasters, the world food
security situation has becomemore severe in recent years, which
may lead to a further increase in the global hunger population. In
this regard, the world food security situation has become more
severe in recent years, leading to a further increase in the global
hunger population, so that future crop varieties can be accurately
planted on suitable land, to improve food production.

Climate change will continue to a�ect the whole period
of crop growth, which has a great impact on the suitability
evaluation of crop varieties. Long-term climate change leads
to large-scale reallocation of freshwater resources resulting

in changes in crop breeding [1, 2]. Literature [3] points out
that, due to climate change in the next few years, the total
output of crops will decline, which is in great contradiction
with the growing food demand of the global population. To
alleviate this contradiction, we need to actively explore the
relationship between climate change and crop variety
adaptability and optimize the utilization of land resources.

Crop phenotypic traits are the intuitive expression of the
suitability between crop growth and current land, and the
result of the interaction between environmental factors such
as soil and climate and crop varieties. Crop variety selection
based on crop phenotype was relatively systematic long
before technologies such as DNA and molecular markers
emerged. Even the same crops and genes will produce
di�erent phenotypes in di�erent environments. Ultimately,
crop harvest is phenotypic data, not genome. �erefore,
direct research and analysis of crop phenotype are the most
natural and e�ective method. However, the biggest problem
is that phenotypic data is not enough to support extensive
data analysis.
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Crop suitability evaluation has always been a major
problem in agricultural production, but the currently used
evaluation and analysis methods are outdated and have low
evaluation accuracy. Most of the existing methods are based
on traditional machine learning methods. +is method
treats each piece of data as an independent sample and lacks
the exploration of the relationship between the data. +e
later introduction of deep learning made the model more
powerful in nonlinear fitting but still failed to model higher-
order correlations between data.

Given the the lack of variety suitability evaluation
dataset, we collected crop variety trait data and environ-
mental-climate data from multiple breeding sites in the past
five years (2017–2021), with a total of 10,000 records. Each
record includes 15 of trait data and 24 of climate data, and
experts are invited to conduct corresponding suitability
evaluation, and experts are invited to conduct corresponding
suitability evaluations. Considering the high-order complex
correlation between crop phenotypic traits and climate data
[4–6], we incorporate climate data into the learning suit-
ability assessment. +en, we use the graph neural network to
learn the association representation between the data, and
finally achieve better evaluation accuracy. Overall, this paper
mainly includes the following three contributions:

(1) We have collected a large amount of data related to
cultivar adaptability, alleviating the difficulty of the
scarcity of datasets in the current field.

(2) +e graph neural network model is introduced into
the variety suitability evaluation, and good evalua-
tion results were obtained.

(3) +e results of the experiments can provide a refer-
ence for future breeding programs and improve
breeding efficiency.

2. Related Works

Variety suitability evaluation is a long-term problem, and
many works in this field have guiding significance for ag-
ricultural production. Below we briefly introduce some
representative works.

2.1. Relevant Works of Variety Suitability Evaluation. +e
authors of [7] believe that environmental climate and genetic
factors jointly affect the final yield of crops, so the authors
aim to understand the impact of climate on agriculture
through methods similar to quantitative genetics, and to
improve crop yield through selection, manipulation, and
editing of genetic variations. Traditional empirical land
assessment and soil surveys rely on expert explanations.
+ey cannot answer future land use issues, such as future
climate change, including the availability of water resources,
and the introduction of new crop hybrids. In this regard, [8]
explores the effect of limited water availability on the growth
of various maize hybrids under future climatic conditions.
Literature [9] is committed to developing an efficient field
high-throughput phenotypic analysis platform to make
crop-related data collection more comprehensive and

accurate. Literature [10] focuses on the current and long-
term needs of society. +e authors believe that the future
breeding data will integrate genetic, statistical, and gene-
phenotypic traits to promote our understanding of func-
tional germplasm diversity and gene-phenotypic-trait rela-
tionships in local and transgenic crops. Literature [11] is
committed to exploring field climate intelligent crops, using
a large amount of data from phenotypic and genomic
datasets. +e authors integrate genome and crop phenotypic
information into specific databases and intelligent platforms
and then select the appropriate climate environment to
make crops adapt to the environment and ultimately im-
prove crop yield.

2.2. Deep Learning in Agriculture. Agriculture is closely
related to people’s daily life, and its importance at the na-
tional level is self-evident. Given the amazing learning ability
of deep learning and the rapid accumulation of agricultural
data, many researchers have begun to explore how to use the
technology to guide agricultural production. Below we
briefly introduce some recent works using deep learning for
agricultural production and then introduce the application
of graph neural networks in agriculture. +e impact of
weather data on sustainable agricultural production is
enormous, but the complex nonlinear relationship between
data makes weather data unpredictable. In response,[12]
proposes a deep learning predictor with a continuous two-
level decomposition structure, which continuously de-
composes weather data into four components and then
trains a Gated Recurrent Unit (GRU) network as a sub-
predictor for each component. Literature [13] is dedicated to
solving crop management problems in agricultural auto-
mation. +e authors use convolutional neural network
technology to identify weeds in the early stages of crop
growth and control the side effects of weeds on crop growth,
thereby improving yields. +ey propose AgroAVNET, a
hybrid model based on AlexNet and VGGNET, with a
extensive performance improvement compared to existing
methods. Literature [14] is dedicated to using past agri-
cultural production data to predict future agricultural
production. +e authors propose a deep learning model
AGR-DL based on CNN and RNN. +e experimental results
show that the prediction accuracy of the model is better than
that of classical algorithms such as SVM,MLP, and AdaBoost.
Faced with limited water resources and arable land resources,
how tomaximize the utilization has become the common goal
of researchers. In this regard, [15] proposes an IoT precision
agriculture intelligent irrigation system based on deep
learning neural network. It can make arable land smarter by
using a long short-term memory network to predict the
previous day’s volumetric soil moisture content and irrigation
cycle. +e combination of Industry 4.0 and smart agriculture
is the future development direction, but IoT devices have
always faced the potential risk of being attacked. In this
regard, [16] proposes a DDoS attack intrusion detection
network based on convolutional neural network, deep neural
network, and recurrent neural network, which ensures the
security of thousands of IoT-based smart devices.
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Literature [17] uses graph convolutional neural net-
works to encode knowledge implicit in the GO hierarchy.
+e authors propose a DeepGOA model to predict protein
annotations, achieving superior performance to deep
learning. Literature [18] is dedicated to exploring the effects
of soil composition on vegetation growth, and ultimately to
rational irrigation scheduling and optimization of water
use tools. +e authors construct an end-to-end framework,
using graph neural network to learn time graph structure
and soil moisture. Literature [19] uses a graph-based re-
current neural network to predict crop yield. +e authors
further improve the prediction ability of the model by
reasonably utilizing the knowledge of geography and time,
which is superior to the most advanced methods. Literature
[20] is committed to graph neural networks to classify the
maturity of avocado. +e authors create a set of alligator
image data and then use the node classification method of
graph neural network to classify them.

+e above works have improved the suitability between
crops and planting sites. However, there are still many
unsolved problems. For example, the dataset collected by [7]
is small, and the most important crop phenotypic data in
suitability evaluation is only 6 kinds, which is seriously
insufficient. In addition, the methods used inmost suitability
evaluation works are outdated, and there is much room for
improvement.

3. Data Collection

According to the Bureau of Statistics and China Institute of
Commerce and Industry, corn is one of the essential food
crops in China, and its crop yield exceeds that of rice and
wheat. In 2021, the national grain field was 6.3275 million
tons, 1.6 million tons more than the previous year, an in-
crease of 2.6%. Of these, rice production was 21.285 million
tons, up 100,000 tons or 0.5% of the prior years; wheat
production was 13.695 million tons, up 270,000 tons or 2.0%
of the prior years; and and corn production was 27.255
million tons, up 1.64 million tons or 4.6% of the prior year.
As of December 2021, China’s grain yield was 5805 kg/ha,
unchanged from the previous year. Among grain crops, rice
yield was the highest at 7,113.4 kg/ha, while corn and wheat
yields were 6,291 and 5,863 kg/ha, respectively. Our phe-
notypic data and climatic data used in this paper are from 14
test trial sites in mainland China, including Beijing-Tianjin-
Hebei, Northeast, North China, Huang-Huai-Hai, North-
west, and Southwest. Assessing the suitability of target va-
rieties and planting sites requires large amounts of
experimental data, and the corresponding costs are often
enormous [21].

3.1. Data Introduction. +rough the collection and collation
of crop experimental data in the past five years, we have
10,000 tabular datasets, each of which describes in detail the
multiple traits of a certain maize variety at a certain ex-
perimental point, including leaf blight, lodging rate, in-
version rate, grey speck disease, plant height, ear height,
empty stalk rate, duration period, ear rot, hundred-grain

weight, ear length, bald tip length, fresh ear field, acre yield,
and relative change of yield. Next, we will detail what each
trait dataset means and its possible effect on the crop.

3.1.1. Leaf Blight (LB). +e disease is caused by Corynespora
umbilicus. It mainly damages leaves, and in severe cases, it
also damages leaf sheaths and bracts. It generally starts at the
bottom leaf and gradually expands upwards. +e disease is
widely distributed in all maize-growing regions in the world
and generally reduces maize production by 15–20%, and in
severe cases, it reduces production by more than 50%. +e
occurrence and prevalence of the disease are comprehen-
sively affected by many factors such as disease resistance of
inbred lines, crop rotation system, climatic conditions, and
cultivation measures.

3.1.2. Lodging Rate (LR). Lodging refers to the phenomenon
that crops that grow upright are skewed due to excessive
growth or even fall to the ground. Lodging rate refers to the
percentage of plants with a slope greater than 45 degrees to
the total number of plants. It reflects the tilt or landing of
maize plants due to wind and rain or improper management
in the growth process of maize. +e main reason for corn
lodging is the weather, mainly rainy days in the jointing
period and storms in the grain-filling period.

3.1.3. Inversion Rate (IR). It refers to the percentage of plants
broken below the ear in the total number of plants after
tasseling. +is phenomenon generally occurs about ten days
before the corn tassel stage, when the corn stalks are easily
broken by strong winds.+is situation is related to the heredity
of varieties and the climatic environment (such as wind speed)
of planting sites.

3.1.4. Grey Speck Disease (GSD). Grey speck disease is one of
the most devastating corn diseases in northern China,
mainly affecting the leaves. It is mainly harmful to leaves. In
the early stages, rounded gray spots without distinct edges
form on the surface of the leaves, later turning brown. In
severe cases, most of the leaves turn yellow and scorch, the
ears droop, the grains are loose and dry, and the 100-grain
weight decreases, which seriously affects the yield and
quality. +e disease is obviously affected by the climate, and
it is easy to occur in weather conditions with many rainy
days, high air humidity, and poor light.

3.1.5. Plant Height (PH). Plant height refers to the height of
the corn plant. +is index has a great influence on the yield
and lodging rate of varieties. If the corn plant is too high, it
will be more affected by natural disasters such as strong wind
and heavy rain during the critical period of corn production.
+e plant height of corn is greatly affected by fertilization.
For example, excessive nitrogen fertilizer but lack of po-
tassium fertilizer will cause the plant to grow too vigorously,
and the plant will be too high but the yield will decrease.
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3.1.6. Ear Height (EH). It is the length from the root of the
corn to the bottom of the ear of the corn. +e lower the ear
position of corn is, the stronger the lodging rate is, and on
the contrary, lodging occurs easily. +erefore, people prefer
the varieties with low ear position and sometimes artificially
suppress the ear position. +e ear height is mainly deter-
mined by the variety but also has a certain relationship with
the environment.

3.1.7. Empty Stalk Rate (ESR). Empty stalk generally refers
to corn without ears, and the empty stalk rate generally refers
to the percentage of the total number of corn plants without
ears or ears without seeds after the corn matures. Empty
stalk rate is a common phenomenon in corn production, and
the empty bar rate directly affects the level of corn yield. If
corn encounters rainy weather during the flowering period,
the empty stalk rate of some corn varieties may be as high as
50% to 60%, resulting in a sharp drop in corn yield.

3.1.8. Duration Period (DP). It refers to the number of days it
takes corn to mature from sowing to new seeds. Different
varieties of corn have different duration periods, and climatic
conditions will also lead to changes in corn duration periods,
such as north-south differences. According to the length of
the duration period, corn varieties are also divided into early-
maturing and late-maturing. +erefore, different regions and
different varieties of corn have different duration periods.

3.1.9. Ear Rot (ER). Corn ear rot is a disease caused by a
variety of pathogens, mainly caused by more than 20 kinds
of molds such as Fusarium graminearum, Penicillium, and
Aspergillus. +e disease occurs in all corn-producing regions
in China, especially in the rainy and humid southwest. Some
pathogenic bacteria that cause this disease, such as Asper-
gillus flavus, can produce toxic metabolites such as afla-
toxins, which cause serious harm to the health of humans,
livestock, and poultry. +e disease is mainly related to the
variety, and the humid environment also has a certain
influence.

3.1.10. Hundred-Grain Weight (HGW). Hundred-grain
weight refers to the weight of 100 seeds, expressed in grams,
and is an indicator of seed size and plumpness.+e weight of
100 grains of corn is generally around 26–28 grams. If the
variety is good and the planting level is high, it can generally
exceed 30 grams. If you want to increase the grain weight, the
sowing date can be determined according to the local annual
temperature to meet the accumulated temperature demand
of the corn, so that the grains are within the suitable grain-
filling temperature range. +is index is affected by corn size
and moisture content and varies by cultivar and growing
technique.

3.1.11. Ear Length (EL). Ear length refers to the length of the
whiskers on the tip of the corn cob. It is mainly determined
by cultivar genes.

3.1.12. Bald Tip Length (BTL). Bald tip length refers to the
length of the tip and top of the cob when corn is harvested
without small kernels. Fresh ear field is determined by
various factors such as the quality of corn varieties, soil
moisture, soil fertility, pests and diseases, planting density,
and planting technology.

3.1.13. Fresh Ear Field (FEF). Fresh ear field refers to the
weight of the mature ear of fresh corn, which has a strong
correlation with the yield per mu.

3.1.14. Corn Acre Yield (CAY). Corn acre yield refers to the
weight of dry corn kernels harvested on an acre of land.
Differences in geographical environment, varieties, man-
agement techniques, etc. may lead to different corn yields.

3.1.15. Relative Change of Yield (RCY). Relative change of
yield refers to the change of corn yield at the planting ex-
perimental point relative to the reference group. +is index
reflects the yield gap between the current experimental
variety and the control group and is an important basis for
our suitability evaluation.

Considering the impact of environmental and climatic
factors on the growth of crops, we also collected daily en-
vironmental and climatic data of each experimental point,
including temperature, air pressure, and humidity.+en, the
climate data of each variety growth cycle were preprocessed:
the mean and variance of climate from sowing to maturity of
maize varieties were taken, including the maximum tem-
perature (MaxT), average temperature (AT), minimum
temperature (MinT), temperature difference (TD), ground
pressure (GP), relative humidity (RH), precipitation (P),
maximum wind speed (MWS), average wind speed (AWS),
wind direction angle (WDA), sunshine time (ST), and wind
level (WL). Finally, the above 15 crop phenotypic traits
datasets and the climate data of 24 test trial sites were in-
tegrated into the variety suitability evaluation data.

3.2. Data Preprocess. We further process the above data so
that it can be used for model training. Data processing can be
simply divided into two steps: outliers processing and data
standardization. Due to environmental differences in dif-
ferent test trial sites, some of the traits are not collected or
recorded correctly, resulting in some outliers or missing
values in the data. We first manually filter out possible
outliers from the data and then fill the average of these
feature data. Data standardization is mainly to solve the
problem of different dimensions of current data indexes.
Different evaluation indexes often have different dimensions
and dimension units, and the direct addition cannot cor-
rectly reflect the comprehensive results of different index. In
order to eliminate the dimensional impact between indexes,
data standardization is needed to achieve comparability
between datasets. +e visualization of data distribution
before and after standardization is shown in Figure 1.

In addition, we also carried out data normalization
experiments, detailed in Tables 1and 2. +e experimental
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results show that, compared with standardization, nor-
malization reduces the accuracy of the model. We infer that
the reason is that the difference between the maximum value
and the minimum value in the data of various traits is large,
and after normalizing it, the boundaries between many
datasets are more blurred, and the model is difficult to
identify, so the accuracy of the model decreases.

4. Data Correlation Analysis

+is chapter is devoted to exploring the relationship between
variety suitability and crop traits and the environmental
climate data of the test site. To further understand the
complex correlations between the datasets, we used the
Pearson correlation coefficient to analyze the correlations
between the datasets.

+ere are 39 types of experimental data, including 24
kinds of climate data and 15 kinds of crop traits data. We
first analyze the correlation between the datasets, that is, the
relationship between the 39 types of data and the proposed
label. +e recommended variety labels fall into two cate-
gories: termination test and continuing test. +e former
indicates that the crop is unsuitable for the test trial site and
should be abandoned. +e latter indicates the variety has
good performance in the test trial site and could be further
tested or planted in large areas. Pearson correlation coef-
ficient is used to measure the correlation between recom-
mended labels and climate and trait data, defined as the
quotient of covariance and standard deviation between two
variables, as shown in Formula (1). Finally, the relevant
conclusions are shown in Table 3. For ease of viewing, we
roughen up the data that is more relevant.
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It can be seen from Table 3 that the most relevant data on
the recommended label of crop varieties is the relative
change of yield, which represents the relative relationship
between the current crop yield and the reference group. In
addition, the relative humidity, sunshine time, and mini-
mum temperature of the current test trial site environment
also have a great impact on variety proposed label.

Among the experts’ evaluation criteria of variety
adaptability, relative change of yield is the most important
reference index, which also conforms to the variety suit-
ability judgment in most cases; that is, yield increase means
better adaptability. In other words, the goal of variety
suitability can be attributed to increasing crop yield to some
extent. It is worth mentioning that, in Section 6.2 of this
article, we also conducted experiments that do not use the
relative change of yield index to determine the suitability of
varieties. Secondly, relative humidity directly reflects the soil
moisture status. Relative humidity can increase maize leaf
area and yield to some extent [22, 23]. +en, sunshine time
directly determines the time of crop photosynthesis, af-
fecting the various stages of crop growth. Maize is a short-
day crop, and the whole growth period requires strong light,
so sunshine time has a greater impact on crops [24, 25].

Finally, because maize is a light-loving crop, it needs higher
temperature during the whole growth period, so the effect of
minimum temperature on maize growth is more obvious. If
the temperature of corn seedling stage is too low, it will lead
to delayed emergence and increased chance of infection.
Low temperature during the growth period of maize will lead
to dwarfing of plants and poor growth and leaf development.
Low temperatures during the ripening period will delay the
time for corn to ripen. Literature [26] reaches similar
conclusions on the relationship between the minimum
temperature and crop growth.

5. Graph Neural Network Model for
Suitability Evaluation

We treat breed suitability evaluation as a classification task.
Unlike previous methods based on machine learning and
multilayer perceptual networks, graph neural networks can
exploit the correlation between graph datasets to inform
suitability evaluation. +e task of variety suitability evalu-
ation is to judge the suitability of crops and test trial sites
through phenotypic data of crops and climate and envi-
ronmental data of test trial sites. +e input to the model is
tabular data, and the final classification result is output.
Machine learning or multilayer perceptron methods are
generally not suitable for tabular data, and they cannot find
optimal solutions to tabular decision manifolds due to lack
of proper inductive bias. Second, NLP-based methods are
difficult to apply due to the lack of strong semantic asso-
ciations between columns. In contrast, graph neural net-
works can model correlations between datasets, using
associations to classify tabular data. Furthermore, consid-
ering the large differences in the distribution of climate and
soil conditions among our test trial sites, the introduction of
graph neural networks can also effectively exploit the geo-
graphic relationship between test trial sites. When the model
is predicting one of the test trial sites, the characteristics of
the adjacent test trial sites can be combined with its own
characteristics to improve the prediction ability. Next, we
briefly introduce the development process of graph neural
network, then describe the construction method of graph,
and finally compare and analyze the experimental results of
the model.

Graph neural network is a new type of neural network.
+e neural network adopts the idea of bionics to realize
modeling by simulating the structure and function of the
biological neural network. It can be regarded as a black box
where we input specific data features and obtain specific
output. Neural network can often learn the mapping rela-
tionship between input and output through internal itera-
tions to meet our task requirements. Specifically, classical
neural network can be divided into input layer, intermediate
layer (also known as hidden layer), and input layer. +e
number of nodes in the input layer and output layer is often
fixed, and the middle layer can be freely specified to hide any
number of nodes. Experience shows that the two-layer
neural network can approximate any continuous function
and has very good data fitting ability.
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Table 3: Data correlation between 39 types of data and proposed label.+e trait data are replaced by abbreviations. Climate data are prefixed
with A and V, which represent the mean and variance, respectively.

LB-0.041 LR-0.059 IR-0.052 GSD-0.015 PH 0.014 EH 0.016 ESR-0.062 DP-0.017
ER 0.013 HGW 0.047 EL 0.038 BTL-0.011 FEF 0.033 AY 0.045 RCY 0.346 Label 1.000
AMaxT 0.046 VMaxA 0.044 AAT-0.053 VAT-0.041 AMinT 0.071 VMinT-0.046 ATD-0.054 VAT -0.058
AGP-0.023 VGP -0.018 ARH-0.079 VRH-0.087 AP 0.025 VP 0.010 AMWS-0.046 VMVS -0.062
AAWS-0.012 VAWS-0.012 ADWA 0.048 VWDA 0.024 AST-0.073 VST-0.042 AWR-0.048 VWL -0.027
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Figure 1: Visualization of numerical distribution of relative change of yield (up) and plant height (down); the left column is the original
data, and the right column is after normalization.

Table 1: Accuracy comparison of the following networks with different numbers of training samples.

Number of training samples 50 100 400 700 1000 2000
Raw data 0.651 0.660 0.666 0.674 0.673 0.675
Standardized data 0.655 0.693 0.731 0.743 0.748 0.758
Normalized data 0.551 0.556 0.562 0.555 0.564 0.576

Table 2:+e performance comparison of traditional machine learning methods and neural network under two data initialization situations.
Important data are mar—d in bold.

KNN LR SVM NB RF DT MLP RBFNN GAT GCN
Accuracy 0.647 0.676 0.671 0.567 0.670 0.553 0.684 0.681 0.731 0.748
Precision score 0.628 0.651 0.644 0.562 0.662 0.563 0.670 0.657 0.743 0.687
Recall score 0.870 0.880 0.892 0.946 0.812 0.583 0.834 0.872 0.708 0.911
F1-score 0.729 0.748 0.748 0.705 0.730 0.545 0.749 0.750 0.725 0.783
AUC score 0.623 0.654 0.647 0.526 0.655 0.483 0.673 0.661 0.732 0.748
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Graph neural network (GNN) refers to the use of neural
network to learn graph structure data and extract and ex-
plore the characteristics and patterns in graph structure data.
GNN formulates certain strategies for nodes and edges in the
graph, converts the graph structure data into standardized
representation, and inputs them into various neural net-
works for node classification, edge information dissemina-
tion, graph clustering, and other tasks. Literature [27]
proposes to apply convolution operation to graph and
proposes graph convolution network (GCN) by clever
transformation of convolution operator. +e core idea of
graph convolution is to learn a function f to generate the
representation of node Vi by aggregating its own feature Xi
and neighbor feature Xj, where j ∈ N(Vi), and N(Vi)
represents the neighboring nodes near Vi. A general graph
convolution structure can be represented as shown in
Formula (2), which consists of 2 basic operations, aggre-
gation and update, and corresponding weights.

X(l+1) � Update Aggregate Xl, W
agg
l , W

update
l . (2)

+e first step in using a graph neural network is to build the
graph structure. Firstly, we input all the data with dimension
[10000, 39] into the graph structure. Each dataset is regarded as a
node, and the distance between nodes is regarded as an edge of
the graph. More specifically, we take the chord distance of node
characteristics as the edge of the graph network and construct
the graph according to the corresponding source node and target
node. Secondly, we use a certain number of nodes as losses to
train graph networks to meet our performance requirements.
Finally, the model was used to assist experts to determine the
suitability of varieties and test trial sites. +e whole project
process is shown in Figure 2.

+e architecture diagram of the graph neural network
model is shown in Figure 3. +e network loss adopts neg-
ative log likelihood loss, which inputs 2 tensors, the pre-
diction tensor and the label. +e output of the network
obtains the logarithmic probability in the neural network
through the log softmax layer, namely, the prediction tensor
of the network, and then uses the data label to calculate the
loss. In addition, the network uses Adam optimizer [28] to
optimize network parameters.

6. Experiments

6.1. Experimental Results and Analysis. Different from the
traditional neural network, the graph network needs to input
the entire dataset into the graph at one time and then specify
a node as a loss to update the network parameters.+erefore,
for a total of 10000 nodes, we choose 50, 100, 400, 700, 1000,
and 2000 nodes as losses to update the network, and the
results are shown in Table 1.

It can be seen from Table 1 that the prediction perfor-
mance of the model after data standardization is the best,
whether it is the graph convolution network or the tradi-
tional machine learning method; that is, the data stan-
dardization operation is conducive to improving the
prediction accuracy of the model. +en, for the graph neural
network, the more the training data are, the more fitting the

distribution of the entire data is. In other words, with the
increase of the number of training samples, the accuracy of
the model is gradually improved.

To verify the performance of the graph neural network
model, we conduct comparative experiments using tradi-
tional machine learning and neural network methods. We
first divide the dataset with data dimension [10000, 39] into
training set and test set according to the ratio of 4 :1, training
set: test set� 8000 : 2000. +en, we use traditional neural
networks and various machine learning methods for
training, including KNN (K-Nearest Neighbor (N� 15)), LR
(logistic regression), SVM (Support Vector Machine), NB
(Naive Bayes classifier), DT (decision tree), RF (Random
Forest), MLP (multilayer perceptron), RBFNN (Radial Basis
Function Neural Network [29]). Furthermore, we also used a
GAT (graph attention neural network [30]) model for
comparison.

For a relatively fair comparison, we align the hidden
layers of the traditional neural network with the graph
neural network. First, we design a six-layer neural network
with four hidden layers, the six-layer perceptron. +e input
feature dimension is 39 and the output feature dimension is
2. Cross entropy is used as loss, probability distribution p is
expected output, probability distribution q is actual output,
and cross entropy can be expressed as in Formula (3). For
RBFNN and GAT, due to the large difference in network
structure, it is difficult to align with GCN, so we choose
common network settings. +e number of input nodes of
GAT is 39, the hidden layer nodes is 64, and the attention
head is 2.

H(p, q) � − 
x

(p(x)logq(x)) +(1 − p(x))log(1 − q(x)).

(3)

+e results obtained by using the above machine
learning model for training are shown in Table 2; the higher
performance among them is marked in bold. In order to
show the performance of the model more comprehensively,
we use five indicators for evaluation: accuracy rate, precision
rate, recall rate, F1-score, and AUC, and we finally take the
average of 20 repeated experiments as the experimental
result. Accuracy refers to the ratio of the number of correctly
classified samples to the total number of samples, which
most directly reflects the performance of the model but is
easily affected by class imbalance. +e precision rate is the
ratio of the number of correctly classified positive examples
to the number of classified positive examples, which mea-
sures the precision rate of the model. Recall is the ratio of the
number of correctly classified positive examples to the actual
number of positive examples and measures the recall rate of
the model. +e F1 score can be regarded as the harmonic
average of the model’s accuracy and recall, and the calcu-
lation formula is as shown in formula (4).

AUC (Area under Curve) is defined as the area enclosed
by the coordinate axis under the ROC curve. +e closer the
AUC to 1.0, the higher the authenticity of the detection
method; when it is equal to 0.5, the authenticity is the lowest
and has no application value.
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F1 � 2∗
Precision∗Recall
Precision + Recall

. (4)

Among those machine learning methods, random forest,
Support VectorMachine, and logistic regression perform the
best, while decision tree and näıve Bayesian model perform
the worst. Compared with the decision tree, the random
forest adopts the integrated algorithm, which is equivalent to
integrating multiple decision tree models, and determines
the result by voting or averaging each tree, so the accuracy is
better than that of the decision tree. In addition,näıveNaive
Bayesianmodel has two basic assumptions.+e independent
variables are independent of each other, and the continuous
independent variables are subject to normal distribution
relative to the dependent variables. Combined with the
visualization analysis of the numerical distribution of the
data in Chapter 3, the independent variable does not fully
conform to the normal distribution relative to the dependent
variable but fluctuates within a certain range.We believe that
this is the main reason for the decline in the accuranäıve the
Naive Bayesian model.

We use the 1000 nodes of the GCNmodel as the training
loss accuracy for comparison, which is 74.8%. Compared
with traditional machine learning (67.6%), MLP (68.4%),

and RBFNN (68.1%), graph neural network achieves higher
variety suitability evaluation accuracy with fewer training
samples. Furthermore, compared with GAT (73.1%), the
GCN model is better in accuracy, but the accuracy is not as
good as GAT. Moreover, the GCN model also has a good
recall rate, F1, and AUC scores, further verifying the su-
periority of the model performance.

For the traditional neural network and machine learning
algorithms, each variety suitability evaluation dataset is
considered as a point feature information, and the algorithm
learns the complex mapping relationship between features
and labels. In contrast, the graph neural network can
transmit information through the graph structure, update
the state of hidden nodes through the sum of the weights of
adjacent nodes, and effectively utilize the association be-
tween feature nodes. For tabular data, different data come
from different experimental points, and there are obvious
correlations (such as climate factors) between adjacent test
trial sites.+erefore, the method of node aggregation can not
only mine the similarity between features but also make
good use of the association between geographic locations.
GAT is generally considered to be an upgrade of GCN.
When GAT updates the features of nodes, it first calculates
the attention scores of all neighbor nodes and then

Input ReLU Output

ND128

ND256

ND32

ND8

ND64

Figure 3: Graph neural network framework. +e network consists of an input layer, 4 hidden layers, and an output layer, and the ReLU
activation function is used in the middle to increase the nonlinear fitting ability.
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Figure 2: Overall flowchart of the project. +e whole project flowchart can be divided into 3 parts: data analysis, correlation analysis, and
construction of graph structure. +e data analysis part shows the source and numerical distribution of the data; the correlation analysis part
gives the relationship between the suitability evaluation indicators and the climate, environment, and crop phenotype data; the graph
construction part uses each piece of data as a node to construct a graph and input it into GNN.
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aggregates the corresponding neighbor features according to
the attention scores to better utilize the correlation between
features. However, GAT (73.1%) does not perform as well as
GCN (74.8%) on our applicability evaluation task. We infer
that the reason is that the GATdoes not fully utilize the edge
information and the network does not learn the connection
weights between nodes well.

6.2. Further Research. It can be seen from the data corre-
lation in Table 3 that the correlation between the relative
change of field index and the suitability evaluation label is
much larger than that of other types of data. +erefore, we
doubt whether the accuracy of the model is too much af-
fected by the index, resulting in a sharp decline in the
performance of the model that is indeed the index, thereby
reducing the actual availability of the model. +erefore, we
conduct feature data ablation experiments in a targeted
manner.

Firstly, the relative changes of yield traits in the overall
data were removed, and the other data remained unchanged.
+en, 20 groups of experiments were carried out, and the
average value was taken as shown in Table 4. +e accuracy of
the graph neural network model is reduced by about 4%. In
contrast, the traditional machine learning and neural net-
work methods decrease greatly, which to some extent shows
that the graph neural network learns more data high-order
correlation and the model is more robust. In summary, in
the absence of relative change of yield index, we can think
that the overall performance of the model is within an ac-
ceptable range.

7. Conclusion and Future Work

With the continuous growth of the world population and the
deterioration of the political and commercial situation, food
production has become the focus of attention. +e use of
artificial intelligence technology to improve land suitability
and variety adaptability, thereby increasing the yield of food
crops, has become the consensus of agricultural researchers.
We collected traits and local climate data of 10,000 maize
lines in multiple test trial sites, artificial intelligence tech-
nology to learn and explore the suitability between maize
varieties and test trial sites. Among all artificial intelligence
methods, graph neural network has generally achieved good
applicability evaluation results, and only 1/10 training
samples are used to achieve 75% accuracy.

In the future, we will introduce more factors related to
suitability evaluation, such as the genetic sequence of va-
rieties and soil components, and improve the current in-
telligent technology, so that artificial intelligence can
essentially replace expert evaluation. Furthermore, after
mastering the data of a variety in a test trial site, the

suitability of the variety for other test trial sites can be judged
according to the trait data of the variety and the current
environmental data. +is can eliminate a large number of
schemes considered unsuitable by artificial intelligence, thus
greatly reducing the cost of trial and error between varieties
and test trial sites, accelerating the identification of varieties
most suitable for current test trial sites, and ultimately in-
creasing the yield of food crops.
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