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A large number of insect pests in the forest will seriously affect the construction of forest resources and agriculture in China. In this
regard, in order to deeply understand and analyze the existing forest pest detection technology, it is found that it cannot meet
practical needs. In order to prevent the harm caused by forest pests, it is necessary to correctly identify the types of pests and take
targeted control measures. Therefore, this paper proposes a forest pest detection algorithm based on improved YOLOX. Firstly,
aiming at the problem that there are few image data of real deep forest pests in the wild, we use Mosaic, Mixup, and random
erasure data enhancement to preprocess the images. Secondly, in order to extract fine-grained features, shallow information is
introduced into the existing network architecture, and a two-way cross-scale feature fusion mechanism is adopted. Finally, the
improved YOLOX algorithm proposed in this paper has achieved the best results on the public forest pest dataset IP102.

1. Introduction

Forest resources in many parts of China are being attacked
by diseases and insect pests. According to official statistics,
there are more than 8000 kinds of forest diseases and insect
pests in China. Not only is the coverage area of forest
diseases and insect pests broad, but also its growth rate is
accelerating in the form of acceleration. It has been difficult
to limit forest diseases and insect pests with general pesti-
cides. Coupled with the super reproductive ability of insects
and the impact of a large number of human production
activities, forest diseases and insect pests have become a
major challenge to China’s forest resources.

A large number of diseases and pests in forests will seriously
affect the construction of forest resources and forest agriculture
in China. If diseases and pests are not controlled, the normal
growth of forest vegetation will be seriously affected, further
causing soil erosion and affecting air quality. The villagers who
live in forest agriculture will also suffer huge economic losses.
Therefore, it is of great significance to construct forest resources
and monitor forest pests and diseases to realize the sustainable
development of China’s ecological environment.

Compared with traditional monitoring methods, the use
of UAVs for forest pest control has the following advantages.
First of all, traditional monitoring methods usually invest a
lot of human and material resources to go deep into the
forest to obtain entity data for analysis but often cannot fully
reflect the actual situation of a forest. The experimental
object has great particularity, and the UAV can use many
technologies in the survey and detection of forest diseases
and pests, such as remote sensing and visible light scanning,
to clearly grasp the forest health status in the regional area.
The real situation of the forest can be accurately located and
reflected with less manpower and material resources so that
pest control can be carried out accurately. Secondly, the
traditional monitoring methods are limited by traffic con-
ditions and are difficult to go deep into remote or harsh areas
such as mountains, dense forests, and steep mountains.They
are often disturbed by external factors. The application of
UAV monitoring can reduce manual operation. These
outdoor working environments are difficult and dangerous,
and the use of UAVmonitoring can go deep into these places
and improve the utilization efficiency of human resources.
Finally, the timeliness of traditional monitoring methods is
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not high, and they cannot reflect the situation of the
monitored area in real time. Traditional monitoring
methods are difficult to ensure the timeliness of data. It takes
a lot of time to analyze the data and explore the surrounding
terrain, and the real-time situation of the damaged wood
cannot be continuously updated. However, the use of UAV
technology can better grasp the changes of pests, synchro-
nize the data with the corresponding departments, help
people grasp the real situation of diseases and pests timely
and accurately, and improve the timeliness of the data.

Traditional pest detection and identification work first rely
on hand-made features, including SIFT [1], LBP [2], ORB [3],
Color [4], and SURF [5] operators to represent targets. Then,
machine learning is used for target recognition, such as support
vector machine (SVM) [6], nearest neighbor -K(KNN) [7],
random forest [8], and so on.These feature-basedmethods rely
too much on the characterization of feature operators. It lacks
robustness to illumination, occlusion, complex environment,
and interference of similar targets.

Therefore, the overall classification accuracy is poor. With
the excellent performance of deep learning in various fields, it
has also attracted the attention of forest pest researchers and
introduced it into the detection and identification of pests.
Wang et al. [9] proposed a convolution neural network based
on the inception module and extended convolution for plant
pest identification. Cheng et al. [10] designed a pest identi-
fication method using deep residual learning. Compared with
the support vector machine and traditional BP neural net-
work, the accuracy of pest image recognition under complex
farmland backgrounds is significantly improved. Huang et al.
[11] proposed to classify eight categories of tomato pests
based on the Convolutional Neural Network (CNN) model
and used transfer learning to reduce training time. Liu et al.
[12] constructed two migration strategies for pest identifi-
cation in the Convolutional Neural Network (CNN) through
a graph-based visual significance enhancement dataset,
combined with migration learning and fine-tuning. However,
the above methods are limited by the small dataset, which is
easy to lead to the knowledge limitation and overfitting of
model learning. In addition, the extracted features are too
simple and not robust, and the generalization ability in the
actual scene is insufficient.

With the advancement of deep learning technology, many
detectors based on convolutional neural networks are now
playing a good detection effect. With the advancement of
deep learning technology, many detectors based on con-
volutional neural networks are now playing a good detection
effect. The one-stage detectors [12-15] predict the class and
location of the object directly by convolutional neural net-
works, while faster R-CNN [16] and spare R-CNN [17] are
used to generate region proposal by region proposal networks
and then perform classification and regression tasks, which is
more accurate. The transformer-based detectors [18-20] have
no anchor constraints and no nonextreme value suppression
postprocessing step. The end-to-end implementation greatly
simplifies the object detection pipeline.

Aiming at the above two problems, this paper proposes a
forest pest detection algorithm based on improved YOLOX.
For this paper, the main contributions are as follows:

(1) Aiming at the problem that there are few image data
of real deep forest pests in the wild, after Mosaic and
MixUp, random erasing data enhancement is applied
to the training data.

(2) In order to extract fine-grained features, shallow
information is introduced into the existing network
architecture, and a two-way cross-scale feature fu-
sion mechanism is adopted.

(3) The improved YOLOX algorithm proposed in this
paper has achieved the best results on the public
forest pest dataset IP102.

2. Related Work

2.1. Pest Identification Based on Machine Learning. As
mentioned above, pest recognition based on the traditional
learning method includes two steps: feature extraction and
model training. Feature extraction is to extract important
related features such as texture, color, and shape of an insect
image for target representation. Hassan et al. [12] designed
an intelligent insect classification system based on shape and
color features to identify grasshoppers and butterflies. The
HOG feature was first used in pedestrian detection [21] and
gained attention due to its good performance, which was
subsequently applied to insect detection by Shen [22] et al.
At the same time, Liu et al. [23] also used HOG’s maximum
stable extreme region (MSER) algorithm for reference to
detect aphids with different colors and densities in wheat
fields. By extracting HOG features from positive and neg-
ative training samples of aphids, the accuracy of aphid
detection is improved. Huang et al. [24] used KNN to
identify insects. Rani et al. [25] applied an SVM classifier to
identify whiteflies, aphids, and thrips in leaf images. Al-
though traditional machine learning can make some
achievements in the specific scene, it relies too much on
manual feature extraction, is not robust enough, and lacks
generalization ability. So, it cannot adapt to scene migration.

2.2. Pest Identification Based on Deep Learning.
Traditional machine learning relies too much on manual
skills in feature extraction and lacks the good fitting ability to
data. Compared with machine learning, in recent years, deep
learning has becomemore andmore popular. It extracts data
features through a Convolutional Neural Network (CNN)
for end-to-end training. Its lightweight model and powerful
generalization ability have a good performance in subor-
dinate tasks such as target tracking and image recognition.
Therefore, the application of deep learning to pest identi-
fication has gradually become the current mainstream re-
search hotspot. For example, on the basis of traditional
CNN, Chen et al. [10] established a new CNNmodel for pest
identification and tested 550 pictures of 10 categories under
natural background, with an accuracy of about 99.67%.
Alves et al. [26] designed a new deep residual learning
model, which added a seven-layer network and achieved
98% classification accuracy on 1600 common cotton pest
datasets. Sun et al. [27] used the JFT-300M dataset and found
that there was a logarithmic relationship between the
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performance of visual tasks and the amount of training data.
In China, in order to solve the problem that deep learning is
difficult to migrate to agricultural scenes, Kong et al. [28] put
forward a multi-stream Gaussian probability fusion network
(MPFN), which trained 122,000 images of 181 kinds of pests
and diseases and achieved an average recognition accuracy
of 93.18%. Yang et al. [29] further optimized the neural
network and combined it with the GrabCut algorithm to
realize the accurate identification and location of tea garden
pests. Although the current pest identification methods
based on deep learning have made some achievements, the
extracted features are not robust enough because of the
single network structure.

3. The Proposed Method

The current pest identification methods are limited by the
small dataset, which easily leads to the knowledge limitation
and overfitting of model learning. In addition, the extracted
features are too simple and not robust enough. The gen-
eralization ability of actual scenes is insufficient. In view of
the above two problems, this paper takes YOLOX [14] as the
framework and improves it to deal with the task of forest pest
detection.

YOLOX, one of the most accurate detectors available,
uses a more efficient data enhancement approach to pre-
process the data. It is also an anchor-free frame-based de-
tector, avoiding the problem of unbalanced positive and
negative samples with the anchor frame approach. The si-
multaneous use of decoupled heads for classification and
regression tasks is significantly better than other detectors in
terms of accuracy and speed. So, we used YOLOX as our
baseline and made some improvements.

Firstly, aiming at the problem that there are few pictures
of real deep forest pests in the field, after Mosaic and Mixup,
random erasing data enhancement is carried out on the
training data to prevent overfitting in the process of model
training. Secondly, in order to extract fine-grained features,
shallow information is introduced into the existing network
architecture, and a two-way cross-scale feature fusion
mechanism is adopted. Figure 1 shows the overall frame-
work of the algorithm in this paper.

3.1. Data Enhancement. This paper uses Mosaic and Mixup
as basic data enhancement. Mosaic data enhancement: four
images are spliced by random scaling, random clipping, and
random arrangement, which enriches the background and
small targets of the detected objects. Mixup data enhance-
ment: overlapping two pictures together can reduce the
memory of wrong labels and enhance robustness. The
random erased images can improve the robustness against
image noise, e.g., partial occlusions and imperfect detec-
tions. The effect of the data enhancement is shown in
Figure 2.

3.2. Backbone. CSPDarknet-53 is used as the backbone
network for feature extraction, which consists of five parts:
stem, dark2, dark3, dark4, and dark5. Compared with the

traditional ResNet-50 network, this backbone not only
ensures accuracy but also keeps the system lightweight, and
its structure is shown in Figure 3. Each module is described
as follows:

(1) Focus module: Slice an image by taking a value for
each pixel at an interval (similar to adjacent down
sampling). As a result, the information from W and
H is integrated into the channel space. The output
channel is expanded by four times. Compared with
the original RGB three-channel mode, the spliced
image becomes 12 channels. Increasing the number
of channels is beneficial to the later calculation, as
shown in Figure 4.

(2) CBL module: It mainly includes three operations:
convolution, normalization, and activation function.
The specific structure is shown in Figure 5.

(3) SPPmodule: Referring to the idea of spatial pyramid
pooling, the pooling layer composed of three con-
volution kernels (5× 5, 9× 9, 13×13) with different
sizes realizes the fusion of local features and global
features and enriches the expression ability of the
final feature map, as shown in Figure 6.

3.3. Improved Neck. Inspired by BIFPN [30], this paper
proposes an algorithm for the multiscale fusion of outputs of
backbone networks dark2, dark3, dark4, and dark5. In order
to extract more robust fine-grained features, this paper
proposes an algorithm that considers shallow information in
the original framework and further introduces dark2, which
is beneficial to small target detection. The BIAFPN structure
is a top-down fusion, transferring deep semantic informa-
tion back to the shallow layer, and then a bottom-up fusion
to enhance location information. On this basis, cross-scale
fusion is added to the algorithm in this paper (as shown in
Figure 7). For each fusion, adaptive weight SUM is added,
and the adaptive adding formula is as follows:

Ptd
i+2 � Conv

w1 · P
in
i+2 + w2 · Resize P

in
i+3􏼐 􏼑

w1 + w2 + ϵ
⎛⎝ ⎞⎠. (1)

Here, i� {1, 2}; w1 and w2 are initialized to 1, Pin
i and Pin

i+1
are outputs of corresponding layers of the main network;
Conv (.) is usually a convolutional op for feature processing.
Resize (.) is the sampling operation to keep the size of the
feature map consistent; ϵ � 0.0001 is a hyperparameter to
prevent the divisor from being 0.

P
out
2 � Conv

w1 · P
in
2 + w2 · Resize P

td
3􏼐 􏼑

w1 + w2 + ϵ
⎛⎝ ⎞⎠,

P
out
5 � Conv

w · P
in
5 + w2 · Resize P

out
4􏼐 􏼑

w1 + w2 + ϵ
⎛⎝ ⎞⎠,

(2)

where w1 and w2 are initialized to 1 and are normalized to be
a probability with a value ranging from 0 to 1, representing
the importance of each input.
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P
out
j � Conv

μ1 · P
in
j + μ2 · P

td
j + μ3 · Resize P

out
j− 1􏼐 􏼑

μ1 + μ2 + μ3 + ϵ
⎛⎝ ⎞⎠, (3)

where j� {3, 4}; μ1, μ2, and μ3 are initialized to 1 and are
normalized to be a probability with a value ranging from 0 to
1, representing the importance of each input. After each
fusion, the spatial information and channel information are
enhanced by CBAM [31], and finally, the output is obtained.
This fusion module can be repeated n times. The model
diagram of the neck is shown in the middle of the neck

module in Figure 7. The calculation of fusion is summarized
in Algorithm 1.

3.4.Head. As shown in Figure 8, the head section consists of
four prediction heads, each with separate classification and
regression branches, spliced along the channel, and a re-
shape operation to multiply W and H. The last 4 prediction
heads are spliced along W∗H, then each part of the loss is
calculated, and the following is the structure diagram of our
head part of the model Figure 9.
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Figure 1: The framework of the algorithm in this paper.
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(1) Decoupled head. It is a well-known problem that
classification tasks and regression tasks will
conflict, so we put forward the idea of calculating
classification tasks and regression tasks separately.
The specific structure as shown in the experiment
proves that it can improve the accuracy. We

understand that the classification task is different
from the regression task in terms of focus and
interest. The classification task pays more atten-
tion to which of the extracted features is closest to
the existing categories, while the regression task
pays more attention to the position coordinates of

Figure 2: Mosaic and mixup data enhancement visualization.

Focus CBL CSP1_1 CBL CSP1_3 CBL CSP1_3 CBL SPP CSP2_1

stem dark2 dark3 dark4 dark5

Backbone

Figure 3: Network diagram of darknet-53.
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Slice

Concat BaseConv

Focus

Figure 4: Schematic diagram of focus.
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the real box so as to correct the boundary box
parameters. If a feature map is classified and
regressed, the effect will be bad.

(2) Anchor free. At present, most detection algorithms are
under an anchor-based architecture, which has the
following disadvantages: unbalanced positive and

Conv BN Silu

CBL

Figure 5: Schematic diagram of Focus.

CBL

Maxpool

Maxpool

Maxpool

Concat CBL

SPP

Figure 6: Schematic diagram of SPP structure.
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outP4
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Figure 7: Schematic diagram of the cross-scale fusion mode.
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negative samples and more superparameters (anchor
number, size, aspect ratio). The model adopts an an-
chor-free strategy. Each grid only produces one pre-
diction box, and its performance is comparable to that
of an anchor-based strategy.

(3) SiamOTA. For the label allocation strategy, we first
calculate the cost of the matching degree according
to the formula:

cij � L
cls
ij + λL

reg
ij , (4)

where Lcls
ij and L

reg

ij represent the classification loss and
regression loss between the true value and the predicted
value, and λ is thematching coefficient.We then choose
the first k minimum cost as a positive sample, and the
rest of the predictions are negative samples. SiamOTA
not only reduces the training time but also avoids
additional superparameters.

3.5. Loss Function. We calculate classification loss and target
score loss by using the binary cross-entropy loss function:

BCELoss � − (y log(p(x)) +(1 − y)log(1 − p(x))), (5)

where y indicates whether it is category information or
target, and the value is 1 or 0; p(x) is the score of each
category and the predicted score.

We then calculate the frame loss, predict the frame in-
formation, and calculate the IOU(IntersectionofUnion) based
on the real frame information calculated by the label. IOU is the
intersection ratio between the prediction frame and the real
frame, and the prediction frame with a high IOU value can be
obtained through NMS postprocessing.

IOULoss � 1 −
I(􏽥B, B)

U(􏽥B, B)
, (6)

where 􏽥B is the ground truth, B is the prediction box, I(􏽥B, B)

is the area where the real box and the prediction box in-
tersect, and U(􏽥B, B) is the area where the real box and the
prediction box merge. The lower the IOULoss value is, the
more accurate the prediction is.

4. Experimental Results and Analysis

4.1. Dataset. The dataset selected for this experiment is
IP102 (a large benchmark dataset for pest identification)
[32], which has 102 categories and contains 18,981 pictures.
The training data and testing data of this experiment are
divided into datasets according to 7 : 3. The data display is
shown in Figure 10.

4.2. Experimental Environment. Python3.7 and Pytorch1.9.1
are used in the experiment, and the model of the graphics
card is 2∗ 3090Ti, which is matched with CUDA11.4.

4.3. Network Parameter. In order to be transplanted to
handheld devices in the later stage, this experiment adopts
the YOLOX_S version of the model (the minimum number
of parameters). The weights are added, which have been
trained on the COCO dataset as pretraining weights. A total
of 250 training sessions have been conducted. The first five
training sessions are warmed up using the random gradient
descent (SGD) algorithm. The learning rate is set as

Input: Pin
2 Pin

3 Pin
4 Pin

5
Pin
2 Pin

3 Pin
4 Pin

5 is outputs of dark2, dark3, dark4, dark5;
Output: Pout

2 Pout
3 Pout

4 Pout
5

(1) set w1 � 1, w2 � 1, μ1 � 1, μ2 � 1, μ3 � 1, ϵ � 0.0001;
(2) for i� 1,2 do
(3) Pin

i+3⟵Pin
i+3 { Resize(Pin

i+3) the same size with Pin
i+2 }

Ptd
i+2⟵Ptd

i+2 { Conv((w1 · Pin
i+2 + w2 · Pin

i+3)/(w1 + w2 + ϵ))}
(4) End for
(5) for j� 2, 3, 4, 5 do
(6) if j� 2 then
(7) Ptd

j+1⟵Ptd
j+1 { Resize(Ptd

j+1) the same size with Pin
j }

(8) Pout
j ⟵Pout

j { Conv((w1 · Pin
j + w2 · Ptd

j+1)/(w1 + w2 + ϵ)}
(9) else if j� 5 then
(10) Pout

j− 1⟵Pout
j− 1 { Resize(Pout

j− 1) the same size with Pin
j }

(11) Pout
j ⟵Pout

j { Conv((w1 · Pin
j + w2 · Pout

j− 1)/(w1 + w2 + ϵ)}
else

(12) Pout
j− 1⟵Pout

j− 1 { Resize(Pout
j− 1) the same size with Pin

j }
(13) Pout

j ⟵Pout
j { Conv((μ1 · Pin

j + μ2 · Pt d
j + μ3 · Pout

j− 1)/(μ1 + μ2 + μ3 + ϵ)}
(14) end if
(15) end for

ALGORITHM 1: Fusion.
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lr� lr0 ×BatchSize/64, where lr0 � 0.01 denotes the initial
learning rate, BatchSize� 16 represents that we use this
BatchSize during the training, and the learning rate ad-
justment strategy is cosine annealing.

4.4.ContrastResult. In order to verify the effectiveness of the
improved YOLOX algorithm proposed in this paper in the
task of forest pest detection and identification, it is compared
with the current mainstream two-stage and one-stage de-
tection algorithms, respectively. Specifically, the second
stage includes Faster R-CNN [16], FPN [33], Dynamic
R-CNN [34], and Spare R-CNN [17]. These algorithms first
scan potential objects on the feature map through a sliding
window, then classify them, and return to the corresponding
frame coordinates to detect the objects. The first stage in-
cludes RefineDet [35], YOLOv3 [36], SSD300 [32], PAA
[37], TOOD [15], and YOLOX [14]. These methods directly
regress the detected target category and location. Table 1
shows the comparison results. The second-stage methods
Faster R-CNN [16], FPN [33], Dynamic R-CNN [34], and
Spare R-CNN [17] are superior to the first-stage detection

methods RefineDet [35], YOLOv3 [36], and SSD300 [32].
The detection accuracy of YOLOX [14] is second only to the
improved method in this paper. The improved method in
this paper has higher detection accuracy than YOLOX,
especially on small-scale targets.

4.5. Ablation Experiment. According to the ablation results
in Table 2, an evaluation of each augmentation component
on the IP102 dataset is shown. The baseline is YOLOX. RE
means random erasing data enhancement, which can im-
prove the robustness against image noise, e.g., partial oc-
clusions and imperfect detections. The IN notes the
improved neck. The improved YOLOX has achieved better
results. It is proved that the algorithm proposed in this paper
takes shallow information into account and further intro-
duces dark2 to extract more robust fine-grained features,
which is more conducive to the detection of small targets
(APsmall increases 1.6%). A cross-scale fusion method is
added, and the adaptive weight SUM is added to each fusion.
As a result, the ablation experiments illustrate the evaluation
of each augmentation component in our method.
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CBL CBL

Conv

Conv

Conv

Concat Reshape

Concat

CBL

CBL CBL

CBL CBL

Conv

Conv

Conv

Concat Reshape

CBL

CBL CBL

CBL CBL

Conv

Conv

Conv

Concat Reshape

CBL

CBL CBL

CBL CBL

Conv

Conv

Conv

Concat Reshape

Head

Figure 8: Model structure diagram of the head part.
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4.6. Result Visualization. Figure 11 shows some results of
this experiment, which intuitively reflects the effectiveness of
the algorithm proposed in this paper. As can be seen from

the figure, the target accounts for a large or small area of the
picture, and all of them can correctly detect and identify the
opposite category.

Reg

Cls

Iou

HxWxC

HxWx1

HxWx4

HxWx256

HxWx256

HxWx256

Classification

Regression

Figure 9: Schematic diagram of the decoupled head.

Figure 10: Samples of partial categories of the dataset.
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5. Conclusions

In this paper, the current pest identification methods are
limited by the small dataset, which easily leads to the
knowledge limitation and overfitting of model learning, the
extracted features are too simple and not robust enough, and
the generalization ability in actual scenes is insufficient.

Taking YOLOX [14] as the framework, on this basis, the task
of forest pest detection was improved. Firstly, aiming at the
problem that there were few image data of real deep forest
pests in the wild, we used Mosaic, Mixup, and random
erasure to preprocess the data to prevent overfitting. Sec-
ondly, in order to extract fine-grained features [38], shallow
information was introduced into the existing network

Table 1: Average precision performance of state-of-the-art object detection methods under different IoU thresholds on IP102.

AP50 90 AP50 AP75 APsmall APmedium APlarge
FPN 28.10 54.93 23.30 — — —
SSD300 21.49 47.21 16.57 — — —
RefineDet 22.84 49.01 16.82 — — —
YOLOv3 25.67 50.64 21.79 — — —
Faster R-CNN 28.4 48.0 30.2 17.8 29.0 29.4
PAA 25.2 42.7 26.1 18.6 27.1 26.1
Dynamic R-CNN 29.4 50.7 30.3 14.6 25.9 30.4
TOOD 26.5 43.9 28.7 19.0 28.3 27.4
Spare R-CNN 21.1 33.2 23.8 10.2 24.3 22.0
YOLOX 31.1 52.1 32.3 23.2 32.4 32.0
Improved YOLOX 32.4 53.6 33.4 24.8 33.5 32.9

Table 2: Evaluation of each augmentation component on IP102 datasets.

AP50 90 AP50 AP75 APsmall APmedium APlarge
Baseline 31.1 52.1 32.3 23.2 32.4 32.0
Baseline +RE 31.8 52.9 32.7 23.4 32.9 32.1
Baseline +RE+ IN (ours) 32.4 53.6 33.4 24.8 33.5 32.9

Figure 11: Sample detection results on the IP102 dataset.
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architecture, and a two-way cross-scale feature fusion
mechanism was adopted. The ablation experiment proved
the rationality of each strategy of the improved method in
this paper. The best performance on public datasets proved
the effectiveness of this method. In the future, we will focus
on the tiny model and transplant it to the handheld terminal.
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