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Heart failure is the most common cause of death in both males and females around the world. Cardiovascular diseases (CVDs), in
particular, are the main cause of death worldwide, accounting for 30% of all fatalities in the United States and 45% in Europe.
Artificial intelligence (AI) approaches such as machine learning (ML) and deep learning (DL) models are playing an important
role in the advancement of heart failure therapy. +e main objective of this study was to perform a network meta-analysis of
patients with heart failure, stroke, hypertension, and diabetes by comparing the ML and DL models. A comprehensive search of
five electronic databases was performed using ScienceDirect, EMBASE, PubMed, Web of Science, and IEEE Xplore. +e search
strategy was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)
statement.+emethodological quality of studies was assessed by following the Quality Assessment of Diagnostic Accuracy Studies
2 (QUADAS-2) guidelines. +e random-effects network meta-analysis forest plot with categorical data was used, as were
subgroups testing for all four types of treatments and calculating odds ratio (OR) with a 95% confidence interval (CI). Pooled
network forest, funnel plots, and the league table, which show the best algorithms for each outcome, were analyzed. Seventeen
studies, with a total of 285,213 patients with CVDs, were included in the network meta-analysis. +e statistical evidence indicated
that the DL algorithms performed well in the prediction of heart failure with AUC of 0.843 and CI [0.840–0.845], while in the ML
algorithm, the gradient boosting machine (GBM) achieved an average accuracy of 91.10% in predicting heart failure. An artificial
neural network (ANN) performed well in the prediction of diabetes with an OR and CI of 0.0905 [0.0489; 0.1673]. Support vector
machine (SVM) performed better for the prediction of stroke with OR and CI of 25.0801 [11.4824; 54.7803]. Random forest (RF)
results performed well in the prediction of hypertension with OR and CI of 10.8527 [4.7434; 24.8305]. +e findings of this work
suggest that the DL models can effectively advance the prediction of and knowledge about heart failure, but there is a lack of
literature regarding DL methods in the field of CVDs. As a result, more DL models should be applied in this field. To confirm our
findings, more meta-analysis (e.g., Bayesian network) and thorough research with a larger number of patients are encouraged.

1. Introduction

Heart failure and related diseases are the most common
cause of death in both males and females in practically all
countries around the world [1]. Cardiovascular diseases
(CVDs), in particular, are the main cause of death

worldwide, accounting for 30% of all fatalities in the United
States [2] and 45% in Europe, while costing the European
Union €210 billion each year [3]. Despite substantial ad-
vances in diagnostic procedures over the last 50 years,
cardiologists, primary care physicians, and other healthcare
providers face tremendous challenges in the early detection

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 5849995, 12 pages
https://doi.org/10.1155/2022/5849995

mailto:gamalalkawsi@tu.edu.ye
https://orcid.org/0000-0002-8004-3929
https://orcid.org/0000-0002-2456-4033
https://orcid.org/0000-0003-3947-269X
https://orcid.org/0000-0001-6966-2369
https://orcid.org/0000-0001-5104-372X
https://orcid.org/0000-0003-2067-9519
https://orcid.org/0000-0002-3890-9792
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5849995


and diagnosis of heart disease [1]. Physicians are also trained
to diagnose CVD based on a patient’s medical history, basic
ratings, physical tests, and biomarkers, which are interpreted
according to their own clinical experience. +ey then match
each patient to the conventional taxonomy of medical
diseases based on their subjective comprehension of the
medical literature. +is practice is becoming more error-
prone and inefficient [4]. In addition, as the proficiency of
cardiovascular techniques in collecting large volumes of data
continues to improve, physician’s jobs become more com-
plex. As a result, medical treatments must be simple to use,
fast, and automated, as well as highly accurate to improve
patient well-being while also decreasing healthcare costs and
reducing deaths from CVD.

Artificial intelligence (AI) approaches such as machine
learning (ML) and deep learning (DL) models are playing an
important role in the advancement of heart failure (HF)
therapy. However, clinical HF care is currently challenged
with real-world problems, including the need for cost sav-
ings in prevention and treatment, high readmission and
mortality rates, insufficient patient care, and overutilization
[5, 6]. Applying AI-based predictive modeling can address
these problems; however, constructive collaborations be-
tween data scientists and medical professionals are essential
to supporting the clinical effectiveness of automation and
diagnostic systems through AI [7].

Due to enormous advancements in data processing and
warehousing capabilities, ML is becoming very popular and
is considered a reliable method for combining clinical data
and physician’s reports from electronic medical records
(EMRs) to improve the accuracy of a wide range of medical
tasks [8]. DL on the other hand has emerged as a robust
solution for medical tasks, including image classification,
image segmentation, and natural language processing (NLP)
as a result of big data and improved computational capability
of graphical processing units (GPUs). Among the most
common AI models used in CVD are logistic regression
(LogR) [9,10], support vector machine (SVM) [11], gradient
boosting machine (GBM) [12–14], random forest (RF)
[13, 15], artificial neural network (ANN) [15, 16], and
convolutional neural network (CNN) [17, 18].

Several studies have examined the AI models in pre-
dicting different outcomes for CVDs. Damen et al. [19]
performed a systematic review that described the con-
struction or external validation of a multivariable model for
predicting CVD risk in the general population and con-
cluded that there are too many models for predicting CVD
[19]. +e effectiveness of most of the models is doubtful
because of shortcomings in methodology and a lack of
external validation studies. +e work also concluded that
rather than introducing new CVD risk prediction models,
future research should concentrate on validating and
comparing current models to see how they can be improved.
Al’Aref et al. [20] reviewed the current ML approaches for
building inferential and predictive data-driven models
within CVD. +e study identifies various areas where ML
can be used, including echocardiography, electrocardiog-
raphy, and newly discovered noninvasive imaging modali-
ties such as coronary artery calcium scoring and coronary

computed tomography angiography. +e study also iden-
tified the limitations of the current ML algorithms in the
field of CVD, underlining the necessity for AI to integrate
temporal and spatial data into composite patient-centric
information that improves the value of medical treatments.

A recent meta-analysis was performed by Krittanawong
et al. [21] to assess the ability of different ML models to
predict stroke, heart failure, cardiac arrhythmias, and cor-
onary artery disease. +is work found that the predictive
capabilities of boosting algorithms and SVM are promising
in the field of CVD.

Assessing the current literature related to DL methods,
we found that only a few reported the summary values of the
treatments and the statistics of the patient’s family history,
which makes it difficult for readers to understand the best
algorithm. To our knowledge, none of the studies have
performed a meta-analysis on the effectiveness of both ML
and DL for the prediction of heart failure, with the exception
of one study [21], which focused on ML only. Hence, filling
this research gap allows an important contribution to be
made. +e aim of this study was to perform a network meta-
analysis on bothML andDLmodels on 285,213 patients with
CVD in predicting four outcomes (heart failure, stroke,
diabetes, and hypertension), which none of the literature has
done before.

A comprehensive understanding of the factors related to
treatment outcomes in patients with heart failure, stroke,
hypertension, and diabetes is required to create effective
strategies to enhance these treatments. However, the current
studies of patients with the aforementioned diseases have a
number of drawbacks that restrict the expediency of their
findings. One of these drawbacks is the failure to combine DL
andML, which we have addressed by carrying out this network
meta-analysis. +e findings of this study have a number of
implications for assisting policymakers and medical profes-
sionals on how to understand the data and apply different AI
models to predict outcomes in patients with CVD.

+e remainder of the study is structured as follows:
Section 2 describes our method for conducting the network
meta-analysis, which includes the data extraction, risk-of-
bias assessment, and the statistical analysis. Section 3
presents the findings of the study, and section 4 discusses
and evaluates the findings. Lastly, section 5 presents the
conclusions of the study.

2. Materials and Methods

To achieve the aims of this study, a network meta-analysis
was carried out. +is was accomplished by following the
guidelines of PRISMA [22], which include the eligibility
criteria, search strategy, selection of studies, data extraction,
risk-of-bias assessment, and data analysis. In addition, this
work used the quality assessment of QUADAS-2 to evaluate
the quality of the studies that were included [23].

2.1. Eligibility Criteria. +e target population was patients
(adults >18, male/female), suffering from CVD. +e quali-
fied interventions were both DL and MLmodels that predict
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CVD. +e outcomes of the network meta-analysis are
identifying patients affected with heart failure, diabetes,
hypertension, and stroke.

To obtain the most recent published works in the field of
AI and CVD, only studies published from 2016 to April 2021
were included. +ere were no limitations on the country in
which studies were conducted. Regarding the study design,
observational cohort and experimental studies were in-
cluded. +e current work also included articles from con-
ference proceedings, peer-reviewed journals, and
repositories of electronic prints. We excluded any sort of
reviews (systematic or traditional), proposals, dissertations,
editorials, conference abstracts, and studies that were in
languages other than English.

2.2. Search Strategy. A comprehensive and systematic search
of five electronic databases was performed. +ese include
ScienceDirect, EMBASE, PubMed, Web of Science, and
IEEE Xplore. We also searched Google Scholar to identify
relevant studies. However, the results were sorted for Google
Scholar based on relevancy and date (2016–2021).+en, only
the first 300 results (30 pages) were screened.+e search was
conducted in March 2021. Furthermore, a backward and
forward reference searching was carried out, where both
reference lists and the work cited from the selected studies
were screened. It is important to remember that each
electronic source has its own particular features, which
meant that the search strategy had to be adapted and
modified accordingly. For example, the use of Google
Scholar’s function “cited by” was very useful in identifying
relevant articles.

+e search terms used were related to AI interventions
(e.g., ML and DL) and the targeted population (e.g., adult
patients with CVD). Our search keywords were adjusted and
tested in various online databases as follows: [“cardiovas-
cular” OR “heart disease” OR “heart failure”] AND [“pre-
diction” OR “detection” OR “identification”] AND
[“artificial intelligence”] OR [“deep learning” OR “machine
learning”]. Table 1 summarizes all the keywords and terms
used in the search.

2.3. Study Selection. Following the search strategy, two
stages were undertaken in the selection process. First, the
titles, abstracts, and keywords of all records were screened
(see Figure 1). Any records that did not fulfill the inclusion
criteria were excluded. If there were any doubts, the studies
were considered for the second stage, which is the full-text
screening. Two authors (Y. B. and G. A.) of this study have
independently performed both stages of the selection pro-
cess. Any differences between the authors were sorted out
through consensus.

2.4. Data Extraction. EndNote X20 software was used to
extract basic publication records such as title, authors, date,
DOI, and publisher. One author (H.A.) compiled the data
elements from the studies that were included in Microsoft
Excel 2019, where two other authors (L.F.C. and A.A.)

independently validated them. +e data items extracted
from each of the selected studies include author(s), publi-
cation year, number of participants, type of AI used (e.g., DL
and ML), outcomes, analytical model or algorithm, indi-
cation, comparisons, and data sources.

2.5. Risk-of-Bias Assessment. +e QUADAS-2 tool [23] was
used to assess the quality of the studies. Two authors (A.A.A.
and M.A.) independently assessed the following four do-
mains for the risk of bias: (1) patient selection; (2) index test;
(3) reference standard; and (4) flow and timing. +e dif-
ferences were settled through group discussions until
reaching a consensus.

+e studies chosen were graded on each domain as being
of “high,” “low,” or “unclear” risk. In addition, RevMan 5.4
was used to produce the results, which are shown in Fig-
ures 2 and 3, along with the author’s judgments regarding
“risk of bias” in each, and across all studies. +e use of
QUADAS-2 tool, domains, and ratings is further described
in the supplementary material (available here).

2.6. Data Analysis. Categorical data were reported as
number (mean, standard deviation, and percentage). +e
number of patients, method of AI used in the prediction,
and the score of the control group and the treatment
group for each study were compiled in an Excel sheet. We
conducted a network meta-analysis on studies of a good
quality that reported both DL and ML algorithms for
predicting CVD (e.g., heart failure, stroke, diabetes, and
hypertension). To produce good and reliable results, a
proportion network meta-analysis was performed for the
individual outcome using R statistical software version
4.0.2, which generated the forest plot that shows the
proportion (P), confidence interval (CI), and the het-
erogeneity measured with (I2). +e random-effects model
was selected because the true effect size underlying all
studies was stochastic. +e individual forest plots were
reported as P and CI, the pooled forest plot was reported
as internal rate of return (IRR), and lastly the league table
was reported as odds ratio (OR).

+e sensitivity and specificity analysis, which measured
the percentage of the identified participants with the four
outcomes and the network plot, was also analyzed using R
statistical software version 4.0.2. +e quality of the studies
was assessed using RevMan version 5.4.

3. Results and Analysis

3.1. Search Results of the Included Studies. We identified
1,408 articles from our initial online database search (see
Figure 1). +e articles removed after identifying duplicates
(n� 527) resulted in a total of 881 unique articles that were
screened based on the first stage (title, abstract, and key-
word). 792 articles were excluded for not meeting the eli-
gibility criteria. +e remaining articles (n� 89) were
screened based on the second stage (full text). Of these, 13
articles were included and met all the eligibility criteria.
Following that, a total of four additional articles were found
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and included from backward (n� 3) and forward (n� 1)
reference searching. Overall, 17 articles were included in
both qualitative synthesis and the network meta-analysis.

3.2. Descriptions of the Included Studies. 17 selected studies
were assessed thoroughly to extract the following data:
authors and year, type of interventions and algorithms,
indication and outcomes, sample size, data source,
comparison, and number of patients with heart failure,
stroke, hypertension, and diabetes mellitus. +e results of
data extraction and characteristics of each individual
study are provided in the supplementary material
(available here).

+e design of the selected studies was observational (14/
17, 82%) as shown in Table 2, while the remaining studies
were experimental (3/17). Among the 14 observational

studies, half were prospective cohorts and the other half were
retrospective cohorts. +e year of publication ranged from
2016 to 2021, with 41 percent of studies published in 2019 (7/
17). +e research was conducted in eight countries, in-
cluding the United States, United Kingdom, Canada, China,
Italy, Netherlands, Australia, and Korea. Six of 17 (6/17)
studies were conducted in both China and the United States
equally, while 4 of 17 were performed in Korea.

Regarding the population and sample size, only one
study reported less than 100 participants (e.g., patients),
while 3 of 17 studies ranged from 101 to 1,000 participants,
and 5 of 17 were between 1001 and 10,000. +e majority of
studies (n� 7, 41%) reported a sample size between 10,001
and 60,000. Only one study had a size above 60,000 par-
ticipants (see Table 2). +e overall sizes ranged from 98 to
100,071. Patient’s sex (female) was reported in more than
40% of the studies (n� 10). Furthermore, only one study

Articles included in quantitative
synthesis [Network Meta-Analysis]

(n = 17)

Articles included in quantitative
synthesis (n = 17)

Articles included from “back &
forward” refernce searching

(n = 4)

Eligible articles (n = 13)

Articles screened by “full-text”
(n = 89)

Articles screened by “title, abstract
and keywords” (n = 881)

Articles identified from online
search (n = 1,408)

Duplicates removed (n = 527)

Articles excluded a�er 2nd stage
screening (n = 79)

- Type of study: n = 16
- Missing data: n = 9
- Design of study: n = 23
- Not meeting outcome: n = 11
- Not meeting intervention: n = 9
- Not meeting population: n = 11

Articles excluded a�er 1st stage
screening for not meeting the
eligibility criteria (n = 792)

Figure 1: Study screening and selection flowchart.

Table 1: Keywords and terms used in the search.

No. Category/terms Keywords

1 Cardiovascular
diseases

Heart failure, heart failure risk, acute heart failure, congenital heart disease, heart disease, heart attack, chronic
heart disease, coronary heart disease

2 Prediction Detection, identification, predict, detect, identify
3 Artificial intelligence Deep learning, machine learning, AI, DL, ML, ANN, CNN
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reported a rate of less than 10% female participants. +e
overall percentage of females in the studies ranged from 2 to
54.

+e selected studies examined one of the two inter-
ventions, machine learning (13/17, 76.5%) or deep learning
(4/17, 23.5%). Both were used to predict CVD and HF risk

(5/17), HF hospitalization (2/17), HF readmission (2/17),
and HF mortality (6/17), while two other studies have
predicted several outcomes (e.g., HF mortality with both
readmission and hospitalization). Further details on each
selected study are available in the supplementary material
(available here).
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Figure 2: Graph showing risk of bias for each study.
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Figure 3: Graph showing risk of bias across all studies.

Computational Intelligence and Neuroscience 5



3.3. Risk of Bias in the Included Studies. We assessed the
quality of studies by following the guidelines of QUADAS-2
(see Figures 2 and 3 and the supplementary material
(available here)). Among all of the 17 selected studies
[9–16, 24–32], only 3 studies [16, 24, 30] showed “high risk”
of bias on the “applicability concerns,” and the majority of
studies were “low risk.” Regarding the domain of “patient
selection,” which addresses the question “Could the selection
of patients or study participants have introduced bias?”
among the studies that used ML algorithms in predicting
heart failure, only three studies [9, 11, 30] reported “unclear
risk” of bias, while others reported a low risk. For the DL
algorithms, only one study [28] compared the DL with a
traditional logistic regression and reported a “high risk,”
while others [26, 27, 31] listed a “low risk.”

In terms of the “index text” domain, which addresses the
question “Could the conduct or interpretation of the index
test have introduced bias?”, none of the studies that used ML

answered a “high risk” of bias, while only five studies
[9, 12, 13, 24, 30] reported “unclear risk.” As for DL studies,
one has indicated “high risk” [28], while others reported
“low risk” (see Figure 1).

Regarding the “reference standard” domain, four ML
studies [10, 16, 24, 30] reported “unclear risk” of bias, and
one study [11] answered “high risk,” while the others re-
ported “low risk.” For DL algorithms, two studies [26, 27]
answered “high risk” of bias, and the remaining studies
reported “low risk.” Figure 2 shows the risk of bias across all
of the included studies for both DL and ML methods.

3.4. Results of the Network Meta-Analysis. A network meta-
analysis using a random-effectsmodel was performed using the
dataset in the supplementary material (available here) for each
of the four outcomes (e.g., diabetes, stroke, heart failure, and
hypertension). +e coding of the final analysis is also provided
in the supplementary material (available here). +e analysis
was only performed on the number of studies (>5) and for the
outcome that reported the study (<5).+e overall results of the
network meta-analysis are summarized in Table 3, which is a
league table showing the results by comparing all AI models.

3.4.1. Prediction of Heart Failure. For heart failure predic-
tion, two DL observational studies [26, 28] reported a total of
108,584 patients. One study [27] used and compared the DL
model with LogR and RF. After the comparison, we found
that the area under the receiver operating characteristic
curves (AUROCs) for the identification of best algorithm in
heart failure was 0.843 (95% CI, 0.840–0.845) as illustrated in
Figure 4. +is outperformed those of LogR (0.800
[0.797–0.803], 0.847 [0.844–0.850]) and RF (0.807
[0.804–0.810], 0.853 [0.850–0.855]).

Furthermore, 10ML studies reported a total of 94,714
patients with heart failure. Of these, two prospective cohort
studies [16, 30] and one experimental study [11] used SVM
for the prediction of heart failure, and two experimental
studies [25, 32] used ANN; two retrospective cohort studies
[9, 10] used LogR, and three studies [12–14] used GBM. +e
prediction of heart failure was associated with the result,
which shows that GBM models achieved an average pre-
diction accuracy of 91.10%, which is 4.40% higher than other
models (e.g., ANN, SVM, and LogR).

All studies that reported heart failure outcomes were
pooled together, and a random-effects forest plot (Figure 5)
shows that the results were statistically significant (I2 �100%,
p< 0.05). +e proportion of the number of samples and the
weight of each study are shown in the plot (Figure 5), and
only one DL observational study [28] has a proportion equal
to 1. However, with a sensitivity value of 97.4% and a
specificity value of 19%, we were able to identify a higher
percentage of the patients with heart failure.

3.4.2. Prediction of Diabetes. Diabetes outcomes were re-
ported in seven ML studies [10, 13, 15, 16, 24, 29, 30] and one
DL study [31], with a total of 75,265 patients. Among these,
two studies [13, 30] applied GBM models and another two

Table 2: Study characteristics (n� 17).

Characteristics n (%)
Study design
Observational 14 (82.4)
Experimental 3 (17.6)

Year of publication
2016 1 (5.9)
2017 3 (17.6)
2018 1 (5.9)
2019 7 (41.2)
2020 3 (17.6)
2021 2 (11.8)

Country
United States 3 (17.6)
Canada 2 (11.8)
United Kingdom 2 (11.8)
Italy 1 (5.9)
Netherlands 1 (5.9)
Australia 1 (5.9)
China 3 (17.6)
Korea 4 (23.5)

Population
Sample size
<100 1 (5.9)
101–1000 3 (17.6)
1001–10,000 5 (29.4)
10,001–60,000 7 (41.2)
>60,000 1 (5.9)

Gender (female) (%)
<10 11 (5.9)
11–29 3 (17.6)
30–39 3 (17.6)
>40 10 (58.8)

Intervention
Machine learning 13 (76.5)
Deep learning 4 (23.5)

Predicted outcomes
CVD and HF risk 5 (29.4)
HF hospitalization 2 (11.8)
HF readmission 2 (11.8)
Mortality 6 (35.3)
Both mortality and HF readmission 1 (5.9)
Both HF mortality and HF hospitalization 1 (5.9)

6 Computational Intelligence and Neuroscience



[15, 16] used ANN methods. +e results in Table 3 show that
ANN outperformed GBM and other models in the prediction
of diabetes with an odds ratio (OR) and CI of 0.0905 [0.0489;
0.1673]. Figure 6 shows that the results were statistically
significant (I2 �100%, p< 0.05). +e proportion of the
number of samples and the weight of each study are shown in
the plot (Figure 6). A DL study [31] has a proportion value of
0. However, with a sensitivity value of 88.5% and a specificity

value of 14%, this implies that we were able to identify a
higher percentage of patients with diabetes.

3.4.3. Prediction of Hypertension. +e hypertension out-
come was reported in four observational studies with a
total of 76,100 patients. +ree studies were related to ML
method [13, 15, 29], and one study applied the DL method
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Adriaan Voors, 2017
Ashir Javeed, 2020
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Davide Chicco, 2020
Eric Adler, 2020
Garrett Bowen, 2018
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Rui Chen, 2019
Joon-myoung Kwon, 2019 (1)
Joon-myoung Kwon, 2019 (2)
Joon-myoung Kwon, 2019 (3)
Oluwarotimi Samuel, 2017
Stephen Weng, 2017

Random effects model
Heterogeneity: I2 = 100%,
τ2 = 0.1731, p = 0

Figure 5: Network meta-analysis forest plot of studies reporting the total number of patients with heart failure.

Table 3: League table showing the result of the network meta-analysis.

Diabetes (ANN) 0.1796 [0.0934–0.3453] 1.7786 [0.8496; 3.7234] 12.7319 [5.5161; 29.3872]
0.0905 [0.0489; 0.1673] Heart failure (GBM) 27.7774 [12.9133; 59.7514] 141.5198 [64.9910; 308.1636]
2.3109 [1.1331; 4.7130] 25.5489 [12.7595; 51.1574] Hypertension (RF) 5.4764 [2.2916; 13.0876]
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[31]. Of these, two studies [13, 15] used and compared RF
with LogR, GBM, and LASSO regression. We were unable
to perform analysis due to the limited number of studies in
the observational groups (<5); however, RF results per-
formed well in the prediction of hypertension with OR
and CI of 10.8527 [4.7434; 24.8305]. +e sensitivity value
of 69.7% and the specificity value of 17% show that we
were able to identify a higher percentage of people with
hypertension. All four studies that reported the outcome
of hypertension were pooled together, and a random-
effects forest plot in Figure 7 shows that the results were
statistically significant (I2 �100%, p< 0.05). +e propor-
tion of the number of samples and the weight of each study
are shown in the plot (Figure 7).

3.4.4. Prediction of Stroke. Only twoML studies reported the
stroke outcome with a total number of 10,821 patients. Of
these, one study [30] used SVM, GBM, and RF algorithms,
while the other study [15] used traditional ML models such
as LogR. We could not perform analysis because we had too
few studies (<5) for the model. However, Table 3 shows that
SVM performed better for the prediction of stroke with OR
and CI of 25.0801 [11.4824; 54.7803]. Figure 8 shows that the
differences in the results, methodology, and the number of
patients used in the study were not statistically significant
(I2 � 0%, p> 0.05). +e proportion of the number of samples
and the weight of each study are shown in the plot (Figure 8).
Nonetheless, a sensitivity value of 74.1% and a specificity
value of 21% imply that we were able to identify a higher
percentage of patients with stroke.

In Figure 9, the network plot affirmed the above results,
indicating the best algorithm for each outcome. It can be
seen that GBM performs well for the prediction of heart
failure, ANN for the prediction of diabetes, RF for the
prediction of hypertension, and SVM for the prediction of
stroke. +e summary of the complete results can be found in
Table 3.

In Figure 10, the pooled network meta-analysis of all
studies shows that the overall effect was statistically sig-
nificant (p< 0.05), and the heterogeneity between the
subgroups was also significant (p< 0.05) with a quantifying
heterogeneity effect of 91.86%.

3.5. Publication Bias. Figure 11 presents the network meta-
analysis funnel plot, which shows the results of deep learning
and machine learning in predicting the four indications
(heart failure, stroke, diabetes, and hypertension).+e plot is
a graph of standard error against the incidence rate ratio, the
different colored symbols and shapes indicate how the
studies are spread out symmetrically, and the symmetric
nature of the plot shows no indication of publication bias
across all studies.

4. Discussion and Assessments

4.1. Key Findings. It is very important to understand the
background, causes, and factors associated with heart failure
to develop effective interventions that can enhance medi-
cation adherence [33, 34]. However, the majority of med-
ication adherence studies in patients with the diseases
mentioned above have had several drawbacks that degrade
the usefulness of their results. One of these drawbacks is the
failure to combine both DL and ML models to examine
medication adherence. +is study addressed this problem by
conducting a network meta-analysis to determine medica-
tion adherence predictors for patients with heart failure,
stroke, hypertension, and diabetes. In most of the studies
that used ML, the overall analysis showed an AUC of
0.8–0.9 s for the prediction of CVD. Also, looking at the
subgroup analysis according to the literature, ML models
seem to perform well, with AUC values between 0.80 and
0.90 for the prediction of heart failure and stroke.

To date, none of the current literature has done a net-
work meta-analysis for both ML and DL algorithms.
However, we found one study by Liu et al. [35], which used
DL models with a methodology similar to our study. +e
authors of [35] compared and evaluated the diagnostic
performance of several DL algorithms based on medical
imaging (two studies were related to cardiology). +e work
concluded that the DL models were effective and promising,
yet various methodological barriers related to accuracy at the
clinician level were identified. Although our analysis
revealed that GBM is very effective in the prediction of heart
failure, further work comparing machine learning and
human expertise is needed.
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Figure 6: Network meta-analysis forest plot of studies reporting the number of patients with diabetes.
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According to our network analysis, we found that DL
interventions produced better performance than ML for
predicting heart failure in terms of their AUC, which is
reported in Figure 4.+rough the comparison of AUC, GBM
algorithms seem to perform well. According to Mayr et al.
[36] and Bühlmann et al. [37], GBM has been increasingly
utilized in modern biomedicine. However, to implement it
in a clinical practice, the essential stages of designing amodel
and interpretation need to be uniform [38].

Regarding the prediction of stroke, our analysis
revealed that SVM and RF yielded a good value for AUC.
Both SVM and RF showed promising results for addressing

the clinical matters, but SVM had a better performance in
the prediction of stroke with IRR and a standard deviation
of 25.0801 [11.4824; 54.7803] in patients with stroke. +is
might be because of the linear discrete data that fit better
within enhanced generalization. Noble [39] stated that
SVM is more effective in realizing unknown patterns in
complex clinical datasets, when compared to other ML
models.

For diabetes prediction, we were unable to perform a
network meta-analysis due to the limited number of studies
in the observational cohort for both DL and ML models.
However, based on the analysis we performed and the results
from Table 3, ANN outperformed all other predictive
models in identifying patients with diabetes, particularly in a
study reported by [16], and also as confirmed by the network
plot in Figure 9. ANN is one of themost powerful algorithms
for the prediction of CVD, and our study found that it can
also be helpful for the prediction of diabetes. In addition, it
can be implemented in the electronic medical records
(EMRs) to assist its application in the clinical system and
minimize mortality rates.

Regarding the prediction of hypertension, we were also
unable to carry out a network meta-analysis due to the
problems reported above. However, as illustrated in Fig-
ure 10, the FR models performed well in the prediction of
hypertension, which was statistically significant with IRR of
0.43 (0.21, 0.88) and odds ratio (OR) of 10.8527 [4.7434;
24.8305], as can be seen in Table 3.

Lastly, Figure 11 presented the funnel plot of the network
meta-analysis showing the permutation of the algorithm
along with the variables. A symmetric funnel plot shows no
evidence of publication bias across any of the studies selected.

4.2. Limitations and Strengths. Our study has a few limita-
tions. +e first limitation of this work was the small number of
studies for some outcomes, which made it difficult to perform
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network meta-analysis; the number of studies required for a
network analysis has been set at >5. Secondly, we do not have
access to some of the articles needed for the final analysis due to
location and access restrictions.+irdly, some of the studies did
not report the overall mean and standard deviation for the
control and experimental groups, which made it difficult to use
Cohen’s D to compute the effect size and standard needed for
the pooled network analysis. Finally, our data were mainly
based on the DL andMLmethods, and according to Berkson’s
bias [40], if other interventions apart from DL and ML are not
included, it may lead to excessive or inaccurate approval. Both
ML and DL have been extensively applied in several areas,
including recognition, medicines, bioinformatics, and reli-
ability evaluation for survival analysis of various chronic ill-
nesses [41].Many studies have approved the use of SVM for the
prediction of heart failure, but this study investigated the use of
GBM as an accurate predictor of heart failure.

One of themain strengths and contributions of our study
is being among the first to perform a network meta-analysis
to assess both DL and ML methods in the prediction of
CVD, on a total of 285,213 patients with four outcomes,
namely heart failure, stroke, diabetes, and hypertension.

5. Conclusion

+e effectiveness of artificial intelligence models (DL and ML)
in the prediction of cardiovascular diseases were assessed in this
study. +e network meta-analysis included 17 studies with a
total of 285,213 patients from 2016 to 2021. Our findings
suggested that there are numerous limitations to overcome

before DL andMLmodels can be fully implemented inmedical
practice. DL models showed more promising results than ML.
GBM, on the other hand, is gaining more popularity and is
already widely used in CVD prediction. However, our study
focused on four outcomes, heart failure, stroke, diabetes, and
hypertension, as well as selecting the appropriate algorithm for
each outcome.

Even with the difficulties of validating observational
studies, the human expert’s comparison, and the reporting of
evaluation matrices within the correct medical context, our
study found that GBM performed well in the prediction of
heart failure, SVM showed good results in the prediction of
stroke, ANN yielded good results in diabetes prediction, and
RF performed well in the prediction of hypertension.

Other scholars who wish to carry out similar work are
advised to perform a Bayesian network meta-analysis ap-
proved with a suitable prior, likelihood, and posterior dis-
tribution, as well as focusingmore on DLmodels for the same
or different outcomes related to cardiovascular diseases.

Data Availability

+e data supporting this network meta-analysis are from
previously reported studies, which have been cited. +e
processed data used to support the findings of this study are
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