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MicroRNAs (miRNAs) are important types of noncoding RNAs, and there is a lack of holistic and systematic understanding of the
functions they play in disease. We proposed a research strategy, including two parts network analysis and network modelling, to
analyze, model, and predict the regulatory network of miRNAs from a network perspective, using unstable angina pectoris as an
example. In the network analysis section, we proposed theWGCNA& SimCluster method using both correlation and similarity to
fnd hub miRNAs, and validation on two datasets showed better results than the methods using correlation or similarity alone. In
the network modelling section, we used six knowledge graph or graph neural network models for link prediction of three types of
edges and multilabel classifcation of two types of nodes. Comparative experiments showed that the RotatE model was a good
model for link prediction, while the RGCN model was the best model for multilabel classifcation. Potential target genes were
predicted for hub miRNAs and validation of hub miRNA-target gene interactions, target genes as biomarkers and target gene
functions were performed using a three-step validation approach. In conclusion, our study provides a new strategy to analyze and
model miRNA regulatory networks.

1. Introduction

Noncoding RNAs play an important role in the development
of complex diseases, and their functions can be elucidated to
help us understand the complex processes of disease and
develop appropriate drugs [1]. MicroRNAs (miRNAs) are
important types of noncoding RNAs that are key regulators
of a variety of biological pathways, both in disease and
normal states of the body [2]. Tey mostly play a negative
regulatory role in promoting the degradation of mRNAs or
inhibiting translation [3]. An increasing number of studies
have reported the role of miRNA-mRNA regulatory net-
works in disease development [4, 5], suggesting that
miRNAs may systematically perform gene regulation
through a number of regulatory networks.

Unstable angina (UA) is one of the acute coronary
syndromes in which the frequency and duration of attacks

are unstable and may lead to myocardial infarction in
severe cases [6]. Unstable angina is a complex cardio-
vascular disease associated with multiple causative factors
[7]. Current studies suggest that the disease is caused by
myocardial ischemia and hypoxia following the formation
of a thrombus in the coronary arteries [8], but the exact
etiology and pathogenesis remain to be further elucidated.
Many studies have shown that some miRNAs and some of
the genes they regulate may be diagnostic markers or
therapeutic targets for unstable angina [9, 10]. Exploring
the role played by miRNAs is an efective means of un-
derstanding the mechanisms of the disease and developing
relevant drugs.

WGCNA (weighted gene coexpression network analy-
sis) allows the analysis of experimentally measured genes or
RNA expression data [11]. After calculating the correlation
of genes or RNAs using expression data, a weighted
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correlation matrix and a topological overlap matrix can be
constructed, and then, hierarchical clustering can be per-
formed to form modules. We can focus on key modules and
key nodes, as they can not only act as markers or therapeutic
targets but also perform essential functions and infuence
many other biomolecules, which can be useful in under-
standing the complex mechanisms of disease [12]. However,
the WGCNA method only considers correlations between
genes or RNAs, which is not sufcient, as there are not only
correlations but also similarities between molecules [13].
Similarity networks, which consist of similarity relation-
ships between molecules, reveal which molecules have
similar mechanisms of action [14] in contrast to the
coexpression networks constructed by the WGCNA ap-
proach. In a similarity network, the existence of edges
between nodes indicates that nodes have similar mecha-
nisms of action, and a hub node with numerous neighbor
nodes contains most of the mechanisms of action of its
neighbors [15]. Terefore, hub nodes in similarity networks
often perform multiple functions, so interfering with or
disrupting these core nodes is likely to afect multiple
functions. Similar to the key modules and key nodes in the
WGCNA approach, the key nodes in these similarity net-
works are also likely to be markers and therapeutic targets
and contribute to understanding the mechanisms of disease
[16, 17]. Constructing similarity networks and fnding key
nodes provide an alternative way of analyzing complex
networks [18].

A knowledge graph is a multirelational graph con-
sisting of entities (nodes) and relationships (edges) and is
composed of a series of triples (h, r, and t), which is es-
sentially a heterogeneous network graph [19]. A knowl-
edge graph or heterogeneous network graph is a complex
network graph containing diferent types of nodes and
edges. After modelling this complex network, it is possible
to make predictions about the existence of nodes or edges
in the network, as well as to predict the labels of nodes and
edges, and also to perform recommendation tasks [20].
Many miRNAs regulate many genes and in turn afect
many pathways. Tis complex process can be graphically
represented by the miRNA-target gene-pathway hetero-
geneous network (MTP), which we refer to as the miRNA
regulatory network [21]. On the one hand, the constructed
MTP networks can be used to construct miRNA similarity
networks and fnd hub miRNAs by calculating the simi-
larity of miRNA actions, i.e., network analysis. On the
other hand, MTP networks can also be modelled with
models, such as knowledge graphs or graph neural net-
works, i.e., network modelling, both for predicting nodes
and connected edges as well as labels with classifers such
as fully connected neural networks (MLP) after obtaining
embedding representation [22]. Network modelling is a
deep learning task for modelling complex heterogeneous
network graphs. Both the network analysis part and the
network modelling part explore miRNA regulatory net-
works from a network perspective, and the combination of
the two parts provides new ideas to analyze and predict the
role of miRNAs in complex diseases in a holistic and
systematic way.

At present, the functions of many miRNAs are still not
well understood, and the regulatory roles that miRNAs play
in complex diseases are not systematically elucidated [23].
To fnd better hub miRNAs, it is also worth investigating
whether correlations and similarities in complex networks
can be combined to obtain a better network analysis method
than WGCNA [24]. We used miRNAs as a representative of
noncoding RNAs and constructed a miRNA regulatory
network, the MTP network, using unstable angina as an
example. For this regulatory network of noncoding RNAs,
we proposed a research method that contains a network
analysis part based on multiple network analysis methods
and a network modelling part based on knowledge graph
algorithms. Hub miRNAs were obtained by an improved
network analysis method, while the MTP network was
modelled using a knowledge graph algorithm, and inter-
actions in this regulatory network were predicted as a
prediction task for edges, while the class of nodes was
predicted as a prediction task for node labels [25]. Finally,
the potential targets and functions of hub miRNAs were
predicted. Te overall study fowchart is shown in Figure 1,
and the fowchart of the network analysis part is shown in
Figure 2. Te acronym table for this study is Table S1 in
Supplementary Materials.

2. Materials and Methods

2.1. Data Preparation

2.1.1. miRNAs and Teir Target Genes. Expression data for
noncoding RNAs analyzed by an array were obtained from
the GEO database (GSE94605), specifcally miRNA ex-
pression data in plasma from healthy subjects and patients
with unstable angina, with 7 and 6 sample pools in the
control and case groups, respectively [26]. Diferential ex-
pression analysis by using the GEO2R tool was used to
obtain diferentially expressed plasma miRNAs, and then,
we set |logFC|> 2 and adjusted p value <0.05 to screen for
signifcantly diferentially expressed miRNAs [27]. Te
miRecords, miRTarBase, and TarBase databases were used to
fnd experimentally validated miRNA-target gene interac-
tions [28], and the top 10% of target genes were taken as true
target genes.

Te GeneCards database and the DisGeNET database
were used to fnd genes for unstable angina, and the target
genes of miRNAs were intersected with disease genes. Te
intersecting genes were used as target genes regulated by
miRNAs that were diferentially expressed in the disease
condition [29].

2.1.2. Tissue Localization of Genes and Protein-Protein
Interactions. Diferent genes are expressed diferently in
diferent tissues, and gene expression is tissue specifc [30].
We used the expression of genes in diferent tissues to in-
dicate the tissue localization of genes.Te TISSUES database
was used to fnd the expression of miRNA target genes in
diferent tissues, with gene expression data for up to 21
tissues [31].
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Figure 1: Flowchart of a model for the study of the complex heterogeneous network in unstable angina regulated by miRNAs.
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Protein-protein interaction data were retrieved from the
String database, keeping default parameter settings [32].

2.1.3. Functional Enrichment and Pathway Categorization.
KEGG enrichment analysis of target genes was performed
using the clusterProfler package in R software [33], with p

values set to less than 0.05. Pathways were categorized in the
KEGG database, with the top level containing seven broad
categories, and we used the KEGG database to classify
pathways.

2.1.4. Datasets for Validation. Te dataset for miRNA ex-
pression in plasma used to construct the complex network is
referred to as the original dataset. To make the results more
convincing, two additional independent external datasets
were used to validate miRNAs and target genes, respectively,
which are referred to as new datasets.

In the new GSE49823 dataset [34], plasma miRNA ex-
pression data were recorded for the unstable angina patient
group and the control group, with 13 samples for the disease
group and 13 samples for the control group, making a total
of 26 miRNA expression samples. Tis miRNA expression
dataset was used to test the performance of the network
analysis algorithm and the reliability of hub miRNA.

Te newGSE60993 dataset [35] contains gene expression
data from the peripheral blood of patients with unstable
angina and normal controls, with 9 samples from the disease
group and 7 samples from the control group. Tis gene
expression dataset was used to test the performance of the
network modelling algorithm and the reliability of hub
miRNA target genes.

2.2. Network Analysis. Te WGCNA analysis method is
based on the expression correlation between genes or RNAs
for network analysis, however, using only correlation net-
works to fnd hub miRNAs does not fully utilize the in-
formation of complex networks. Similarity is diferent from
correlation, so we proposed a method to calculate the
similarity of miRNAs based on MTP heterogeneous net-
works to construct similarity networks and fnd hub
miRNAs, which is called the SimCluster analysis method.
Te fowchart of the network analysis part is shown in
Figure 2.

2.2.1. WGCNA. We used the WGCNA method to analyze
the expression data of diferentially expressed miRNAs and
fnd hub miRNAs for unstable angina for subsequent studies
[12]. Te WGCNA method can transform the coexpression
network into a scale-free network by setting the β parameter,
with fewer nodes of a high degree and more nodes of a low
degree [36].

Network analysis of miRNA expression data was per-
formed using the ImageGP website [37] based on the
WGCNAmethod, with parameters set to the signed network
and Pearson correlation and R-squared set to 0.9. After
calculation, the β parameter value was fnally chosen as 18.

Te obtained weighted miRNA coexpression network
was hierarchically clustered to classify modules, and the top
10 most important miRNAs in each module were taken as
hub miRNAs.

2.2.2. SimCluster. Te SimCluster algorithm consists of two
main parts, similarity network construction and hubmiRNA
screening, and the fow of the algorithm consists of the
following 3 steps:

(1) We used the MTP network described in Section 3.1
to calculate the frst-order similarity and second-
order similarity of miRNAs, where frst-order sim-
ilarity refers to the similarity of miRNAs at the target
gene network level (M-T), while second-order
similarity refers to the similarity of miRNAs at the
enriched pathway level (M-P). In the MTP network,
each miRNA has its target set and pathway set, and
the Jaccard similarity formula [38] is used to cal-
culate the frst-order similarity value and second-
order similarity value of any two miRNAs.

(2) We defned similarity values as thresholds and ob-
tained diferent similarity matrices by setting dif-
ferent threshold lower limits, which were then
converted into corresponding similarity networks.
Drawing on the idea of the WGCNA method to
construct a scale-free network [39], we calculated the
distribution of degree values and degree frequencies
of all miRNAs in the similarity network to determine
whether the network was a scale-free network or not.
Specifcally, we used Pearson’s correlation coefcient
and R2 of linear regression to calculate whether the
logarithm of degree values (lg (K)) and the logarithm
of degree frequencies (lg (pK)) were highly corre-
lated and linearly correlated.

(3) For scale-free similarity networks, we used several
network clustering algorithms to divide modules and
selected the optimal network clustering algorithm
using modularity values [40]. For each divided
module, miRNA with the largest degree value was
selected as hub miRNA.

2.2.3. WGCNA & SimCluster. Te WGCNA method uses
correlation between miRNAs, while the SimCluster method
uses similarity between miRNAs. Te WGCNA &
SimCluster method combines these two methods, con-
taining both correlation and similarity information. Spe-
cifcally, the results of the WGCNA method and the
SimCluster method were intersected to obtain fnal hub
miRNAs.

We compared the performance of hubmiRNAs obtained
by the WGCNA method, the SimCluster method, and the
WGCNA & SimCluster method on original and new
datasets, respectively, to evaluate their potential as bio-
markers, using the AUC (area under the ROC curve) and
AUPR (area under the PR curve) as metrics. A comparison
of the above three network analysis methods is shown in
Table 1, including data, methods, and some results.
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2.3. Network Modelling. We used the data from the data
preparation section to construct a miRNA-target gene-
pathway heterogeneous network (MTP) containing three
types of nodes and edges:M, T, and P andM-T, T-T, and T-
P. Next, we modelled this complex heterogeneous network
regulated by miRNAs using a series of knowledge graph
models (including graph neural network models).

2.3.1. Models for Knowledge Graphs. A knowledge graph is a
set of many triples (h, r, and t) [41], each (h, r, and t)
representing the head entity h, the tail entity t, and the
relationship between them r. Knowledge graph models are
advantageous in dealing with complex heterogeneous
graphs consisting of diferent types of nodes and edges
[42], and a number of models have been successively
published.

We have modelled the constructedMTP network using a
series of knowledge graph models or graph neural network
models that have been published in recent years. After much
experimentation, we selected the RotatE model [43] for the
link prediction task and the RGCN model [44] for the
multilabel classifcation task.

(1) Te RotatE model maps entities and relationships to
a complex vector space and defnes each relationhip
as a rotation between the head entity and the tail
entity. It allows the modelling and inference of re-
lationships such as symmetry, antisymmetry, in-
version, and composition, which are difcult to
accomplish with other models [43]. Te core for-
mulations of the RotatE model are shown as follows:

t � h○r,

dr(h, t) � ‖h○r − t‖,
(1)

L � − log σ γ − dr(h, t)( 􏼁

− 􏽘

n

i�1
p hi′, r, ti′( 􏼁log σ dr hi′, ti′( 􏼁 − γ( 􏼁

, (2)

f(h, r, t) � − ‖h○r − t‖. (3)

In the above four formulas, h, r, and t are the em-
bedding representations of the head entity, rela-
tionship, and tail entity, respectively. Te Hadamard
product is denoted by the symbol ○, and dr(h, t) is
the distance calculated for each triple. Once the
distance values are obtained, they can be optimized
using Equation (2). dr(h, t) is the distance value for
positive samples, while dr(hi′, ti′) is the distance value
for negative samples. p(hi′, r, ti′) represents a new
negative sampling method proposed by the authors
of the model, where they designed a distribution
function and sampled negative triples, calculating a
probability value to be the weight value of the
negative sample. Equation (3) is the scoring function
for triples, with a higher score indicating a more
realistic triple.

(2) Te RGCN model (relational graph convolutional
network) is a graph neural network model for het-
erogeneous graphs. By following the idea of message
passing network calculation [45], the formulas are
shown as follows:

Table 1: Comparison of the three network analysis methods.

WGCNA SimCluster WGCNA & SimCluster

Data

Data sources miRNA expression data MTP network
Data used in the WGCNA method

and SimCluster methodConstructed matrices Correlation matrix and the
topological overlap matrix

First-order similarity matrix or
the second-order similarity

matrix

Methods

Core principles Pearson’s correlation of
miRNA expression data

Jaccard similarity of miRNAs at
the target gene level or pathway

level Intersection of the results of the
WGCNAmethod and the SimCluster

methodParameters of scale-
free networks

Soft threshold Similarity threshold

R 2 greater than 0.9
Both R2 and the correlation

coefcient should be greater than
0.9

Module generation Hierarchical clustering Network clustering

Results

Number of hub
miRNAs 40 63 11

Mean AUC values for
the new dataset 0.5191 0.5319 0.6292

Mean AUPR values for
the new dataset 0.6019 0.6069 0.6773

Note. In this table, the results of the SimCluster method and the WGCNA & SimCluster method are calculated based on frst-order similarity.
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f(h, r, t) � hL RtL. (5)

Nr
i denotes the neighboring nodes of i under the r

relation, ci,r is a regularization factor, W denotes the
parameters of the layer, and σ is the activation
function. Te implication of Equation (4) is that, for
the node i, the representation of the neighboring
nodes under each relationship connected to it is
aggregated and added to the representation of the
node i itself as the fnal representation. Te node
update based on the heterogeneous network graph is
thus completed by Equation (4), and triples are then
scored by Equation (5). hL, R, and tL represent the
fnal embedded representations of the head entity,
relationship, and tail entity, respectively, and a
higher score in Equation (5) indicates a more real-
istic triple.

(3) In addition to the RotatE model and the RGCN
model, other advanced models were selected for
comparison experiments to fnd the best model in
order to perform the subsequent prediction task.
RotatE is essentially a distance transformation model,
RGCN is a classical heterogeneous graph neural
network model, and we also selected TransE [46],
which is also a distance transformation model, the
Gaussian embedding model KG2E [47], the semantic
matching model DistMult [48], and CompGCN [49],
a model that combines knowledge graph algorithms
with graph neural network algorithms.

2.3.2. Link PredictionModel. Based on the constructedMTP
network, we used knowledge graph- or graph neural net-
work models to perform link prediction, i.e., to predict
whether there is an edge between two nodes or whether it is a
fact triple [46]. In the prediction task, for each triple, there
are both fxed head entity and relationship to predict tail
entity, and fxed tail entity and relationship to predict head
entity. We refer to the model that performs the link pre-
diction task as the link prediction model.

Te constructed MTP network for unstable angina as a
dataset contains 573 nodes and 12629 edges. We used the
above model to complete ten-fold cross-validation, training
on the training set while validating on the testing set [50].
Te performance of the model is evaluated using three
metrics, Hits@k, MR, and MRR [46]:

Hits@k �
1
N

􏽘

N

i�1
I ranki ≤ k( 􏼁 , (6)

MR �
1
N

􏽘

N

i�1
ranki,

MRR �
1
N

􏽘

N

i�1

1
ranki

.

(7)

In Equation (6), the average of the number of correct
predictions among the top k predictions for each triple is
calculated. I is the indicator function, which is 1 if the
condition is true and 0 otherwise. ranki is the rank of the
correct triple among the predicted triples. N denotes the
number of all triples to be predicted. MR and MRR are the
mean values of the correct triple rank and the inverse of the
correct triple rank, respectively.

2.3.3. Multilabel Classifcation Model. We used the six
models described above to obtain the embeddings of nodes
and then used a two-layer fully connected neural network
(MLP) to predict multiple labels for target genes or pathways
[25–51], with the sigmoid function as the fnal activation
function. We refer to the model that performs the multi-
label classifcation task as the multi-label classifcation
model. For the multilabel classifcation task, we still used the
MTP network as the dataset for ten-fold cross-validation to
assess the performance of the model using accuracy as a
metric. Accuracy was calculated by equations (8)–(10).

Tere are 21 labels for targets (T) and 5 labels for
pathways (P), representing the tissue localization of targets
and classifcation of pathways, respectively. We frst con-
verted the label values to 0 or 1 using Equation (8), and then,
we used Equations (9) and (10) to calculate accuracy values.

Labeli � I Labeli > 0( 􏼁, (8)

ACCj �
1
K

􏽘

K

i�1
count Predi � Labeli( 􏼁. (9)

ACC �
1
N

􏽘

N

j�1
ACCj. (10)

Labeli and Predi are the label value and predicted value,
respectively. I is the indicator function, and if the label value
exists and is >0, then the label value is converted to 1;
otherwise, it is converted to 0. K represents the number of
label values, while N represents the total number of T or P.
Equations (9) and (10) show that the accuracy of each Tor P

is calculated and then averaged.

2.3.4. Comparison Experiments. Te aim of the comparison
experiments is to fnd the best link prediction model and the
best multilabel classifcation model [52]. We used RotatE,
TransE, KG2E, DistMult, RGCN, and CompGCN models to
perform M-T, T-T, and T-P link prediction tasks, respec-
tively, as well as the multilabel classifcation of T and the
multilabel classifcation of P, respectively. Te embedding
dimension of nodes was 64, the learning rate was 0.001, and
the epoch was 50.

2.3.5. Parameter Optimization Experiments. Te aim of the
parameter optimization experiments is to fnd the optimal
parameters for each model [53]. Tree parameters were
selected for the parameter optimization experiments,
namely, the embedding dimension, epoch, and learning rate.
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Te embedding dimension was set to 32, 64, 96, and 128, the
epoch was set to 25, 50, 100, and 200, and the learning rate
was set to 0.0001, 0.001, 0.01, and 0.1, respectively.

2.4. Case Studies. Elucidating the function of miRNAs can
help us understand a disease more accurately. Tere is still a
lack of systematic studies on miRNAs in unstable angina [4].
Terefore, to obtain hub miRNAs by the best network
analysis method, we conducted a case study using the best
link prediction model. Specifcally, the potential target genes
of these hub miRNAs were predicted, i.e., the M-T link
prediction task. For the prediction results, we performed a
three-step validation method.

2.5. Tree-Step Validation Method. Te importance and
reliability of hub miRNAs have been validated in the net-
work analysis section. In this section, we validate the results
of the network modelling section using a designed three-step
validation method.

2.5.1. Validation of Hub miRNA-Target Gene Interactions.
First, we assessed the reliability of the predicted hub
miRNA-target gene interactions by searching the literature
or other databases [54].Te assessment was performed using
the TopKmetric, meaning the proportion of predictions that
was correct in the topK rankings [55].Te TopK results of all
hub miRNAs were then averaged.

2.5.2. Validation of the Potential of Target Genes as
Biomarkers. In the second step, we validated the predicted
new and existing target genes for hub miRNAs, which
comprised two validation methods.

(1) Te target genes of hub miRNAs were validated for a
new dataset (GSE60993) containing gene expression
from unstable angina and healthy controls, using
AUC and AUPR as evaluation metrics.

(2) Transcription factors (TFs) are important proteins
that regulate gene expression [56], and their dys-
regulation will cause abnormal gene expression,
which is closely associated with the development and
progression of complex diseases [57]. Te TF-
Marker database [58] provides cell- and tissue-spe-
cifc TFs and related markers. We searched the TF-
Marker database to verify whether the target genes of
hub miRNAs are TFs or related markers in tissues
such as the heart, blood vessels, and arteries, which
are closely associated with the development of un-
stable angina.

2.5.3. Validation of the Function of Target Genes. Finally,
KEGG functional enrichment analysis was performed on
these target genes [59]. Te reliability of the predictions was
further assessed to know whether enriched pathways were
classical and critical pathways in unstable angina.

Trough these three steps, the reliability of miRNA
target genes, the reliability of target genes as biomarkers, and

the reliability of the functions performed by the target genes
were successively validated.

3. Results

3.1. MTP Network. Tere were 386 diferentially expressed
miRNAs in unstable angina, obtained by diferential ex-
pression analysis and after screening. By searching the target
genes of miRNAs and the genes of unstable angina and
taking the intersection, 232 intersecting genes were ob-
tained, corresponding to 238 miRNAs, with a total of 2706
miRNA-target gene interactions.

For these intersecting genes, after setting the species to
Homo sapiens and the minimum interaction score to 0.4, a
total of 8696 protein-protein interactions were found. Next,
KEGG functional enrichment was performed, and a total of
103 pathways were screened, resulting in a total of 1361
gene-pathway interactions. Te MTP network is summa-
rized in Table 2, and the detailed data are available in
Table S2 in Supplementary Materials. M, T, and P refer to
miRNAs, target genes, and pathways, respectively. In the
knowledge graph model,M-T, T-T, and T-P also denote the
(M, MT, and T), (T, TT, and T), and (T, TP, and P) triples,
respectively.

3.2. Network Analysis of Several Methods

3.2.1. Modules and Hub miRNAs Based on the WGCNA
Method. Diferentially expressed miRNAs may play an
important role in disease states [60], and either overex-
pressed or underexpressed miRNAs were included in our
study. We used the expression data from these miRNAs to
construct a weighted miRNA coexpression network, divided
modules using the dynamic tree cuttingmethod, andmerged
the modules to fnally obtain four modules. Te results are
shown in Figure 3(a).

A total of four colored modules, yellow, turquoise,
brown, and blue, were generated, from which hub miRNAs
were searched, respectively. Te correlation between
miRNAs was used as the weight of edges, and the importance
of the nodes in each module was ranked according to the
connectivity [61]. Te top 10 nodes in each module are
shown in Figure 3(b), and a total of 40 hub miRNAs were
fltered out. Te thickness of edges is proportional to the
correlation value.

3.2.2. Similarity Network and the Scale-Free Network Based
on the SimCluster Method. As can be seen from Table 3, the
results of frst-order similarity are better than those of
second-order similarity. Figure 4(a) shows the variation of
Pearson’s correlation coefcient and linear regression (or-
dinary least squares) R2 when diferent frst-order similarity
thresholds are set. Te similarity value at which both Cor

Table 2: Nodes and edges of the MTP network.

Nodes or edges M T P M-T T-T T-P
Number 238 232 103 2706 8562 1361

Computational Intelligence and Neuroscience 7
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Figure 3: Results of the WGCNAmethod. (a) Generation of modules from the miRNA coexpression network. (b) Te top 10 hub miRNAs
in each module. Te nodes marked with red borders are hub miRNAs obtained after the fnal screening.

Table 3: Comparison of the performance of hub miRNAs obtained by several network analysis methods.

WGCNA FC_hub SimCluster_1 WGCNA& SimCluster_1 SimCluster_2 WGCNA& SimCluster_2

Original dataset Mean_AUC 0.5071 0.9083 0.5771 0.6190 0.5884 0.9905
Mean_AUPR 0.6689 0.9118 0.6620 0.7112 0.6679 0.9911

New dataset Mean_AUC 0.5191 0.5197 0.5319 0.6292 0.5166 0.5296
Mean_AUPR 0.6019 0.5862 0.6069 0.6773 0.5960 0.6026

Note. FC_hub refers to the top 20 miRNAs ranked by |logFC|. SimCluster_1 and SimCluster_2 refer to the results obtained based on frst-order similarity and
second-order similarity, respectively. “&” refers to the results of the intersection of the two methods. Bold values indicate the best results on the new dataset.
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and R2 are greater than 0.9 is used as the threshold (0.25),
and links greater than this threshold are retained, while links
less than this threshold are excluded.

Figures 4(b) and 4(c) show the evaluation of whether a
similarity network greater than the threshold is a scale-free
network. It can be seen that lg (K) is highly correlated with lg
(pK) and that the distribution of the two is linear. Tere are
more nodes with a small degree K and fewer nodes with a
large degree K. Fewer nodes connect most of the nodes,
which is a characteristic of scale-free networks. Te scale-
free frst-order similarity network is shown in Figure 5.

Te linear regression equations for the SimCluster_1
method (SimCluster based on frst-order similarity) and the
SimCluster_2 method (SimCluster based on second-order
similarity) can be found in Table S3 in Supplementary
Materials.

3.2.3. Hub miRNAs Obtained Based on the SimCluster
Method. Modules can be obtained after network clustering
of the scale-free similarity network, and thus, hub miRNAs
afecting each module can be obtained. We have demon-
strated in a previous study that the fast greedy algorithm is a
good network clustering algorithm [29], and in this study,
we have also demonstrated that the fast greedy algorithm is
the best among the four network clustering algorithms by
calculating modularity values. Te results of the comparison
of network clustering algorithms are presented in Supple-
mentary Materials.

We used the fast greedy algorithm to perform network
clustering of the scale-free similarity network, fnding the
nodes with the largest degree value from each module as hub
miRNAs. In some modules, there were many nodes sharing
the largest degree value, and these were included in sub-
sequent studies.

Final hub miRNAs were obtained by taking the inter-
section of the results of the SimCluster method and the
WGCNAmethod (see the nodes marked with red borders in
Figure 3(b) or the red nodes in Figure 5). Hub miRNAs

obtained by the six network analysis methods, including the
SimCluster method, are listed in Supplementary Materials.

3.2.4. Performance Comparison of Network Analysis
Methods. We compared the performance of these network
analysis methods using the mean AUC values and mean
AUPR values of hub miRNAs obtained from each method
when distinguishing between the disease and control groups.
Table 3 shows the performance of hub miRNAs from the six
methods. It can be seen that SimCluster_1 has better mean
AUC values than the WGCNA method for both datasets,
and the WGCNA & SimCluster_1 method has signifcantly
improved over the WGCNA method in terms of both mean
AUC values and mean AUPR values. Te important point is
that these results reveal that the network analysis approach
combining correlation and similarity (WGCNA &
SimCluster) gives better results than the approach using
correlation (WGCNA) or similarity (SimCluster) alone,
which is a new approach to fnding hub nodes in the net-
work. In addition, the WGCNA & SimCluster_2 method
and the FC_hub method performed well for the original
dataset and mediocrely for the new dataset, suggesting that
neither the second-order similarity results nor the Fold-
Change results generalize well.

Hub miRNAs obtained by the WGCNA & SimCluster_1
method achieved the best results for the new dataset. We next
used hub miRNAs obtained based on the WGCNA &
SimCluster_1 method for our subsequent study. Figure 6
shows two of these hub miRNAs, hsa-miR-30a-5p and hsa-
miR-502-3p. Both of these hub miRNAs had an AUC and
AUPR above 0.97 for the original dataset, and both had an
AUC above 0.67 and an AUPR above 0.71 for the new dataset.
Tis shows the potential of these hub miRNAs as biomarkers,
and it would be meaningful to conduct in-depth studies.

3.3. Link Prediction. Te MTP network constructed is a
small complex heterogeneous network, as shown in Table 2,
containing three types of nodes and edges. A knowledge
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Figure 4: Generation of the scale-free frst-order similarity network. (a) Pearson’s correlation coefcient Cor and linear regression R2

between lg (K) and lg (pK) when setting diferent frst-order similarity thresholds. K refers to the degree value, while pK refers to the
frequency of the degree value. (b)Te distribution of lg (K) and lg (pK) and the Pearson correlation coefcient. (c) R2 of the linear regression
equations for lg (K) and lg (pK), and the relationship between the predicted and true values. Te threshold value was set to 0.25.
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Figure 6: ROC curves and PR curves of two hub miRNAs for the original and new datasets. (a) Results of two hub miRNAs for the original
dataset. (b) Results of two hub miRNAs for the new dataset.
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graph model or a graph neural network model can complete
node-level, edge-level, or even graph-level modelling of
complex heterogeneous networks, using existing data to
predict unknown data [42].

We frst performed link prediction forM-T, T-T, and T-
P, which are predictions for the triples (M, MT, and T), (T,
TT, and T), and (T, TP, and P) in the knowledge graph
model. Comparison experiments and parameter optimiza-
tion experiments were carried out using six evaluation
metrics, Hits@5, Hits@10, Hits@,20, Hits@50, MR, and
MRR.We refer to the models performing the link prediction
task collectively as link prediction models.

3.3.1. Comparison Experiments. Comparison experiments
were conducted using six models, RotatE, TransE, KG2E,
DistMult, RGCN, and CompGCN, to fnd the best link
prediction model. Figures 7(a)–7(c) show the link prediction
results for M-T, T-T, and T-P calculated by Hits@k, re-
spectively. Table 4 shows the link prediction results calcu-
lated by MR and MRR. Te data in the fgure and table are
the means and standard deviations of the results after ten-
fold cross-validation.

It can be seen that for M-T link prediction, the RotatE
model achieved the best results for all six metrics. For T-P
link prediction, the RotatE model achieved the best results
in four of the six metrics, namely, Hits@5, Hits@10, MR,
and MRR. Finally, in T-T link prediction, the RotatE model
was slightly inferior to the best performing CompGCN
model, but the run time of the RotatE model was only

one-twentieth of that of the CompGCN model. Terefore,
the RotatE model showed strong predictive power forM-T,
T-T, and T-P predictions, and in particular, it showed the
best prediction results for M-T and T-P predictions.

In addition, we can fnd that all these knowledge graph
models or graph neural network models performed better for
T-T link prediction and T-P link prediction, while they per-
formed worse for M-T link prediction. In the M-T prediction
task, Hits@5 of the best model was only 0.1789± 0.0167, while
in the T-T and T-P prediction tasks, Hits@5 of the best model
was 0.5751±0.0227 and 0.3220± 0.0377, respectively.Tis may
be due to the limitations of the model or insufcient infor-
mation contained in the MTP network.

We fnally selected the RotatE model as the link pre-
diction model to perform subsequent link prediction tasks.
Te results of this section are also presented in Table S4 in
Supplementary Materials.

3.3.2. Parameter Optimization Experiments. We demon-
strated through comparison experiments that the RotatE
model has good performance on all three types of edge
prediction and is therefore a good link prediction model.
Next, we chose the RotatE model for parameter optimization
experiments to fnd the most suitable parameters. Te three
parameters optimized were the embedding dimension,
learning rate, and epoch. In this study, we focused more on
the function played by miRNAs, so we only performed
parameter optimization experiments for M-T link
prediction.
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Figure 7: Link prediction results forM-T, T-T, and T-P calculated by Hits@k. (a)M-T link prediction. (b) T-T link prediction. (c) T-P link
prediction.

Table 4: Link prediction results for M-T, T-T, and T-P calculated by MR and MRR.

RotatE TransE KG2E DistMult RGCN CompGCN

MT MR 7.9155 ± 0.7216 12.7434± 1.581 16.6473± 1.9285 29.1253± 31.6744 9.9069± 1.3969 12.7025± 1.3974
MRR 0.127 ± 0.013 0.0795± 0.0090 0.0608± 0.0071 0.0638± 0.0343 0.1031± 0.0171 0.0796± 0.0087

TT MR 3.3667± 0.1477 8.9800± 0.2236 4.2304± 0.2909 16.3310± 24.3477 3.3050± 0.1418 2.9691 ± 0.1183
MRR 0.2976± 0.0135 0.1402± 0.0099 0.2373± 0.0154 0.1675± 0.0847 0.3031± 0.0132 0.3373 ± 0.013 

TP MR  . 050 ± 0. 2 2 7.8392± 1.0865 12.4661± 2.2471 24.3245± 31.8611 4.4954± 0.3793 5.2599± 0.6200
MRR 0.2288 ± 0.0210 0.1297± 0.0174 0.0826± 0.0151 0.0941± 0.0501 0.2239± 0.0189 0.1926± 0.0234

Bold values indicate the best results on that task.
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Figures 8(a)–8(c) show the changes in the results of
Hits@k metrics after the parameters, the epoch, embedding
dimension, or learning rate, were changed, respectively.
When the parameters were changed, the RotatE model had
the best results for Hits@5 andHits@10 at an epoch of 50, for
Hits@5, Hits@10, Hits@20, and Hits@50 at a learning rate of
0.001, and for Hits@5 at an embedding dimension of 64.

Table 5 shows the results calculated by MR and MRR. In
the range of parameter variations, the RotatE model gave the
best results for the metrics at an epoch of 50 and a learning
rate of 0.001. Te results were very close for both MR and
MRR at 64 and 128 embedding dimensions, and again, since
the best results were obtained for Hits@5 at an embedding
dimension of 64, we still set the embedding dimension to 64.

Terefore, by optimizing the three parameters, we fnally
chose an epoch of 50, an embedding dimension of 64, and a
learning rate of 0.001 as the fnal parameter settings for the
M-T link prediction task.

3.4. Multilabel Classifcation. Te multilabel classifcation
task that we have accomplished is to classify targets and
pathways into multiple categories [25]. Specifcally, the
multilabel classifcation of targets refers to the classifcation
of the tissue localization of targets. From the data obtained,
targets can be distributed to as many as 21 tissues, with the
top fve being the blood, liver, nervous system, lungs, and
heart. Figure 9(a) shows the distribution of targets in dif-
ferent tissues, with the thickness of the lines proportional to
the amount of gene expression.

Te multilabel classifcation of pathways refers to the
division of pathways into diferent broad categories. Te
KEGG database classifes all human pathways into 7 broad
categories, and the pathways enriched by the target genes of
these miRNAs can be classifed into 5 of these 7 broad
categories. Figure 9(b) shows the classifcation of the
enriched pathways into the fve categories of organismal
systems, cellular processes, human diseases, environmental
information processing, and metabolism.

We frst converted the label value of the target or
pathway to 0 or 1, and if the target or pathway existed in a
category, then the label value was 1; otherwise, it was 0. We
then used a knowledge graph or graph neural networkmodel
to obtain the embedding representation of nodes and a 2-
layer MLP to predict the multilabel classifcation of nodes.
Te means and standard deviations of the results after ten-
fold cross-validation are shown in Table 6.

It can be seen that the RGCN model achieved the best
performance in the multi-label classifcation prediction
task for both T and P, with accuracy rates as high as
0.8312 ± 0.0220 and 0.8356 ± 0.0404, respectively. Tere-
fore, the RGCN model is the best multilabel classifcation
model for both types of nodes for the prediction task.

3.5. Case Studies. Trough comparison experiments, we
have demonstrated that the RotatE model is the best link
prediction model, and through parameter optimization
experiments, we have found the optimal parameters for the
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Figure 8: Results of parameter optimization experiments calculated by Hits@k. (a) Epoch experiments. (b) Learning rate experiments.
(c) Embedding dimension experiments.

Table 5: Results of parameter optimization experiments calculated by MR and MRR.

Epoch 25 50 100 200
MR 10.3123± 1.9440 7.9155 ± 0.7216 8.3054± 0.8194 8.155± 0.7939
MRR 0.1000± 0.0177 0.127 ± 0.013 0.1215± 0.0123 0.1236± 0.0115
Embedding 32 64 96 128
MR 9.0563± 0.7624 7.9155± 0.7216 8.1209± 0.8165 7.9137 ± 0.86 1
MRR 0.1111± 0.0091 0.1274± 0.0134 0.1243± 0.0131 0.1276 ± 0.0131
Learning rate 0.0001 0.001 0.01 0.1
MR 44.1148± 7.67 7.9155 ± 0.7216 9.0002± 0.8692 10.4498± 1.0269
MRR 0.0234± 0.0046 0.127 ± 0.013 0.1120± 0.0107 0.0966± 0.0101
Te bold values indicate the best parameters and the resulting best results.
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RotatE model. In this section, we conduct a case study of hub
miRNAs obtained by theWGCNA & SimCluster_1method.

Te role of miRNAs in regulating gene expression is well
worth investigating in depth. Unstable angina is a relatively
complex disease, and the functions played bymiRNAs in this
disease are still not fully elucidated. Studying the function of
hub miRNAs is a convenient way to understand the function
of all miRNAs [62]. We used the RotatE model to predict the
potential target genes of hub miRNAs, the unknown M-T
link prediction task. Tis is also referred to as a comple-
mentary task for the knowledge graph.

Eleven hub miRNAs were obtained by the WGCNA &
SimCluster_1 method. We performed M-T link prediction

for these 11 hub miRNAs, and the detailed prediction results
are shown in Table S5 in Supplementary Materials. When
predicting potential M-T links, for each hub miRNA, the top
10 target genes in terms of predicted scores were taken, so
there were 110 hub miRNA-target gene interactions in total.
After de-duplication, only 38 genes of the predicted target
genes remained.

3.6.Validationof theResults. In the network analysis section,
we have used two datasets to validate the best network
analysis method and hub miRNAs obtained by the method.
In the network modelling section, the results for the
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Figure 9: Multilabel classifcation of targets and pathways. (a) Tissue localization of target genes. (b) Classifcation of pathways.

Table 6: Accuracy of multilabel classifcation of targets and pathways.

RotatE TransE KG2E DistMult RGCN CompGCN

Accuracy T 0.7902± 0.0115 0.7766± 0.0188 0.7704± 0.0235 0.8200± 0.0201 0.8312 ± 0.0220 0.8205± 0.0248
P 0.8245± 0.0400 0.8047± 0.0630 0.8127± 0.0459 0.8167± 0.0634 0.8356 ± 0.0 0 0.8307± 0.0336

Bold values indicate the best results on that task.
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potential target genes of hub miRNAs also need to be val-
idated to demonstrate the reliability of model predictions
[63]. Using the designed three-step validation method, we
frst validated the reliability of hub miRNA-target gene
interactions. As can be seen in Figure 10(a), 50%, 53%, 48%,
and 40% of the top 1, 3, 5, and 10 predictions, respectively,
were validated by the literature or other databases. Tat is,
after discarding those interactions that had already appeared
in the dataset, a large proportion of the predicted unknown
hub miRNA-target gene interactions were validated.

Second, the predicted target genes of hub miRNAs were
validated using two diferent methods. On the one hand,
based on a new gene expression dataset, we tested whether
these target genes could distinguish unstable angina samples
from control samples, i.e., whether they had potential as
biomarkers. Figures 10(b) and 10(c) show the ROC curves
and PR curves for 5 of the 38 target genes. It can be seen that
these target genes can distinguish well between disease and
control samples, and their diferential expression between
samples perhaps gives them the function of biomarkers. On
the other hand, we searched the TF-Marker database to
determine whether these target genes were transcription
factors or related markers, or whether they were tran-
scription factors or related markers that were closely asso-
ciated with unstable angina. Table 7 shows the search results
of the TF-Marker database. It can be found that six of the ten
newly predicted target genes are transcription factors or
related markers, and three of them are directly associated
with unstable angina, with the proportions of 60% and 30%,
respectively, which are larger than the proportions in the
training or validation sets. Terefore, we validated the po-
tential of these target genes as biomarkers in two ways.

Finally, we performed KEGG functional enrichment on
the predicted target genes of hub miRNAs, and the top 20
pathways at a p value are shown in bubble plots (see
Figure 10(d)).Te bubble size indicates the number of genes,
with red colors indicating smaller p values, and GeneRatio is
the ratio of the number of genes enriched into the pathway to
the total number of genes used, with larger ratios indicating
a greater number of genes involved in the pathway. As
shown in Figure 10(d), these target genes were enriched in
pathways such as lipid and atherosclerosis (gene number� 7,
p< 0.0001), fuid shear stress and atherosclerosis (gene
number� 7, p< 0.0001), and the NF-kappa B signaling
pathway (gene number� 7, p< 0.0001) [64–66], which were
associated with the development and progression of unstable
angina. Terefore, the predicted target genes were validated
from a functional enrichment perspective, and many of the
enriched pathways are involved in the pathology of unstable
angina. In conclusion, we validated the veracity and reli-
ability of the model’s results through a cascade of three steps.

4. Discussion

Many noncoding RNAs are regulators and play an impor-
tant role in the process of gene expression in a regulatory
manner [67]. Currently, miRNAs are considered important
types of noncoding RNAs and mostly play a role in regu-
lating gene expression in a negative regulatory manner [3].

Te expression of some miRNAs and their regulated target
genes (mRNAs) varies in diferent diseases and is disease-
specifc [68]. Terefore, it is theoretically feasible to fnd
miRNAs or genes that are specifc to a disease and act as
biomarkers or diagnostic markers [69]. Unstable angina is a
complex disease with multifactorial and multisystemic in-
volvement, and the pathogenesis and treatment of this
disease still require in-depth investigation. Previous studies
on unstable angina have mostly focused on genes and
function while neglecting regulatory functions played by
regulatory factors such as miRNAs and are therefore in-
adequate and incomplete [70, 71]. In this study, we designed
a research strategy using miRNA expression data and
miRNA regulatory networks to frst fnd the best performing
WGCNA & SimCluster_1 method by comparing six net-
work analysis methods for original and new datasets, and
then, we used this method to obtain hub miRNAs that could
be used as biomarkers. Te best model from the network
modelling section was then used to predict unknown
functions based on the existing functions of hub miRNAs.

Te miRNA regulatory network is also a complex net-
work and the WGCNA approach only analyzes the corre-
lation network constructed based on the expression levels of
miRNAs and does not take full advantage of the other in-
formation in the complex network. Te similarity of nodes in
a network is also important information that can be exploited
[72]. We constructed a frst-order similarity network and a
second-order similarity network based on the similarity of
miRNA actions and designed a network analysis algorithm to
fnd hub miRNAs using the similarity network. Notably, we
used the formation of scale-free networks as the judgment
criterion when screening similarity thresholds, which coin-
cided with the WGCNA method when screening soft
thresholds [61]. A comparison of multiple network analysis
methods showed that the WGCNA & SimCluster_1 method,
which combines correlation and similarity, achieved the best
results for the new dataset. Tis suggests that it is feasible to
use correlation and similarity between miRNAs to screen for
hub miRNAs, with better results than using similarity or
correlation alone.

Knowledge graph models are mostly used for large,
complex heterogeneous graphs, often containing hundreds
or thousands of types of nodes and edges [73]. Because
various heterogeneous graphs are so diferent from each
other, researchers have developed a variety of dedicated
knowledge graph models, so that each model has its own
advantages [74]. In fact, the MTP network that we have
constructed is a small, complex heterogeneous network, and
the knowledge graph model performs equally well on small
heterogeneous networks. Of the six models we used, RotatE,
TransE, KG2E, and DistMult are knowledge graph models,
RGCN is a classical graph neural network model, and
CompGCN is a model combining graph neural networks
with knowledge graphs, all of which are trained in the same
way as knowledge graph modelling. Te knowledge graph
model uses a set of many triples as a dataset and evaluates the
performance of the model by predicting missing head or tail
entities and using a scoring function. Te task of predicting
missing head or tail entities can also be considered a link
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prediction task, and the discovery of unknown links is of
practical importance [46].

In this study, we performed node-level and edge-level
predictions for the MTP network using a knowledge graph
or graph neural network model. In edge-level modelling, we
made predictions for all three types of edges in the network.
For the Hits@5 metric, the RotatE model yielded results of
0.1789± 0.0167, 0.5600± 0.0185, and 0.3220± 0.0377 for M-

T, T-T, and T-P link prediction, respectively, with the best
performance for M-T and T-P link predictions and the
second-best performance for T-T link prediction after the
CompGCN model. In terms of MR and MRR metrics, the
RotatE model also performed best for M-T and T-P link
predictions and worse than the CompGCN and RGCN
models for T-T link prediction. Tis shows that the RotatE
model has good predictive ability and performs better than
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Figure 10: Validation results of the three-step validationmethod. (a) Validation of hubmiRNA-target gene interactions. (b) ROC curves for
the fve target genes of hub miRNAs for the new dataset. (c) PR curves for the fve target genes of hub miRNAs for the new dataset. (d)
Validation of the function of the target genes.

Table 7: Number of target genes that are transcription factors or related markers.

Target genes of hub miRNAs
Number of

target
genes

Number of
transcription

factors or related
markers

Number of transcription factors
or related markers directly associated with

UA

Newly predicted (not present in the training or
validation set) 10 6 (0.60) 3 (0.30)

Present in the training or validation set 28 14 (0.50) 7 (0.25)
Total 38 20 (0.53) 10 (0.26)
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other advanced models. In node-level modelling, for all six
models, the RGCNmodel achieved the best performance for
multilabel classifcation prediction for both T and P, with
accuracy rates of 0.8312± 0.0220 and 0.8356± 0.0404, re-
spectively. Tis suggests that the graph neural network
model has an advantage in node-level prediction [75]. We
also performed parameter optimization experiments on the
RotatE model when performing the M-T link prediction
task, and the best performance was achieved when setting
the epoch, embedding dimension, and learning rate to 50,
64, and 0.001, respectively.

Te hub miRNAs that we have selected as key nodes in
each module may play a vital regulatory role in the disease
[76]. Te functions of these hub miRNAs are well worth
investigating in depth. We performed an M-T link pre-
diction task on 11 hub miRNAs using the best link pre-
diction model and optimal parameters to predict the target
genes of these hub miRNAs and perform functional en-
richment. Te reliability of the results can only be dem-
onstrated after the model has been validated [77], so we
developed a three-step validation method for the designed
model and the content of this study to perform a three-part
validation. In the frst part, we validated a total of 110
predicted hub miRNA-target gene interactions by
searching the literature or other databases. Te percentage
of correct predictions in the top 1, top 3, and top 5 was
50%, 53%, and 48%, respectively. In the second part, the
target genes of hub miRNAs had the ability to distinguish
well between diferent groups of samples for the gene
expression dataset. Moreover, 60% of the predicted novel
target genes were transcription factors or markers, and
30% were directly associated with the development of
unstable angina. In the third part, many of the enriched
pathways were associated with unstable angina, which, on
the other hand, proved the reliability of predicted target
genes. In terms of specifc mechanisms, lipid levels in
blood and fuid shear stress of local blood are important for
the pathogenesis of coronary atherosclerosis [65, 66],
which is an important pathological feature of unstable
angina. NF-kappa B is a key transcription factor involved
in many physiological and pathological processes, in-
cluding immune response, apoptosis, and infammation
[64]. Studies [78, 79] have shown that in the pathology of
atherosclerosis, NF-kappa B is critical for the crosstalk
between cytokines, adhesion molecules, and growth fac-
tors, leading to the formation, growth, and eventual
rupture of atherosclerotic plaques. Tis three-step vali-
dation method contains three parts in sequential order,
validating the results of our model in a cascading manner
by verifying miRNA, target gene, and function in
succession.

It can be seen that although the WGCNA &
SimCluster_1 method performs best for the new dataset, the
AUC and AUPPR are still low, and further improvement on
this basis is necessary. In addition, none of the six knowledge
graphs or graph neural network models that we used per-
formed very well forM-T link prediction, which may be due
to limitations in the models themselves or insufcient in-
formation in the MTP networks used. In the future, we will

seek to develop superior models or use larger heterogeneous
networks and we will also conduct generalization ability
experiments in order to generalize the present modelling
strategy to other diseases.

5. Conclusions

We constructed a complex heterogeneous network regulated
by miRNAs in unstable angina and then analyzed and
modelled it, which explored the functions played by non-
coding RNAs in complex diseases from the miRNA per-
spective. Among the six network analysis methods for
fnding hubmiRNAs, theWGCNA & SimCluster_1 method
yielded the best results for the new dataset, identifying hub
miRNAs that could act as biomarkers. Comparative ex-
periments with six knowledge graphs or graph neural net-
work models demonstrated that RotatE is a good link
prediction model and that RGCN is the best multilabel
classifcation model for the miRNA regulatory network.
Optimal parameters for the M-T link prediction task were
obtained by parameter optimization experiments. Te re-
sults of the predicted target genes of hub miRNAs based on
the best model and the best parameters were validated by
three methods. Our modelling strategy can be used as a
reference for other disease and noncoding RNA studies.
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