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Lane detection, as one of the most important core functions in the autonomous driving environment, is still an open problem. In
particular, pursuing high accuracy in complex scenes, such as no line andmultiple lane lines, is an urgent issue to be discussed and
solved. In this paper, a novel end-to-end lane detection model combining the advantages of attention mechanism and residual
block is proposed to address the problem. A residual block alleviates the possible gradient problem. An attention block can help
the proposed model centralize on where to focus in the process of learning feature representation, which canmake the model itself
more sensitive to the feature representation of lane lines through convolutional operations. Additionally, the U-shaped structure
with three downsampling operations preserves the image resolution and the original lane line information in the image to the
greatest extent. +e U-shaped structure can directly output the prediction results to eliminate many complex or unnecessary
calculation processes. +e experimental results on two public lane detection datasets show that the lane detection performance of
the proposed model can achieve high accuracy, and the corresponding weight sizes are only 2.25M. Finally, to further explain the
effectiveness of the proposed model, the unavoidable troubles encountered in the experiment are discussed.

1. Introduction

Traffic accidents around the world will cause economic
losses equivalent to US $600 billion every year [1]. As one of
the countries with the largest population density and the
most congested in the world, about 26% of cities in China are
congested during commute peak hours [2–4]. Automatic
driving technology can improve driving safety, improve the
efficiency of the whole traffic system, and save time for users
[5, 6].

In fact, the meaning of automatic driving is very simple
[7]. +e autonomous driving reduces the probability of
tragedy caused by various road accidents caused by drivers
and other human factors, improves traffic efficiency, and
alleviates city’s serious traffic congestion [8]. +e drivers will
be separated from the heavy and mechanized driving, which
makes the travel easier, relaxed, and pleasant [9]. +e lib-
erated people can do what they want to do in the car. When
studying artificial intelligence technology in the automotive

industry, do the development of artificial intelligence and
realize industrial upgrading [9, 10].

As one of the functions of the sensing module in
driverless technology, lane detection plays an important role
in the driving process of driverless vehicles [11, 12]. +e
research on lane detection algorithm has important research
significance and application value [13].

Lane line recognition is mainly applied to automatic
driving [14, 15]. After the lane line recognition is completed,
the automatic driving (or still auxiliary driving) system can
realize the active safety function and control function of
vehicle lateral movement. For lane departure warning
(LDW), when the vehicle deviates from the lane, the system
can know and remind the driver through sound, touch, and
other means to avoid triggering potential lateral collision or
other risks after the vehicle crosses the line [16–18]. As
regards lane keeping assistance (LKA), when the vehicle
deviates from the lane, it will no longer be limited to sending
an early warning message to the driver but actively control
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the steering wheel, correct the lateral position of the vehicle,
correct the vehicle deviation back into the lane, and actively
avoid lateral collision or other risks [19–21]. Lane centering
control (LCC) can assist the driver to control the steering
wheel, center the vehicle in the center of the lane, contin-
uously control the vehicle to drive in the center of the lane,
and cooperate with adaptive cruise [22–24]. As regards
automatic lane change assistance, in the process of lane line
recognition, we not only recognize the lane line of this lane
but also add the lane line recognition of adjacent lanes. In
this way, we can measure the transverse position of vehicles
automatically changing from this lane to adjacent lanes.
On this basis, we realize automatic lane change assistance
[25, 26].

+e research on lane line based on traditional methods
has a long history [13]. +is kind of methods mainly focuses
on the characteristics related to lane line [12]. +e feature-
based lane line detection algorithmmainly extracts the color,
texture, edge, direction, and shape of lane lines to achieve the
purpose of lane line detection. +e enhanced version of this
kind of lane detection is the model-based detection algo-
rithm. Usually, the curve model of lane lines is constructed,
and the lane line is approximately regarded as a straight-line
model, a high-order curve model, and so forth. Recently,
with the great success of deep learning in the field of
computer vision [27, 28], it is also widely used in the research
of lane line detection, which brings new ideas for lane line
detection [10]. More and more people apply deep learning to
the task of lane line detection [15].

When the vehicle is in the automatic driving environ-
ment, an obvious phenomenon is that the feature change
caused by dynamic change often makes the lane line de-
tection based on traditional methods invalid. Lane detection
algorithm based on deep learning method can alleviate the
detection problems caused by environmental changes, but
lane detection in complex scenes is still an open problem.

To address the problem, we propose a novel lane de-
tection model, which is a U-shaped structure with three
downsampling operations. To alleviate the possible gradient
issue in the end of encoding network, a residual block is
adopted. To obtain more effective feature representation
from skip connection, an attention gate module is embedded
into the decoding network. To sum up, the contributions of
this paper are listed as follows:

(1) A novel end-to-end lane detectionmodel is proposed
to resolve lane detection in complex scenes in the
autonomous driving environment.

(2) At the high-level stage of encoding network, a re-
sidual block may alleviate the possible gradient
problem. An attention gate module is used to help
the proposed model to focus on feature represen-
tation of lane lines.

(3) In this paper, a large number of experimental results
confirm the effectiveness of the proposed model,
outperforming other state-of-the-art algorithms on
the TuSimple and the Unsupervised Labeled Lane
MArkerS (LLAMAS) dataset. +e ablation study

indicates that low-level features of lane lines learned
by the attention module at the initial stage of the
encoder network are important for lane detection.

2. Related Work

2.1. Traditional Methods. Hur et al. [29] designed a filter
kernel to extract the edge information of lane signs and
detected the lane signs through conditional random fields.
+e reason why the previously mentioned method can
obtain better detection performance is that the lane edge
information is obvious. When the edge information of the
lane lines is lost more, Youjin et al. [30] used the seg-
mentation algorithm to extract the lane edge information in
this kind of scene. At this time, the lane line is determined
according to the vanishing point (VP). +e experimental
results show that this algorithm is effective for lane line
detection in the case of blocked or lost information.
However, the algorithm is not good for lane line detection in
dark light. Li et al. [31] obtained the missing points
according to the extracted road text information. Gabor
filter and Hough transform algorithm are used for boundary
segmentation, which can achieve good results when the road
text is clear. Chen et al. [32] extracted lane features according
to different colors in the road. Aly [33] and others first used
the segment segmentation algorithm to segment informa-
tion from the processed features and then combined with the
postprocessing technology to complete the further extrac-
tion and recognition of lane lines. Chiu et al. [34] first se-
lected the region of interest, found the right threshold, and
distinguished the boundaries of the corresponding lanes
from the image according to the fixed value. Kim et al. [35]
used a series of algorithms of filtering and postprocessing to
detect lane lines in street and expressway scenes. Teng et al.
[36] mixed a variety of elements to identify the character-
istics of lane lines, including strip filter, color, and Hough
transform.+en, in order to make the constructed algorithm
realize real-time lane tracking, particle filter technology is
adopted.

2.2.DeepLearning-BasedMethods. Jiun Kim andMinho Lee
[37] proposed a detector in which convolutional neural
network is first used to extract lane features, which is mainly
responsible for region of interest selection and boundary
detection. Random sample consensus (RANSAC) is used for
clustering. Deeplanes [38] is a classification based model,
which has a more complex structure than literature [37].
However, the model requires location information before
classification, which limits the application scenario of the
model itself. Sermanet et al. [39] proposed a model named
overfeat. +e model improves the detection task of lane line
by using classification, location, and detection. Seokju Lee
et al. [40] proposed VPGNet network based on the VPD
[41], which is composed of four branches to complete the
detection of lane geometry. +e biggest advantage of this
model is that the improved vanishing point can guide lane
line detection and road recognition. But the complex
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postprocessing process of VPGNet requires more comput-
ing resources, such as point set sampling, clustering, and
lane regression. Yuhao Huang et al. [42] proposed a STLNet
model including preprocessing, classification, and regres-
sion based on convolutional neural network and lane fitting.
Preprocessing is used to extract lane features from the input
images, while convolutional neural network is used to
classify the boundary types, and the location of lane
boundary is processed by regression technology. Finally, the
lane lines are smoothed by fitting function. Riera Luis et al.
[43] designed a lane parking detection system, in which
mask RCNN [44] is used to detect the lane lines, and Kalman
filter is used to track the lane lines. Pizzati Fabio et al. [45]
detected drivable areas and road categories by improving
ERFNet, in which DBSCAN was used to aggregate pixels in
free space into a polygon.

Shao-Yuan Lo et al. [46] proposed a lane marking de-
tection model based on the VGG architecture. Its encoding
and decoding network is completely composed of dilated
convolution, and the prediction result of the model is binary
segmentation. Among them, the number one represents the
lane line and zero represents the background other than the
lane line. In addition, based on EDANet, the authors rethink
the relationship between downsampling and spatial infor-
mation [47] and propose another CNN network embedded
with dilated convolution. At the same time, the authors also
put forward twomodules: feature size selection and digressive
dilated block. To solve the problem of how to effectively
obtain long-distance correlation information, influenced by
literature [48],Wang Xiaolong et al. [49] proposed a learnable
nonlocal operation to obtain the long-distance dependence
between pixels. Finally, the effectiveness of this model is
verified in the lane line detection task. Li Wenhui et al. [50]
also applied nonlocal relations to attention networks to force
CNN to focus on lane areas. +eir experimental results verify
the effectiveness of this idea. Similarly, according to the
geometric properties of lanes, Zhang Jie et al. [51] proposed a
multitask learning network, which divides lane line detection
into two subtasks: lane region segmentation and lane
boundary segmentation. +e former segmented the selective
regions and the latter pointed out the boundaries of lane lines.
+e experimental results show that this method can improve
the detection performance of the model on lane lines as a
whole by orderly combination and coordination of learning
and segmenting feature information.

3. Proposed Model

In this section, we will introduce our model in detail, its
overall structure is shown in Figure 1, and the parameters of
the whole model are illustrated in Table 1. Our model is an
end-to-end model and consists of an encoder network and a
decoder network. +e encoder network takes the original
images collected by some sensors as the inputs and extracts
the feature information by learning feature representations
contained in the original images. After that, the decoder
network is responsible for restoring the feature information
learned by the encoding network to a degree consistent with
the size of the input image.

3.1. Encoder Network. +e encoder network is divided into
two parts. +e first part is mainly composed of sampling and
convolution, which is responsible for feature extraction of the
input image. +e second part is made up of residual module
and attention module, which is responsible for alleviating the
possible gradient problem and helping the model pay at-
tention to the most likely feature information of lane lines.

Suppose that the input image size is , where B represents
batch normalization, C is channel number, and H and W
represent the height and width, respectively, of an image.
When the input image x is fed into the encoder network,
firstly, the primary information of lane line is extracted
from the input by the operation combination that is
composed of sampling and convolution (named Inc in
Table 1). At this time, the number of channels is increased
from 3 to 16. In addition, in order to accelerate the op-
eration speed of the proposed model and save computing
resources, the size of the image is reduced to half of the
input image. +ereafter, two similar combination opera-
tions are performed again for further extracting the high-
level feature information of the lane lines. Moreover, the
maximum number of channels is only 128 in our model at
the high-level stage in encoder network. In particular,
different from the classical end-to-end network model
U-Net [52], the input image is only downsampled three
times which retains more lane line semantic information to
the greatest extent.

+e feature information that has just been extracted is
input into a residual block (bottleneck [53] is used in this
paper), its internal structure is shown in Figure 2, and the
whole process can be expressed as

H(x) � F(x) + x. (1)
H(x) is the desired mapping representation expected to

be learned by our model. F(x) points to the actual mapping
representation learned by our model with the help of a series
of operations and represents the feature vectors of lane lines
in this work. x indicates the feature information from the
first part of encoder network and is added to the learned
mapping representation F(x) as supplementary informa-
tion. In this process (the red module in Figure 1), in addition
to learning the desired mapping representation, the residual
mechanism may also alleviate the possible gradient explo-
sion and gradient disappearance caused by stacking network
layers.

After that, to decrease false-positive predictions for lane
lines that exhibit large shape variability, the output of re-
sidual block and the feature information extracted by the
first part (from Inc to Maxpooling_Down3 in Table 1) are
both entered into the attention gate block, which is used to
filter the irrelevant feature information of lane lines and
constructed under the influence of literature [54]. Its in-
ternal structure is shown in Figure 3.

In Figure 3, g is from the output of residual block, xl

implies the output of Maxpooling_Down3 in Table 1 (at this
time, l� 3), Fl is the number of feature maps in layer 3 (at
this time, its value is 128. Similarly, Fg is the number of
output feature maps of residual block). At the beginning of
attention gate, xl is calculated for more accurate feature
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information of lane lines, the vector g determines what
important regions should be focused on in this part of the
content for which attention gate is responsible. Subse-
quently, additive attention defined in the following formulas
is used to help the proposed model obtain the corresponding
gating coefficient.

q
l
att � ψT σ1 W

T
xx

l
i + W

T
ggi + bg   + bψ , (2)

αl
i � σ2 q

l
att x

l
i, gi, θatt  . (3)

WT
x , WT

g , and ψT are the weight parameters generated by
linear transformations on their inputs, and the linear
transformations are acquired by using channel-wise 1× 1× 1
convolutions for the current input vectors. To a certain
extent, biases bg and bψ can cooperate with the weight
parameters to adjust the network to bias the lane line feature
information. Variable σi (i� 1, (2) means the activation
function, σ1 � max(0, x) is the ReLU function, and σ2 �

1/1 + exp(−xi,c) indicates the sigmoid activation function.
Variable q(att) is the intermediate process representation of
the formation of state αl

i. q(att) is a function composed of
three variables xl

i, gi, and θatt, where gi determines what
important regions should be focused on by the attention gate
block, and θatt is the comprehensive representation of other
relevant parameters.

After the above ordered and complex calculation, we
get its output, which can be expressed by the following
formula:

x
l
i,c � x

l
i,c · αl

i. (4)

In the above formula, xl
i,c is the output produced by the

input feature maps and attention coefficients through the

Table 1: Network architecture parameters.

Layer Input Output Kernel Stride Padding
Inc 8× 3×128 × 256 8×16×128 × 256 3 1 1
Maxpooling_Down1 8×16×128 × 256 8× 32× 64 × 128 3 1 1
Maxpooling_Down2 8× 32× 64 × 128 8× 64× 32 × 64 3 1 1
Maxpooling_Down3 8× 64× 32 × 64 8×128×16 × 32

3 1 1Residual block 8×128×16 × 32 8×128×16 × 32
Attention block 8×128×16 × 32 8×128×16 × 32
Upsampling_Up1 8×128×16 × 32 8× 64× 32 × 64 3 1 1
Upsampling_Up2 8× 64× 32 × 64 8× 32× 64 × 128 3 1 1
Upsampling_Up3 8× 32× 64 × 128 8×16×128 × 256 3 1 1
Conv_1× 1 8×16×128 × 256 8× 2×128 × 256 1 1 0

1x1, w/4

3x3, w/4

1x1, w

ReLU

ReLU

ReLU

X

H (x)

F (x)

Figure 2: +e internal structure of residual block.
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Input image Predicted image

Skip connection

Maxpooling+Conv2d

Forward

Upsampling+Conv2d

Skip connection+Conv2d

Residual block Attention gate blockAB

Activation function

Figure 1: +e overall architecture of the proposed model.
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element-wise multiplication. Variable αl
i is the final attention

coefficient that is expected to be utilized when generating the
desired focus region. +en, to help our model learn feature
information well, an activation function is adopted.

3.2. Decoder Network. +e output of the attention block is
fed into the decoder network. Firstly, continuous samplings
for the output are performed to gain higher-level feature
information of lane lines by convolutional operations while
keeping the current resolution unchanged. +en, the feature
information of different scales is input to the corresponding
stage of decoder network through skip connection. At this
time, the concatenation operation is used to increase the
amount of sampling information. Finally, a prediction result
containing the desired number of channels is output (the
channel number is 2 in this work).

In particular, the final output has the same size as the
input images and can directly provide the information of
lane lines in the current frame. Especially, to be more
practical, no postprocessing technology is used in generating
the final output prediction results.

4. Experiments

In this section, we describe the lane detection datasets used
in our experiments, explain the software and hardware
platform when training, validating and testing the proposed
model and other algorithms, explain the evaluation metrics
corresponding to each dataset, detail the corresponding
qualitative and quantitative results obtained by all models on
each dataset, and specifically analyze the possible reasons for
the above results.

5. Dataset

In this work, our model is trained, validated, and tested on
two lane detection datasets: TuSimple [55] and Unsuper-
vised LLAMAS [56], which contain different driving sce-
narios and correspond to different evaluation metrics.

5.1. TuSimple. +e TuSimple dataset was released in the lane
line detection challenge in 2017, aiming at training a neural
network model to automatically recognize the lane lines on

freeway road when a car drives. In this dataset, the training
set contains 3,626 images, the verification set includes 352
images, and the test set has 2,782 images. Moreover, the
resolution of each image is 1280 × 720.

+e characteristics of the TuSimple dataset are as follows:
(1) +e number of lane lines is unevenly distributed, gen-
erally ranging from 2 to 7 and up to 8 or 9 in some scenes. (2)
Some lane lines have no obvious features, such as no color
difference. (3) +ere are many lane lines at the edge of road
but relatively few labels in the corresponding ground truths.
Table 2 shows more information about TuSimple dataset.

5.2. Unsupervised LLAMAS. +e Unsupervised LLAMAS
dataset was released in 2019, aiming at providing an alter-
native dataset for the lane detection task. An obvious
characteristic of this dataset different from other datasets is
that the lane lines in each frame are marked completely by
software.+e specific conditions are as follows: (1)+e labels
corresponding to the lane lines on both sides of the current
vehicle are marked with many pixels, while other lane lines
are marked with few pixels. (2)+e number of pixels marked
on the lane lines in each frame image accounts for about 2%
of the whole frame image. (3) +e lane line close to the
current vehicle, whether both sides or other conditions, is
marked with more pixels, while the lane line far from the
current vehicle is marked with only a few pixels.

In the Unsupervised LLAMAS dataset, the training set
contains 58,269 images, the verification set includes 844
images, and the test set has 20,000 images. Moreover, the
resolution of each image is 1276 × 717. More information is
in Table 2.

5.3. Implementation Details. All the models in our experi-
ments are trained, validated, and tested on a platform with
an Intel Core i7-6800k CPU, 64GB of RAM, and one
NVIDIA TITAN Xp 12GB GPU. +e proposed model is
implemented based on the PyTorch by using Python 3. +e
optimizer is the Adam function, the initial value of learning
rate is 0.01, and the batch size is set to 10. +e images are
resized to 128 × 256 when they are entered into a model.
Taking the TuSimple dataset as an example, Figures 4 and 5,
respectively, show the change process of loss function and

Wg:1x1x1

:1x1x1

Fg × Hg × Wg × Dg

Fint × Hg × Wg × Dg Hg × Wg × Dg

Fl × Hx × Wx × Dx

Hx × Wx × Dx

g

x

ReLU (σ1) Sigmoid (σ2) Resampler

a
+

x

Wx:1x1x1

Figure 3: +e internal structure of attention gate.
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F1-Measure of our model during training, validation, and
testing.

+e class imbalance caused by the huge difference be-
tween lane line pixels and background pixels will affect the
parameter learning in the process of training model, the
weight cross entropy loss is used to balance the error be-
tween the real value and the predicted value, and its defi-
nition can be expressed as follows:

Lw(r, p) � −log
exp(p[argmax(r)])

jexp(p[j])
 , (5)

where r and p represent the ground truth and the predicted
result, respectively. +e value of r represents the number of

lane lines in the corresponding image. +e argmax function
will return the indexes of max values in a row in the cor-
responding ground truth. +e operation of p[j] acquires the
values which correspond to those indexes returned by
argmax function.

5.4. Metrics.

ACC �
TP + TN

N
, (6)

PRE �
TP

TP + FP
, (7)

REC �
TP

TP + FN
, (8)

F − Measure �
1 + β2 (Precision∗Recall)

Precision + Recall
, (9)

AP � 
U

i



V+1

j

Precisionj ∗ΔRecallj ⎛⎝ ⎞⎠. (10)

For the TuSimple dataset, the metrics refer to the var-
iables [57]: ACC, PRE, REC, and F-Measure, which are
defined in formulas (6)–(9), respectively. For the Unsu-
pervised LLAMAS dataset, in addition to the metrics of PRE
and REC, the corresponding formula (10) is used to calculate
the average precision (AP) [56] to evaluate the performance
of a model. VariableU represents the total number of tests,V
represents the number of tests on a frame, and i and j
represent their corresponding change subscripts, respec-
tively. Obviously, these formulas involve the basic variables
TP, TN, FP, and FN. Table 3 shows their detailed
information.

If a pixel is already on the lane line and the pixel is also at
the same position on the lane line in the prediction result, the
prediction result is recorded as TP. However, in this paper,
TP represents the sum of all these pixels. If a pixel is not on
the lane line and the pixel is not at the same position on the
lane line in the prediction result, the sum of such pixels is
represented by TN. If a pixel is on the lane line but, in the
prediction result, the pixel at the same position is not on the
lane line, the sum of such pixels is taken as FN. If a pixel is
not on the lane line but the pixel at the same position is on
the lane line in the prediction result, the sum of such pixels is
represented by FP. Table 3 shows a more concise repre-
sentation of those variables.

Given the above representation, ACC represents the
proportion of pixels correctly predicted in all prediction
results. PRE means the proportion of pixels correctly pre-
dicted on those lane lines in the prediction results. REC
indicates the proportion of pixels predicted correctly on all
lane lines to pixels predicted on all lane lines. F-Measure, as a
comprehensive indicator to balance the metrics of PRE and
REC, generally reflects the performance of a model. In this
paper, β equals 1, and F1-Measure is taken for evaluating the
whole performance of a model.

Table 2: +e information of TuSimple and Unsupervised LLMAS
datasets.

Name Train Validation Test Resolution
TuSimple 3,626 352 2,782 1280 × 720
Unsupervised
LLAMAS 58,269 844 20,000 1276 × 717
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6. Results and Analysis

We first train our model on the TuSimple dataset and then
validate and test it on the corresponding subdatasets of
TuSimple. Figure 6 shows the visual results of qualitative
evaluation of our model and other state-of-the-art
algorithms.

As can be seen from Figure 6, the test results of our model
are better than those of other models. For example, in the
image in column one, there are four lane lines in this scene.
Although a large number of pixels are marked in the label
corresponding to the leftmost and rightmost lane lines, there
is very little information in the original image, which brings
some difficulties to the feature learning of a model. +is
difficulty is also reflected in the test result diagram of a model,
such as intermittent results (ENet [58]), incomplete results
(LaneNet [59], SegNet [60], and SegNet_ConvLSTM [57]), or
results containing a small number of interference signals
(SCNN [61], U-Net, and U-Net_ConvLSTM [57]). In addi-
tion, from the test results in column two, when the curvature
of the lane line is large, the test results of other models are not
ideal. When facing the scene with less information in the
original image and more lane lines (such as column four,
there are more than 4 lane lines in the image), the test results
of other models show more inadaptability. Some models
(ENet, SCNN, andU-Net) only test incomplete lane lines, and
some models (the rest algorithms) can test complete but
unsatisfactory lane lines. For those lane lines that actually
exist but are not marked in the ground truth, our model can
detect them well, while other models cannot test them well.

+en, we test the quantitative results of all the models,
andmore information is displayed in Table 4.+eACC value
of our model is 97.98%, which is closest to that of
U-Net_ConvLSTM (98.21%). According to its formula (6),
when theACC value is high, we can conclude that the sum of
TN and TP is relatively large. But we cannot continue to
further infer whether the value of TP is high or the value of
TN is high. Furthermore, we cannot explain the performance
of a model according to the ACC value. +erefore, the value
of ACC can only generally indicate whether a model is valid.

To further accurately evaluate the performance of a
model, we introduce PRE and REC which work together and
can finely determine the real performance of a model. For
example, the REC value of U-Net_ConvLSTM is 0.958,
which is higher than that of the proposed model. It means
either the TP value is high or the FN value is low. If the TP
value is really high, at this time, it truly reflects the effec-
tiveness of U-Net_ConvLSTMmodel. On the contrary, if the
FN value is low, it cannot accurately describe the perfor-
mance of U-Net_ConvLSTM model. With the addition of
metric PRE, the situation is completely different. When the

values of REC and PRE are increased at the same time and
the difference between them is small, it can be compre-
hensively judged that the performance of a model is better.
In Table 4, the difference between REC and PRE of ourmodel
is 0.082, which is less than the difference (1.02) between REC
and PRE of U-Net_ConvLSTM model. Moreover, the value
of PRE in ourmodel is larger than that in U-Net_ConvLSTM
model, which further confirms that the value of TP in the test
results of our model is higher and the value of FP is lower.

When the TP value in our model is high, it implies that
our model can accurately predict more pixels that are
originally on the lane lines. When the FN is low and the FP is
also low, they, respectively, indicate that our model rarely
predicts the pixels originally belonging to the lane line as the
background and rarely predicts the pixels originally be-
longing to the background as the pixel babblers on the lane
line. +e above analysis confirms the validity of our model
exactly and concretely, which also strongly proves why our
model in Figure 6 can predict better results.

Additionally, another comprehensive metric, F1-Mea-
sure, is used to evaluate each model. To more clearly explain
the evaluation of F1-Measure on model performance, we
simplify its definition and show the impact of F1-Measure on
key variables (TP, FP, and FN) in a clearer expression. In
Table 4, the F1-Measure of our model is the highest, achieving
0.909. +is demonstrates that the value of (FN+FP)/TP is
small. To be exact, the value of (FN+FP) is relatively small.
When the values of FN and FP are small, the corresponding
metrics of our model are high, and the corresponding visual
results are better than those of other models.

F1 − Measure � 2 × 2 +
FN

TP
+

FP

TP
 

− 1
. (11)

We also test our model and other algorithms on the
Unsupervised LLAMAS dataset; the detailed process of our
model is shown in Figure 7. From the test results of each
model, the following can be clearly seen: (1) Each model can
detect most of the ego lines on the left and right sides of the
current vehicle. +e test results of LaneNet, Attention U-Net
[54], SegNet, and U-Net are relatively few and incomplete.
(2) Only a few models can detect other lane lines outside
both sides of the current vehicle, such as PINET (32 × 16)
[62], SCNN, PINET (64 × 32) [62], and our model. It is
found that the detection results of our model are more
uniform and the width of the detection results is closer to the
ground truth. Other models can hardly detect the lane lines
distributed outside the two sides of the current vehicle. (3)
For the prediction of pixels on distant lane lines, only At-
tention U-Net, PINET (32 × 16), SCNN, PINET (64 × 32),
and ourmodel can detect them. In contrast, Attention U-Net
can only detect a few pixels. Models of PINET (32 × 16),
SCNN, and PINET (64 × 32) can detect slightly more than
Attention U-Net, while our model can detect more.

In addition, we provide the quantitative experimental re-
sults measured on the Unsupervised LLAMAS dataset, as
shown in Table 5. +e AP value of U-Net is the highest, but its
values of PRE and REC are extremely inconsistent. +ere is a
big gap between them, and this means the model is extremely
unstable on the dataset. +e AP value can only reflect the

Table 3: Correspondence representation between real value and
predicted value.

Real value
Predicted value

Positive (�1) Negative (�0)
Positive (�1) TP FN
Negative (�0) FP TN
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Figure 6: Continued.
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Figure 7: Continued.

(j)

Figure 6: Qualitative evaluation of our proposed model and other state-of-the-art deep learning models on the TuSimple dataset and all the
detection results are not postprocessed. (a) Input images. (b) Ground truth. (c) ENet. (d) SCNN. (e) LaneNet. (f ) SegNet. (g) Seg-
Net_ConvLSTM. (h) U-Net. (i) U-Net_ConvLSTM. (j) Proposed model.

Table 4: +e comparison results between our proposed model and other models on the TuSimple dataset.

Method ACC (%) PRE REC F1-Measure
ENet 97.84 0.854 0.952 0.900
SCNN 96.79 0.652 0.806 0.720
LaneNet 97.94 0.871 0.926 0.900
SegNet 97.73 0.809 0.869 0.838
SegNet_ConvLSTM 97.95 0.848 0.965 0.901
U-Net 97.91 0.861 0.945 0.902
U-Net_ConvLSTM 98.21 0.856 0.958 0.904
Proposed model 97.98 0.868 0.950 0.909
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performance of a model as a whole. Combined with its defi-
nition, the specific analysis depends on metrics PRE and REC.

For example, the PRE value of U-Net is 0.867, but its REC
value is only 0.302.+e imbalance between them implies that
the FN value is very high. When the FN value is increased, it
indicates that the U-Net model is easier to mispredict the
pixels that originally belong to the lane line as the back-
ground. +erefore, we clearly see that, in the prediction
results of U-Net model, there are few pixels on the corre-
sponding lane lines. A similar situation exists in the SegNet
model. In particular, the differences between PRE and REC
in the models of PINET (32×16), SCNN, and PINET
(64× 32) achieve a good balance. It can be seen from Figure 7
that these models can predict more pixels belonging to the

lane lines. However, not only are the values of PRE and REC
of our model higher than the ones of those models, but also
the difference between them is very small. +e prediction
results of our model are better than those of other models.

A large number of experimental results confirm the
effectiveness of our model in the task of lane detection. +e
possible reasons for the above results are as follows: (1) +e
attention module makes the proposed model pay more
attention to the local feature information of lane line by
modifying the feature information from skip connection,
whichmakes ourmodel more sensitive to the features of lane
lines. (2) In our model, the combination of attention and
residual learning makes our model take computing re-
sources on more effective feature areas at a specific stage.

Table 5: +e comparison results between our proposed model and other models on the Unsupervised LLAMAS dataset.

Method AP PRE REC
Simple baseline 0.434 0.546 0.450
Res18-qin [53] 0.653 0.457 0.405
Res34-qin [53] 0.654 0.463 0.406
GAC Baseline1 0.778 0.748 0.307
PINET (32 × 16) 0.820 0.583 0.594
PINET (64 × 32) 0.833 0.620 0.584
LaneNet 0.816 0.418 0.701
Attention U-Net 0.819 0.415 0.702
SCNN 0.821 0.573 0.601
SegNet 0.893 0.863 0.201
U-Net 0.911 0.867 0.302
Proposed model 0.835 0.621 0.592

(g)

(h)

(i)

(j)

Figure 7: Qualitative evaluation of our proposed model and other state-of-the-art deep learning models on the Unsupervised LLAMAS
dataset and all the detection results are not postprocessed. (a) Input images. (b) Ground truth. (c) LaneNet. (d) Attention U-Net. (e) PINET
(32×16). (f ) SCNN. (g) PINET (64× 32). (h) SegNet. (i) U-Net. (j) Proposed model.
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6.1. Ablation Study. In order to further illustrate the effec-
tiveness of the constructed model, this section discusses in
detail the key problems encountered in the design process of
the proposed model: (1) Which scale of lane line feature
information is more important to the proposed model? (2) Is
the backbone network effective for lane detection?

Consider that the attention gate module can make a
model pay more attention to the more accurate local feature
information. Combined with the importance of skip con-
nection [2, 3], this paper decides embedding an attention
gate module into the feature maps from the skip connection
to strengthen the local feature information and then splicing
and concatenating with the features of the same scale in the
decoding network. In addition, in the process of designing
the model, we follow the following principle: While in-
creasing the learning feature representation of the proposed
model, we should not increase the weight parameters of the
model as much as possible. +erefore, we consider using an
attention gate module in each layer of encoder network in
our model, Tables 6 and 7, respectively, exhibit the exper-
imental results on the TuSimple and Unsupervised LLAMAS
dataset.

+e experimental results imply the following: (1) In the
task of lane line detection, the primary feature information is
more important for our model. +erefore, when the at-
tention gate module is used in the coded Up3, the test result
of the corresponding model is the best. (2) In the advanced
semantic stage of this model, the encoding structure of three
downsampling operations can extract more accurate lane
line feature information. +erefore, adding the attention
module in the stage of Up1 cannot effectively improve the
detection performance of our model on lane lines. (3)
Generally speaking, all experimental results obtained on
both the TuSimple and Unsupervised LLAMAS datasets
confirm that when the attention gate module acts on the

primary feature information of lane lines, the performance
of the proposed model is improved to a certain extent.

Additionally, to further explain the effectiveness of the
proposed model, an incremental experiment was performed,
and the details are shown in Table 8. When embedding a
combination of residual and attention block into the
backbone network, the performance of the corresponding
model (our model) can be improved.

7. Conclusion

In the complex scene of automatic driving, the pursuit of
high-precision lane detection is still a difficult problem. In
order to solve this problem, a novel lane detection model is
designed in this paper. In order to maintain the image
resolution as much as possible, the proposed model adopts
three downsampling operations. In the high-level semantic
stage of our model, residual operation is embedded to al-
leviate the possible gradient problem. In order to make more
effective use of different scale feature information, the at-
tention module with gating mechanism is used to filter the
information irrelevant to the lane line feature information.
Finally, the encoded content is restored to the same size as
the input images through the decoding network. +e ex-
perimental results show that this model with a small number
of channels can detect lane lines well in complex scenes,
achieve better performance compared to other lane detec-
tion models, and greatly reduce the parameters of the
proposed model.

In the ablation study, by applying the gated attention
module to the feature information where different skip
connections from different layers are located, this paper
verifies the importance of low-level feature information of
lane line to this model. In addition, through the experiments
on the backbone network without attention gate module and

Table 8: Performance comparison of different module in proposed model on the TuSimple test dataset.

Method ACC (%) PRE REC F1-Measure
Proposed model1 98.08 0.8796 0.9346 0.9063
Proposed model2 98.12 0.8823 0.9368 0.9088
Proposed model1 means the model is without any residual and attention block. Proposed model2 indicates the model is with a residual and attention gate
block.

Table 6: +e results of the proposed model on the TuSimple dataset when attention gate is embedded into different stages in the encoding
network.

Layer ACC (%) PRE REC F1-Measure
Up1 98.15 0.8691 0.9462 0.9060
Up2 98.10 0.8683 0.9494 0.9072
Up3 97.98 0.8686 0.9507 0.9088

Table 7: +e results of the proposed model on the Unsupervised LLAMAS dataset when attention gate is embedded into different stages in
the encoding network.

Layer AP PRE REC
Up1 0.8293 0.6228 0.5242
Up2 0.8282 0.6219 0.5237
Up3 0.8352 0.6214 0.5924
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the proposed model, the results show that this model is
better than the corresponding backbone network model.

In the future, the lightweight lane detection designs
which can detect lane lines well in complex scenes by
considering fusing more effective convolutional operations
will be stidied.
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