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Timely disease detection and pest treatment are key issues in modern agricultural production, especially in large-scale crop
agriculture. However, it is very time and e�ort-consuming to identify plant diseases manually.�is paper proposes a deep learning
model for agricultural crop disease identi�cation based on AlexNet and Inception-V4. AlexNet and Inception-V4 are combined
and modi�ed to achieve an e�cient but good performance. Experimental results on the expanded PlantVillage dataset show that
the proposed model outperforms the compared methods: AlexNet, VGG11, Zenit, and VGG16, in terms of accuracy and F1
scores. �e proposed model obtains the highest accuracy for corn, tomato, grape, and apple: 94.5%, 94.8%, 92.3%, and 96.5%,
respectively. Also, the highest F1 scores for corn, tomato, grape, and apple: 0.938, 0.910, 0.945, and 0.924, respectively, are
obtained. �e results indicate that the proposed method has promising generalization ability in crop disease identi�cation.

1. Introduction

Crop pests and diseases refer to the destruction of normal
physiological functions of crops, which can be caused by the
invasion of other creatures or environmental changes. As
one of themajor agricultural disasters, they are characterized
by numerous species, high impact, and frequent outbreaks.
Crop pests and disease identi�cation are challenging due to
the variety of types, the scarcity of technicians in rural areas,
and the overreliance on insecticides. Traditional manual
pests and disease monitoring rely on observation experience,
which inevitably su�ers subjectivity and ine�ciency. �us,
automatic plant disease detection and control have been the
primary concern of each country, especially in recent years,
when due to the population increase, food demand is
growing at a faster rate [1]. �erefore, it is of great signif-
icance to e�ectively analyze crop pests and diseases and
ensure the use of pesticides. Motivated by a great advance in
arti�cial intelligence, crop disease identi�cation also can be
conducted using deep learning models [2].

�is paper exploits the deep learning model for plant
disease recognition, motivated by the great success of deep
learning techniques in other applications. �e contribution
of the research is summarized as follows:

(1) A large convolution kernel is used to obtain a large
receptive �eld, enabling the model to focus more on
shape than texture. Also, thanks to the employed
large kernel, the depth of the model can be compact,
which avoids the high computational complexity of
the optimization process.

(2) Two complementary network structures, Inception-
V4 and AlexNet, are combined to take advantage of
both networks.�e superposition of Inception-X (X
represents A, B, C) modules in Inception-V4 is
removed, which greatly reduces training and
inference time with a sacri�ce of negligible
performance.

(3) �e dataset is expanded to improve the generaliza-
tion ability of the model.

�e remaining paper consists of the following parts.
Section 2 discusses the current status and limitations of
existing research. Section 3 describes the experimental
dataset, and Section 4 describes the proposed network
structure, including the loss function and optimizer. Section
5 presents the experimental results and the analysis, veri-
fying the feasibility of the proposed method. Lastly, this
paper is concluded in Section 6.
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2. Related Works

Multiple plant disease identification has been actively
studied, including cassava, guava, and soybeans. Almadhor
et al. [3] proposed an AI-based detection framework to
classify the common guava fruit diseases. Alli et al. [4]
proposed a deep residual convolutional neural network
(DRNN) employing different block processing, where the
unbalanced dataset was balanced, and gamma correction
and decorrelation stretching were used to enhance the color
separation of images with significant interband correlations.
*e DRNN outperformed the plain convolutional neural
network (PCNN) on the cassava disease dataset from Kaggle
[4]. *e modified MobileNetV2 [5] showed a significant
improvement in cassava leaf disease recognition on lower-
quality images. Ozguven and Adem [6] proposed to detect
the disease area of sugar beet leaf via adjusting Region-CNN
(R–CNN), which was limited to a small number of sample
images.

With the development of smart agriculture, more and
more scholars have begun to study the identification of
different diseases in different crops. *e following papers
conducted experiments for crop identification, including
apples, corn, and tomatoes.

Srdjan et al. proposed a plant diseases detection model
based on the CaffeNet model to identify 13 different types of
sick leaves and distinguish leaves from their surroundings
[7]. Mohanty et al. evaluated the applicability of AlexNet and
GooleNet in a one-leaf multiimage problem [8], where the
plant disease diagnosis system on mobile devices was de-
veloped and analyzed on the PlantVillage dataset. Gee-
tharamani and Arun Pandian proposed a nine-layer DCNN
for disease identification [9]. In [10], Triki et al. proposed a
leaf detection and segmentation model, deep leaf, which was
based on Mask-RCNN and used morphological character-
istics in plant specimens. Liu et al. applied a long short-term
memory network-based variational autoencoder to extract
the sequential feature of the application running time [11].
Rao et al. used bilinear convolutional neural networks (bi-
CNNs) for identifying different types of leaves, where VGG
and ResNet were used as feature extractors [12]. Dyrmann
et al. constructed a convolutional neural network (CNN) to
distinguish seedlings in different stages of growth. However,
due to the small number of data samples, the network
suffered from low classification accuracy [13]. Ferreira et al.
proposed a detection model and constructed a dataset for
weed detection in soybean crops [14]. Ghazi et al. applied a
pretrained AlexNet, GoogletNet, and VGGNet to classify
plant species in a dataset of given unconstrained photos,
showing that the primary factor that affects the performance
of fine-tuning was the iterations number [15]. Liu et al.
proposed an end-to-end pest detection network, PestNet,
where the Channel–Spatial Attention module was used to
extract high-quality features for large-scale diseases [16].
Chao et al. proposed XDNet based on deep separable
convolution and dense connection structure to identify
apple leaf disease [17]. *e XDNet used normalization and
data enhancement to avoid overfitting and improve the
stability of the network. Valeria et al. assessed the

classification accuracy of tomato plant diseases based on
AlexNet, GoogleNet, Inception V3, ResNet18, and ResNet
50 [18]. *e results showed that GoogleNet is superior to
other architectures in terms of accuracy, and AlexNet is the
fastest model. Guo et al. proposed a plant disease detection
and recognition model based on the RPN algorithm con-
taining the feature of symptoms through the Chan–Vese
(CV) algorithm [19].

Many studies have been conducted to improve recog-
nition accuracy by optimizing the structure of deep learning
networks, including batch normalization, dropout, and re-
placement of fully connected layers with pooling layers.
Table 1 shows the summary of related studies with highlights
of the proposed methods for data augmentation and clas-
sification. Some shortfalls of the existing plant disease
classification models include data scarcity and class. Also,
many works were focused on the efficient structure while
avoiding overfitting, including dataset augmentation with
mirroring, rotation, and additive noise. Among many deep
learning models, AlexNet is one of the widely used models,
mainly due to its simplicity, to identify defects of various
crops and judge the speed of the germination process. *e
AlexNet network model is also widely used in agriculture,
medicine, and power engineering fields.

*ree types of convolution kernels are used in the In-
ception-V4 model: 7∗7, 5∗5, and 3∗3. In this paper, a larger
convolution kernel is used instead of increasing the depth of
the network for more features. Also, in order to further
reduce the depth of the network, this paper removes the
superposition of Inception-X (X represents A, B, and C)
modules in Inception-V4. Accordingly, the depth of the
network is greatly reduced, shortening the training time as a
consequence.

For the two reasons above, this paper combines two
networks: AlexNet and Inception-V4, to identify diseases in
corn, tomato, grape, and apple crops. Specifically, healthy,
CercosporaGrayspot, Commonrust and NorthernBlight in
corn, healthy, Bacterialspot, Lateblight and Septorialspot in
tomato, Blackrot, healthy, Blackrot, sariopsisSpot and
Measles in grape, healthy, Blackrot, Cedarrust and scab in
apple. Experiments on the PlantVillage dataset show that the
proposedmodel outperforms four compared networks in terms
of identification accuracy. Further, the dataset is expanded to
improve the generalization ability of the model to avoid
overfitting caused by the small number of training samples,
which is especially of significance in plant disease identification.

3. Dataset Processing

3.1. Dataset. *e PlantVillage Project (https://www.
plantvillage.org) is an open-source website for users that
addresses all plant diseases [20]. *is dataset includes 61,486
images with 39 different categories of plant leaves. In the
study, four plant leaves from the PlantVillage dataset are
selected as experimental subjects. In order to make the
experimental data more universal, the images of plant
diseases such as leaf curling, mutilation, and wilting were not
discarded. Sixteen diseased and healthy samples of four
plants are represented, as shown in Figure 1.
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In the dataset, there are 16 types of diseased and healthy
plants. *e images are divided into training and test sets in
an 8 : 2 ratios, whose detailed descriptions are given in
Table 2.

3.2. Dataset Augmentation. *e original data from Plant-
Village consists of a total of 21,035 images, which is an
insufficient amount to train plant leaf diseases without
overfitting when considering the number of diseases. For a
richer and more generalized dataset, the original dataset was
augmented via the affine transformation, superimposed
Gaussian noise, and vertical flip [17], as shown in Figure 2.

In this study, each image was rotated 30 degrees
counterclockwise and 1.2 times enlarged with an affine
transformation. Also, the Gaussian noise (mean� 0, var-
iance� 0.025) was added to the input images, which ensured
that the brightness of the image remained unchanged during
the shooting process, and the Gaussian noise of the image
effectively simulated the noise interference phenomenon in

the actual shooting process. Gaussian noise superimposed
can reduce the dependence on certain properties and im-
prove the robustness of the model [21]. Furthermore, a
vertical flipping was randomly applied for each image. With
these data augmentations, the final 168,280 images were
obtained. Table 3 summarizes the quantity of the dataset
after each data augmentation process.

3.3. Preprocessing. Preprocessing plays a great role in correct
classification. First, all images in the dataset are resized to
227∗227, normalized into the range of [0, 1], and finally
standardized based on the arithmetical average (avg) and the
standard deviation (std), as follows:

Standardized Image �
image − avg

std
. (1)

*epreprocessed image has pixel values ranging from −1
to 1. Normalization and standardization reduce the adverse
effects caused by singular sample data.

Table 1: Summary of related works on plant disease classification.

Reference Plant types Dataset Data augmentation Methods Limitation

Srdjan et al. [7] 13 kinds of
plants

Stanford
background

dataset

Image transformations used for
augmentation: (a)affine

transformations; (b)perspective
transformations; (c) rotations.

CNN Training less data

Mohanty et al. [8] 14 crop
diseases PlantVillage

Resize the images to 256× 256
pixels, and perform both the
model optimization and

predictions on these downscaled
images

AlexNet

When tested on a set of images
taken under conditions
different from the train
images, the accuracy is

reduced substantially to just
above 31%

Dyrmann et al.
[13]

22 crop
samples BBCH12e16 — DCNN

Due to the small number of
training samples, the
recognition accuracy
fluctuates greatly

Ferreira et al. [14]
Soybean
crops
diseases

Captured by the
UAV — ConvNets or

CNNs
Dependency on feature

extractors

Ghazi et al. [15]

1,000 species
of trees,

herbs, and
ferns

LifeCLEF 2015

Decrease the chance of
overfitting, image transforms
such as rotation, translation,

reflection, and scaling

GoogleNet,
AlexNet, and
VGGNet

As an example, increasing the
batch size from 20 to 60

increases the training time 3-
fold but does not match the
performance obtained by
increasing the number of

iterations by the same amount

Liu et al. [16] 16 kinds of
insect pests

Multi-class pest
dataset 2018
(MPD2018)

— CNN
*e model did not do a good
job of identifying similar pests
in different categories methods

Geetharamani
and Arun
Pandian [9]

13 different
of plant
leaves

PlantVillage

Image flipping, gamma
correction, noise injection, PCA
color augmentation, rotation,
and scaling transformations

Deep CNN

*e model can only identify
leaf diseases, but it cannot

identify other parts of the plant
diseases

Ozguven and
Adem [6]

Sugar beet
leaf disease

Sugar beet leaf
images dataset — Faster R–CNN *e accuracy of disease

detection is low

Chao et al. [17] Apple tree
leaf diseases

Laboratory
independent
planting and
cultivation

Image scaling, dataset
expansion, and dataset

normalization
DCNN

*ere are few types of data sets,
and the specific network
architecture of various

structures lacks a description
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4. Network Structure

4.1. CNN. CNN has been the most popular deep learning
network structure in the image recognition field. *e clas-
sical networks include AlexNet, VGGNet, and GoogleNet.
*e advent of AlexNet opened the door to deep learning
research, which was the basis of many subsequent deep
learning models. *e innovation of AlexNet was the em-
ployment of the nonlinear unsaturated function, ReLU,
instead of the original Softmax function. Local response
normalization (LRN) was also used to improve accuracy and
generalization capability. Furthermore, a smaller stride was
used than the polling size, which improved feature richness
and minimized information loss since the outputs of the
pooling layers overlapped and covered each other [22]. *e

first layer of AlexNet uses a large convolution kernel to
better extract global information such as location. *e front
layer is large enough to get a larger receptive field and
provide more information for the later layers. Due to a large
amount of information, feature mapping and the pixel-by-
pixel classifier can be closely connected, thereby enhancing
the ability to deal with different transformations [23]. Al-
though the AlexNet has large convolution kernels and
deepens the depth of the network, it raises the risk of
gradient disappearance and has low accuracy.

GoogleNet introduced the concept of the Inception
structure.*e GoogleNet proposed a local network structure
(Inception module) with strong expressiveness but small
computation, which can be stacked. *en, the BN layer and
the decomposed network structure were added. *is

Corn_healthy Corn_CercosporaGrayspot Corn_Commonrust Corn_NorthernBlight

Tomato_healthy Tomato_Bacterialspot Tomato_Lateblight Tomato_Septorialspot

Grape_healthy Grape_Blackrot Grape_IsariopsisSpot Grape_Measles

Apple_healthy Apple_Blackrot Apple_Cedarrus Apple_scab

Figure 1: Plant village dataset classification examples.
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structure improved a significant accuracy with a little
computational complexity increase. *e Inception-V3
model is the third generation model in the Google Inception
series, which utilizes parallel pooling and asymmetric
convolution. *e stem module of Inception-V4 followed the
basic principles in Inception-V3. Compared with the ac-
cumulation of simple multi-layer convolution kernel
pooling in Inception-V3, Inception-V4 had a simpler ar-
chitecture and more Inception modules with high accuracy
[24].

4.2. Improved AlexNet Network Structure. In this paper, the
AlexNet structure is combined with the inception-V4
structure to take both cons of those two structures. *e
Inception-V4 module is added based on the AlexNet
structure, strengthening the preprocessing ability of the
network. *e BN is also applied to accelerate the

convergence, improve the generalization ability, and prevent
the gradient from disappearing. During the phase of model
training, each sample in the batch is normalized by calcu-
lating the mean μ and variance σ2 per batch.

μ �
1
N



N

i�1
xi,

σ2 �
1
N



N

i�1
xi − μ( 

2
,

xi �
xi − μ
�����
σ2 + ε

 ,

(2)

where N is batch size and xi is a sample in the batch. For a
two-dimensional image input, the convolution output of the
BN layer is (N, C, W, H), where C indicates the number of
output channels, and W and H indicate the dimension of the

Table 2: Dataset of plant leaves.

Disease type Label Total number of pictures (sheets) Training set (sheets) Validation set (sheets)

Corn

Corn_healthy 1162 930 232
Corn_CercosporaGrayspot 1000 800 200

Corn_Commonrust 1192 954 238
Corn_NorthernBlight 1000 800 200

Tomato

Tomato_healthy 1591 1273 318
Tomato_Bacterialspot 2127 1702 425
Tomato_Lateblight 1908 1526 382

Tomato_Septorialspot 1771 1416 355

Grape

Grape_healthy 1000 800 200
Grape_Blackrot 1180 944 236

Grape_IsariopsisSpot 1076 860 216
Grape_Measles 1383 1106 277

Apple

Apple_healthy 1645 1316 329
Apple_Blackrot 1000 800 200
Apple_Cedarrust 1000 800 200

Apple_scab 1000 800 200

(a) (b) (c) (d)

Figure 2: An example of the dataset augmentation. (a) Original image. (b) Affine transformation. (c) Superimposed Gaussian noise. (d) Flip
vertically.

Table 3: Dataset augmentation process.

Original data (sheets) Operations Final data (sheets)
*e first time 21,035 Affine transformation 42,070
*e second time 42,070 Superimposed Gaussian noise 84,140
*e third time 84,140 Flip vertically 168,280

Computational Intelligence and Neuroscience 5



featuremap.*en, each sample in the batch can be expressed
as xc,w,h. *e BN normalizes each sample separately, so the
calculated number of μ is also C × W × H.

During the inference phase, the BN layer uses the mean μ
and variance σ2 calculated in the training phase, which is
computed by the moving average method.

μ � μn � αμn−1 +(1 − α) ·
1
N



N

i�1
xi,n, (3)

where xi,n is a sample in the nth batch, α is the step size
factor of the learning rate, and μn is the mean value obtained
when training to the nth batch. Similarly, σ2 is approximated
in the same way [25].

Finally, a scaling coefficient c and a translation coeffi-
cient β are often added to the calculation of BN, and then the
output is:

yi � c
xi − μ
�����
σ2 + ε

 + β. (4)

*e BN layer can speed up the training and convergence
of the network, control the gradient explosion, prevent the
gradient from disappearing, and avoid overfitting. *e
structure of the improved AlexNet is depicted in Figure 3.

As shown in Figure 3, the convolution layer first extracts
the texture information of the input image from the shallow
edge structure to the deep texture semantic structure. *en,
the Inception-V4 further extracts features as a backbone
network, which consists of multiple convolutions and
pooling operations. Inception-X (X represents A, B, and C)
module learns image features through multiple parallel
feature transfer structures, improving the feature utilization.
Reduction-X (X represents A, B) module, as a pooling layer,
convert large feature maps into small feature maps, where
the number of channels increases. In this way, too high
computational complexity can be avoided without no sig-
nificant loss of information [26]. *en, the Average Pooling
layer reduces the deviation of the estimated mean, im-
proving the robustness of the model and reducing the
number of parameters. Also, the Dropout layer is used in the

two fully connected layers to prevent the overfitting problem,
where a certain amount of neurons are temporarily discarded
from the network during the training process. Lastly, the
Softmax regression, as the output layer, maps the results to the
(0, 1) probability interval [27]. *e use of multiple parallel
convolution paths reduces the number of network parame-
ters. Compared with the network without deepening layers,
the network with deepening layers can achieve a similar (or
better) performance with fewer parameters. *e initial layer
only needs to focus on learning edge information and can
learn efficiently with less training data. By deepening the
network, feature information can be decomposed hierar-
chically, thus improving learning efficiency. *e detailed
structure of the network is given in Table 4.

Combining different information obtained from dif-
ferent convolution layers obtains a discriminative image
representation. *us, the proposed model adopts convolu-
tion kernels of different sizes to extract features, stack the
obtained features along the channel dimension, and transmit
them to the next layer. *e original first layer convolution of
AlexNet provides a large amount of data for Inception-V4. It
reduces the loss of information to some extent. At the same
time, the small convolution kernel and deeper layer in the
Inception-V4 network reduce the number of parameters and
computation, improving the efficiency, and quality of
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Input
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Stem

Inception
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Avarage Pooling

Softmax
Fully connected layers

Output

Note:

Figure 3: *e structure of the improved AlexNet.

Table 4: *e detailed structure of the AlexNet-Inception-V4
network.

Layer name Tensor size
Input [3, 227, 227]
Conv [48, 221, 221]
Stem [384, 25, 25]
Inception-A [384, 25, 25]
Reduction-A [1024, 12, 12]
Inception-B [1024, 12, 12]
Reduction-B [1536, 5, 5]
Inception-C [1536, 5, 5]
Average pooling [1536, 1, 1]
Fully connected layers [1536]
Output [4]
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classification. Dropout and the CrossEntropyLoss function
avoid gradient disappearance and overfitting. Finally, the
Adam optimizer adjusts the internal parameters of the
network by minimizing the loss function.

4.3. Dropout and Loss Function. Dropout aims to improve
the generalization capability of the model by inactivating
neurons with a particular probability throughout the
training process. *e use of the Dropout can reduce the
dependence on the part of upper neurons. It also prevents
overfitting by integrating multiple models with different
network structures, as is shown in Figure 4.

*e CrossEntropyLoss function is used as a loss func-
tion. *e CrossEntropy function is often combined with the
Softmax function to prevent the gradient from disappearing.
It solves the problem of slow or stagnant updates of weights
in the hidden layer.

*e CrossEntropyLoss function is formulated as:

H(p, q) � − 
M

i�1
p xi( log q xi( ( , (5)

where M represents the number of categories p(xi) and
q(xi) represent the sample distribution and the prediction
distribution, respectively H(p, q). is used to compute the
degree of deviation of the ground truth from the output
values in the test set. *e smaller the result value obtained by
the function is, the closer the distribution of p and q is, and
the better the performance is. However, in the back-
propagation process, the greater the gap between the
ground-truth value and the output value accelerates the
parameter adjustment of the model.

4.4. Optimizer. *e optimizer can promote the desired loss
function by reducing the gradient and calculating the de-
rivative of the multivariate function. Typical optimization
algorithm includes adaptive moment estimation (Adam),
stochastic gradient descent (SGD), and RMSProp. *ese
three different optimizers were analyzed with the proposed
model. *e loss and accuracy for each epoch are depicted in

Figure 5. Combined with AlexNet and inception-V4, the
Adam optimizer adjusts the learning rate of each parameter
to prevent the learning rate decay, stabilize the exponential
gradient decay, improve the identification accuracy of the
network, and reduce the loss.

5. Experimental Results and Analysis

5.1. Experimental Environment. Experiments were con-
ducted on the computer with the CPU intel core i7 8565U
and Windows 11. *e models were implemented in Python
3.7.10 and Pytorch deep learning library. *e model was
trained for 200 epochs with the Adam optimizer and the
initial learning rate� 0.0001.

5.2. Comparison of Different Network Models. *e proposed
model was evaluated with compared methods: AlexNet,
VGG11, ZFNet, and VGG16. *e loss is used to update the
model parameters, while the accuracy is used to evaluate the
performance of the model. Figure 6 compares the accuracy
and loss for each epoch of the proposed model and the
compared models, showing the superiority of the proposed
model over the other models. With the increase in epochs,
the proposed model converges better and faster.

5.3. Analysis of Dataset Augmentation. In order to alleviate
the overfitting problem during the training [17], the dataset
was augmented with affine transformation, Gaussian noise,
and vertical flip. Figure 7 compares the accuracy and loss
with and without the data augmentation for corn, tomato,
grape, and apple data. As shown in Figure 7, the data
augmentation significantly improves the performance for all
types of data (corn, tomato, grape, and apple): 0.945, 0.948,
0.923, and 0.965 with the data augmentation vs. 0.787, 0.826,
0.854 and 0.828 without the data augmentation.

5.4. Comparison of Training Data and Test Data. Figure 8
compares the accuracy and loss obtained from the training
and test datasets, showing that for epochs >60, the accuracy

(a) (b)

Figure 4: *e comparison before and after adding dropout. (a) Without dropout. (b) With dropout.

Computational Intelligence and Neuroscience 7



and loss curve have converged. *e accuracy of the test data
reaches 0.94, and the loss reaches 0.16. *e fluctuation degree
of the two curves is small. Also, it can be seen that there is little
difference between the training set and the test set, proving
good adaptability and stability of the proposed model.

5.5.ConfusionMatrix. *econfusionmatrix ismainly used to
determine the merits of classifiers. Due to the complexification
of the patterns displayed in each class, the system tends to
obfuscate in multiclass classification [28]. Figure 9 presents the
confusion matrix of the ultimate classification results. *e
diagonal elements represent the quantity of judged correct and
are proportional to the global precision of the training model.

As shown in Figure 9, the recognition accuracy of the
grape is the highest (0.95). *e Grape_Measles and
Grape_Blackrot leaves of grapes are the least easily
confused, with a probability of the two being mis-
identified by only 0.1. *e recognition capability of the
proposed model can be intuitively assessed through
the confusion matrix, which helps further to analyze
the confusion degree of various plant disease
identification.

*e performance of the proposed method is evaluated in
terms of accuracy, precision, recall, and F1 Score, which are
computed based on the true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). *e cal-
culation formulas are as follows:
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Figure 5: Accuracy and loss comparison of the different optimizers. (a) Loss of different optimizers. (b) Accuracy of different optimizers.
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Figure 6: Accuracy and Loss comparison of different network models. (a) Accuracy comparison. (b) Loss comparison.
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Accuracy �
TP + TN

TP + TN + FP + FN
,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F1Score � 2
Precision × Recall
Precision + Recall

.

(6)

In the case of 1,200 samples, accuracy, precision, re-
call, and F1 Score of Corn_healthy are 0.964, 0.927, 0.930,
and 0.928, respectively. To further demonstrate the gener-
alization of the proposedmodel in plant disease identification,

relevant parameters in different plant diseases are listed as
follows.

Table 5 shows that the top three accuracies were
Grape_Measles (0.972), Grape_Blackrot (0.970), and
Corn_CercosporaGrayspot (0.970) in a case of 1,200 sam-
ples. Meanwhile, its precision and recall reached the level of
0.87 or more. After 200 epochs, the highest accuracy of corn,
tomato, grape, and apple reached 0.945, 0.948, 0.923, and
0.965, respectively, and the highest F1 scores of corn, to-
mato, grape, and apple reached 0.938, 0.910, 0.945, and
0.924, respectively.

*e analysis and comparison demonstrate the practi-
cability of the proposed model in the plant disease identi-
fication and classification field. Extensive experiments show
that the proposed model trained on a large-scale plant leaf

accuracy of different datasets
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Figure 7: *e comparison of accuracy and loss before and after dataset expansion. (a) Accuracy comparison (b) Loss comparison.
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Figure 8: *e comparison of the accuracy and loss of the training set and the test set.
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dataset can obtain accurate and stable results. It indicates
that the proposed model can be used to diagnose plant
diseases to take action in time and achieve healthy growth of
crops.

5.6. ROC & AUC. *e receiver operating characteristic
(ROC) curve is an analysis tool that is depicted on a two-
dimensional plane, where the abscissa of the ROC is false
positive rate (FPR), and the ordinate is true positive rate

(TPR). *e AUC indicates the area under the ROC curve.
*e TPR and FPR are defined as follows:

TPR �
TP
P

,

FPR �
FP
F

,

(7)

where P represents the number of positive samples and F

represents the number of negative samples. For a
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Figure 9: *e confusion matrix of four plants (a) Confusion matrix of corn dataset (b) Confusion matrix of tomato dataset (c) Confusion
matrix of grape dataset (d) Confusion matrix of apple dataset.
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classifier, FPR and TPR can be obtained according to their
performance on the test sample. *e ROC curve and
corresponding AUC of the proposed model are shown in
Figure 10

6. Conclusion

*is paper proposes an improved AlexNet with Inception-
V4 for plant disease diagnosis, where the AlexNet con-
volutional layers were appropriately adjusted, and Incep-
tion-V4 was added as a backbone network. Extensive
experiments on the PlantVillage dataset showed superior
performance (accuracy� 0.965) of the proposed method
over the compared models: AlexNet, VGG11, VGG16, and

ZFNet. Furthermore, analysis of different optimizers and
data augmentation were conducted to confirm that the
Adam optimizer and data augmentation improved the
performance and robustness of the model. Also, the pro-
posed model was evaluated in terms of accuracy, precision,
recall, F1 Score, ROC, and AUC. *e experimental results
show that the proposed model performs well in plant disease
detection. However, still, the proposed model cannot dis-
tinguish different plant diseases in crops that have similar
features. No clear boundary between different levels of the
same plant disease causes misidentification, leading to the
lower identification accuracy of the plant disease. Also, the
used dataset is single-leaf oriented upward images with a
homogenous background. In the real world, the background
is more complex, and some plant diseases do not even
appear on the surface of the leaves but exist in other roots,
stems, and other parts of the plant. *us, future works will
investigate to address these limitations.
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Table 5: *e accuracy, precision, recall, and F1 score for the
proposed model.

Accuracy Precision Recall F1
score

Corn_CercosporaGrayspot 0.970 0.940 0.937 0.938
Corn_Commonrust 0.955 0.907 0.913 0.910
Corn_healthy 0.964 0.927 0.930 0.928
Corn_NorthernBlight 0.960 0.927 0.900 0.917
Tomato_Bacterialspot 0.948 0.905 0.887 0.896
Tomato_healthy 0.949 0.907 0.887 0.897
Tomato_Lateblight 0.936 0.870 0.873 0.872
Tomato_Septorialspot 0.954 0.891 0.930 0.910
Grape_Blackrot 0.970 0.937 0.943 0.940
Grape_healthy 0.964 0.919 0.940 0.929
Grape_IsariopsisSpot 0.953 0.923 0.883 0.903
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Apple_Blackrot 0.960 0.929 0.910 0.919
Apple_Cedarrust 0.950 0.880 0.927 0.903
Apple_healthy 0.963 0.941 0.907 0.924
Apple_scab 0.956 0.910 0.913 0.912
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