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At present, the image inpainting method based on deep learning has achieved a better inpainting e�ect than traditional methods,
but the inpainting results still have problems such as local structure disorder and blurred texture when the images involving a large
defect area are processed. �is paper proposes a second-order generative image inpainting model based on edge and feature self-
arrangement constraints. �e model consists of two parts: edge repair network and image repair network. Based on the self-
encoder, the edge repair network generates the edges in the defect area according to the known information of the image and
improves the edge repair e�ect by minimizing the adversarial loss and feature matching loss. �e image inpainting network �lls
the defect area with the edge repair result as a priori condition. On the basis of U-Net, the feature self-arrangement module (FSM)
is proposed to reconstruct the coding features of a speci�c scale, and the reconstructed feature skips to connect the decoding layer
of the same scale, and it is fused with the upper layer underlying features for decoding. Meanwhile, guide loss, adversarial loss, and
reconstruction loss are introduced to narrow the di�erence between the repaired image and the original image. �e experimental
results show that the inpainting results of the proposed model have stronger structural connectivity and clearer textures and the
performance of PSNR, SSIM, and mean L1 loss in the Celeba, Facade, and Places2 is better than other inpainting methods,
indicating that the algorithm can produce an inpainting e�ect with highly connected structure, reasonable semantics, and
�ne details.

1. Introduction

Image inpainting can synthesize visually realistic and se-
mantically correct content for the missing area by using the
prior information in the missing image or image training
data. It is a crucial research direction in the domain of
computer vision, which can be used in a variety of appli-
cation scenarios, for instance, target removal, damaged or
occluded area inpainting, etc.

According to di�erent utilization characteristics, current
inpainting strategies can be classi�ed into two types: non-
semantic inpainting and semantic inpainting. Nonsemantic
inpainting is a traditional image inpainting method that
gradually �lls the pixel information of the nondefective
region of the image into the defective area through the

di�usion or pixel block matching mechanism, which does
not cover the generation and completion of semantic targets
but only focuses on the connection and duplication and the
�lling of local structure and texture information. Semantic
inpainting is based on deep learning. �rough learning
massive training data, the deep model constructs the
complete mapping relationship from the damaged image to
the repaired image based on the high-level semantic in-
formation extracted from the broken image and can generate
semantic targets that do not exist in the background area of
the broken image [1], achieving great performance in large-
scale defect work that cannot be completed by traditional
methods.

�e current mainstream deep models all adopt gener-
ative adversarial networks (GANs) [2]. �rough a
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continuous adversarial game between the generator and the
discriminator, the repaired image quality is gradually im-
proved. Pathak et al. [3] applied deep learning to the field of
image restoration for the first time and proposed a deep
network based on an autoencoder structure. By mapping the
broken image features to the low-dimensional feature space
by the encoder, the output signal is reconstructed with
deconvolution, and the 64× 64 rectangular defect area with
the resolution of 128×128 image center can be repaired.
However, there are obvious traces in the inpainting results.
Based on the research of Pathak et al. [3], Iizuka et al. [4]
used dilated convolution [5] to replace the ordinary con-
volution in the fully connected layer to enhance the receptive
field and introduced a local discriminator to enhance the
quality of details of the generated content. Finally, it is able to
repair rectangular defect areas of any size. However, the
model requires postprocessing similar to Poisson fusion [6]
to reduce inpainting traces, and the inpainting results are
significantly degraded when dealing with irregular defect
area. Yu et al. [7] divided the inpainting into two stages,
including rough estimation of damaged images and intro-
ducing an attention mechanism to further refine the rough
inpainting result, but the inpainting effect was significantly
reduced when dealing with the irregular broken area. For the
poor performance of deep model when processing irregular
defect area, Liu et al. [8] proposed a special convolution
method and applied it in the U-Net [9] architecture, which
can fill the defect area by only using the known pixel in-
formation and effectively reducing inpainting traces and
chromatic aberration. Zeng et al. [10] put forward a pyramid
context encoder network, which reconstructed the encoding
features of each layer to constrain the decoder, obtaining
high-quality inpainting results. However, there was a
problem of structure disorder when repairing irregular
broken images with the complex structure.

In general, the current mainstream depth model is able
to generate semantically plausible content in defect regions,
but there are problems of local pixel discontinuity, structure
disorder, and texture blur when repairing large-area irreg-
ular broken images. For these problems, the image
inpainting is decomposed into two parts in this paper: edge
repair and image inpainting, and a second-order image
inpainting network is proposed, which is composed of two
parts: edge repair network and image repair network. First,
the edge repair network extends the edge in the defect area
according to the pixel information and edge information
around the defect area to obtain the edge repair map and
then guides the image inpainting with the edge repair map as
a priori condition. In order to improve the contextual and
semantic consistency of potential features at all levels in the
process of image inpainting and reduce the structural fea-
tures loss, U-NET network architecture is adopted to
transfer the coding features at all levels to the corresponding
decoding layer through skip connection, using the rich
structural information and texture features in the low-level
features as much as possible. Meanwhile, the feature self-
arrangement module (FSM) is proposed to reconstruct the
specified coding features and fuse them with the potential
features and coding features of corresponding scales for the

next step of decoding so as to restrict the generator to
improve the final inpainting effect.

Overall, the contribution of this paper is as follows:

(1) *e edge repair network is proposed. )e edge repair
network generates edges in the defect area according
to the high-frequency information features of the
background area of the broken image, repairs the
overall semantic contour of the image, perfects the
local structure details, and completes the edge repair.

(2) *e feature self-arrangement module (FSM) is pro-
posed. )e feature self-arrangement module refills
reasonable information in defective areas of latent
features according to the correlation between the
pixel block in the coded feature background area and
the pixel block in the corresponding decoded feature
defect area to effectively reconstruct the decoded
feature.

(3) An image inpainting network is proposed. )e image
inpainting network fills the pixel with output of the
edge repair network as a priori condition and re-
stricts the decoder by introducing a feature self-ar-
rangement module on the basis of U-Net.
Combining the influence of edge information and
reconstruction features, high-quality repair results
with complete semantics, connected structure, and
clear texture can be obtained by using the image
inpainting network.

2. Related Work

Traditional repair strategies mainly use low-level non-
semantic features in the background area of the defect image
to fill in the defect area. )e diffusion-based method [11–13]
spreads the pixel information around the defect area from
the outside region to the inside region, which can only fill in
small missing areas similar to scratches and ink dots. )e
patch matching-based method [14, 15] can be applied into
more image inpainting. )e method based on pixel block
matching fills the pixel information in the defect area se-
quentially by calculating the similarity between the
boundary of the defect area and the pixel block of the
background area. )e traditional restoration methods only
use the existing pixel information of the defect image to
carry out diffusion or weighted copying, which lacks the
high-level semantic understanding of the image and cannot
generate the content with structural connectivity and clear
texture when faced with the repair work with a complex
structure and large defect area [16].

)e image repair strategy based on deep learning learns
high-level semantic representation from large-scale data,
which greatly improves the inpainting effect. However, early
convolutional neural network-based methods [6, 7] cannot
handle structure and texture information separately and
cannot effectively use context information to reconstruct
missing content. )erefore, these methods often produce
inpainting results with noise or texture artifacts when
dealing with irregular defects. In order to solve these
problems, many scholars conducted research from different
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perspectives. Liu et al. [17] divided the inpainting into two
stages: rough estimation and refinement, and they proposed
a coherent semantic attention layer that predicted missing
content by modeling the correlation between semantic
features. It is embedded in the encoder of the image re-
finement network to improve the inpainting ability of image
details, but this method is more time-consuming and it lacks
the influence of advanced context information in the at-
tention operation. Sagong et al. [18] simplified the coarse-to-
fine second-order repair network to a single-level codec
network containing a contextual attention module, greatly
reducing training time and computing resources and
achieving high-quality inpainting results. )e model pro-
posed by Liu et al. [19] treated the deep and shallow con-
volution features as the structural features and texture
features of the input image separately for inpainting.)e two
types of repaired features are balanced, fused, and trans-
ferred to the decoding layer of each scale to constrain the
generated network. )e semantic target with complete
outline and clear texture in the large-area irregular defect
area is effectively reconstructed [20].

Aiming at the above problems, this paper proposes a
second-order image inpainting model that combines edge
guidance and feature self-arrangement constraints. )e edge
repair map generated by the edge repair network ensures the
structural connectivity of the final inpainting result; the
feature self-arrangement module fills in the effective pixel
information in the defective area of the feature level; and the
skip connection fuses the coding features of each level and
the FSM reconstruction features with the corresponding
decoding features to guide the decoding of the next layer.
)e method makes full use of the context feature infor-
mation on both sides of the U-Net architecture “bottleneck,”
effectively reducing the blocked feature propagation in the
decoding process. )e image inpainting network can finally
generate content with reasonable semantics, highly con-
nected structure, and exquisite details.

3. Generative Image Inpainting Model

3.1. Model Framework. )e proposed second-order image
inpainting model includes the edge repair network and the
image inpainting network. )e edge repair network adopts a
generative confrontation network structure, which is clas-
sified into a generator G1 and a discriminator D1. )e image
inpainting network includes a generator G2 and a dis-
criminator D2. )e edge repair network generates a rea-
sonable edge contour in the defect area according to the gray
value of the pixels around the broken image and the edge
information of the undefected area; taking the edge gen-
eration map as a priori condition, the image inpainting
network outputs all levels of coding features to the corre-
sponding decoding layer combined with skip connections
and fuses with the corresponding potential features for layer
decoding, which effectively uses the context information in
the encoding and decoding process, reducing the infor-
mation loss during feature propagation; taking the output of
the specified coding layer and the underlying features of the
corresponding decoding layer as input, the feature self-

arrangement module fills the defect part at the image feature
level to obtain the FSM reconstruction feature map. )en it
is fused with the underlying features and coding features of
the corresponding decoding layer for the next step decoding
to improve the final inpainting effect. )e specific model
framework is shown in Figure 1.

3.2. FeatureSelf-ArrangementModule. For the broken image
I, Ω is defined as the missing area and Ω is the known area.
)e U-Net frame of L-th layer is taken as an example. φl(I)

represents the coding feature of the l-th layer, φL− l(I)

represents the decoding feature of the (L − l)-th layer, and
F(·) represents the feature self-arrangement operation. )e
corresponding output FSM reconstruction feature is

ϕL− l
� F φl

,φL− l
􏼐 􏼑. (1)

As shown in Figure 2, the feature self-arrangement
module predicts ϕL− l(I) through φl(I) and φL− l(I), making
it closer to the output feature φl(Igt) of the original image Igt

in the corresponding coding layer. For each
(φL− l(I))β(β ∈ Ω), its related nearest neighbor search in
(φl(I))α(α ∈Ω) can be derived by the following formula:

α∗(β) � argmax
α∈Ω

〈 φL− l
(I)􏼐 􏼑β, φl

(I)􏼐 􏼑α〉

φL− l
(I)􏼐 􏼑β

������

������2
φl

(I)􏼐 􏼑α

�����

�����2

. (2)

At the same time, the displacement vector of the feature
self-arrangement patch block is defined as μβ � α∗(β) − β,
and then (ϕL− l(I))β is predicted by copying and filling the
patch block of encoding feature (φl(I))α, that is

ϕL− l
(I)􏼐 􏼑β � φl

(I)􏼐 􏼑β+μβ
. (3)

)e feature auto-arrangement module can use the pixel
block in the defective region of the decoded feature to
perform matching calculation with the known pixel value of
the corresponding encoding feature and refill the defective
region of the decoded feature, effectively improving the
content rationality at the feature level and providing a good
guiding foundation for the next step of decoding.

3.3. Edge Repair Network. )e edge repair network adopts a
generative confrontation network structure, which is clas-
sified into a generator G1 and a discriminator D1. )e
generator adopts a self-encoder structure, and the input is
composed of the mask, the gray image of the broken image,
and the edge binary image which are used to obtain the
shallow features through the encoder of subsampling twice.
)e shallow features are sent to the feature extraction area
composed of eight residual blocks combined with expansion
convolution (expansion factor is 2), and then the complete
image is decoded by a decoder that is up-sampled twice.
Spectral normalization is used for each layer in the generator
network [21, 22]. Apart from the last layer of convolution of
each residual block and the last layer of convolution of the
decoder, the ReLU activation function is used after each
layer of convolution. )e network parameters of the edge
generator are shown in Table 1.
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)e edge discriminator uses the Path GAN [23] archi-
tecture. Path GAN maps the input image to a matrix X of
N × N through convolution, and each point of the matrix X;
that is, the value of Xi,j stands for the evaluation of a small

area of the input image. Finally, the average value of Xi,j is
the output of the discriminator. )e introduction of Path
GAN can make the edge repair network attach importance
to image details in training. )e training process is stabilized
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Figure 1: Generative image inpainting model framework.
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Figure 2: Feature self-arrangement module.

Table 1: )e network parameters of the edge generator.

Layer Inputs (H×W×C) Kernel size Stride Padding Dilation Activation function Outputs (H×W×C)
ReflectionPad 256× 256× 3 — — 3 — — 262× 262× 3
Conv 262× 262× 3 7× 7 1 0 1 ReLU 256× 256× 64
Conv 256× 256× 64 4× 4 2 1 1 ReLU 128×128×128
Conv 128×128×128 4× 4 2 1 1 ReLU 64× 64× 256
Residual Blocks× 8
ReflectionPad 64× 64× 256 — — 2 — — 68× 68× 256
Res-conv 68× 68× 256 3× 3 1 0 2 ReLU 64× 64× 256
ReflectionPad 64× 64× 256 — — 1 — — 66× 66× 256
Res-conv 66× 66× 256 3× 3 1 0 1 — 64× 64× 256

ConvTranspose 64× 64× 256 4× 4 2 1 1 ReLU 128×128×128
ConvTranspose 128×128×128 4× 4 2 1 1 ReLU 256× 256× 64
ReflectionPad 256× 256× 64 — — 3 — ReLU 262× 262× 64
Conv 262× 262× 64 7× 7 1 0 1 — 256× 256×1
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by adding spectral normalization to each layer of the dis-
criminator network [21]. After the first four layers are
convolved, the slope parameters of Leaky ReLU are set to 0.2,
and the sigmoid activation function is utilized before the
discriminator outputs the final result. )e network layer
parameters of the edge discriminator are shown in Table 2.

3.4. Image Inpainting Network. Similar to the edge gener-
ation network, the image inpainting network includes a
generator G2 and a discriminator D2. Skip connection is
applied at each coding layer of the generator to transfer the
output of each coding layer to the corresponding decoding
layer, and it is fused with the underlying features to decode
layer by layer, which takes full advantage of the context
information in the encoding and decoding process to de-
crease the information loss during the layer-by-layer
transmission of features at all levels. In addition, in order for
the generator to generate content with consistent contextual
semantics and rich low-level details in the decoding process,
a feature self-arrangement module is proposed, which
performs pixel rearrangement and fills in the defect areas
with the coding features and decoding features of the same
scale as input. Finally, FSM feature map with a complete
semantic and structural connection can be reconstructed.
)is method fills reasonable information in the defect area at
the feature level, playing a positive role in improving and
guiding the subsequent decoding at all levels. By minimizing
the introduced guidance loss, the specific decoding layer of
the generator is obliged to output a feature map that con-
forms to the real situation as much as possible. Meanwhile,
reconstruction loss and counter loss are applied to the final
output image to train the network, thereby continuously
improving the inpainting effect of the network.

)e image repair network generator is divided into
encoding and decoding. Enc(·) represents the encoding
process, Ibrk

gt represents the broken RGB image, and Epre d

represents the edge repair map.)e input of the image repair
network is represented as I � Ibrk

gt ⊕Epre d. )e encoding
features at all levels are expressed as

φ1
(I) � Enc(I), (4)

φ2
(I) � Enc φ1

(I)􏼐 􏼑, (5)

φ3
(I) � Enc φ2

(I)􏼐 􏼑, (6)

φ8
(I) � Enc φ7

(I)􏼐 􏼑. (7)

By introducing skip connections, the coding features and
corresponding decoding features at each decoding layer are

fused for decoding. Dec(·) represents the decoding opera-
tion. F(·) represents the feature self-arrangement operation.
)e decoding features at all levels are expressed as

φ9
(I) � Dec φ8

(I)􏼐 􏼑, (8)

φ10
(I) � Dec φ9

(I)⊕φ7
(I)􏼐 􏼑, (9)

ϕ13(I) � F φ13
(I)⊕φ3

(I)􏼐 􏼑, (10)

φ14
(I) � Dec φ13

(I)⊕φ3
(I)􏼐 􏼑⊕ϕ13􏼐 􏼑, (11)

φ15
(I) � Dec φ14

(I)⊕φ2
(I)􏼐 􏼑. (12)

Instance normalization is applied to each convolution
layer of the image generator network except the first and last
layers [24]. )e slope parameters of Leaky ReLU are set to
0.2. )e network parameters of the image generator are
shown in Table 3.

)e image discriminator D2 and the edge discriminator
D1 adopt the same network architecture and parameter
settings, and the generator generates content that looks like
the raw image by minimizing the adversarial loss.

4. Loss Function

4.1. Overall Loss Function. )e overall loss function of the
proposed model is

LGen � Le dg e + Limg � λa dv,1La dv,1 + λFMLFM

+ λa dv,2La dv,2 + λguiLgui + λl1
Ll1

,
(13)

where Le dg e is the overall loss function of the edge repair
network; Limg is the overall loss function of the image repair
network; La dv,1 is the adversarial loss of the edge discrim-
inator, which is applied to train the edge generation network;
LFM is the feature matching loss of the edge generation
network; La dv,2 is the adversarial loss of the image repair
network; Lgui is the guiding loss of the output by the specific
decoding layer of the constrained image repair network; Ll1
is the reconstruction loss of the image repair network. λa dv,1,
λFM, λa dv,2, λgui, and λl1

are the corresponding weight pa-
rameters. Each loss function is described in detail below.

4.2. Edge Loss. Igt, Igray, and Egt, respectively, represent the
original image of the input edge repair network and its
grayscale image and edge binary image; in the mask M, the
missing area is marked as 1, and the background area is
marked as 0. )e broken image is expressed as
Ibrkgt � Igt ⊙ (1 − M), and the defect grayscale image is

Table 2: Network parameters of the edge discriminator.

Layer Inputs (H×W×C) Kernel size Stride Padding Dilation Activation function Outputs (H × W × C)
Conv 256× 256× 2 4× 4 2 1 1 Leaky ReLU 128×128× 64
Conv 128×128× 64 4× 4 2 1 1 Leaky ReLU 64× 64×128
Conv 64× 64×128 4× 4 2 1 1 Leaky ReLU 32× 32× 256
Conv 32× 32× 256 4× 4 1 1 1 Leaky ReLU 31× 31× 512
Conv 31× 31× 512 4× 4 1 1 1 — 30× 30×1
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expressed as Ibrkgray � Igray ⊙ (1 − M), and the defect edge
binary image is expressed as Ebrk

gt � Egt ⊙ (1 − M); ⊙ is the
Hadamard product, which means that the corresponding
elements of the matrix are multiplied. G1(·) stands for the
operation of the edge generator, and D1(·) stands for the
operation of the edge discriminator, then the edge repair
map is expressed as Epre d � G1(Ibrkgray, Ebrk

gt , M).
)e adversarial loss La dv,1 [1] is defined as follows, which

is used to train the edge repair network:

La dv,1 � E
Egt ,Igray( 􏼁

log D Egt, Igray􏼐 􏼑􏽨 􏽩

+ EIgray
log 1 − D Epre d, Igray􏼐 􏼑􏽨 􏽩.

(14)

)e feature matching loss is introduced [25]. By com-
paring the activation features of the edge repair image and
the original image edge in the middle layer of the dis-
criminator, the generator is forced to produce more realistic
and reasonable results to stabilize the training process. L

represents the number of convolutional layers of D1, Ni

represents the number of elements in the i-th active layer of
D1, and D

(i)
1 represents the activation feature map of the i-th

layer in the discriminator. By comparing the activationmaps
of the middle layer of the discriminator, the generator is
forced to produce results closer to the raw image to stabilize
the training process. )e feature matching loss is as follows:

LFM � E 􏽘
L

i�1

1
Ni

D
(i)
1 Egt􏼐 􏼑 − D

(i)
1 Epre d􏼐 􏼑

�����

�����1
⎡⎣ ⎤⎦. (15)

)e overall loss function of the edge generation network
is

Le dg e � λa dv,1La dv,1 + λFMLFM, (16)

where λa dv,1 and λFM are the weight parameters. λa dv,1 � 1,
λFM � 15.

4.3. Image Inpainting Loss. G2(·) stands for the operation of
the image generator, and D2(·) stands for the operation of
the image discriminator; the generated image is expressed as

Ipre d � G2(Ibrkgt , Epre d, M). )e final output of the entire
inpainting network is the fused image, defined as
I
comp
gt � Ibrkgt + Ipre d ⊙M.

)e adversarial loss [2] λa dv,2 is introduced, which is used
to train the image inpainting network.

La dv,2 � E
Igt ,Ipre d( 􏼁

log D2 Igt, Epre d􏼐 􏼑􏽨 􏽩

+ EEpre d
log 1 − D2 Ipre d, Epre d􏼐 􏼑􏽨 􏽩.

(17)

In the decoding process, in order to retain more of the
raw information of the image, the guidance loss is intro-
duced to judge the output feature of the L − l-th layer, so as
to reduce the difference between the output φL− l(I) and
φl(Igt) of the decoding layer and enhance the decoding
capability of the model. )e guidance loss is as follows:

Lgui � 􏽘
β ∈ Ω

φL− l
(I)􏼐 􏼑β − φl

Igt􏼐 􏼑􏼐 􏼑β

������

������

2

2

. (18)

)e reconstruction loss is introduced to evaluate the final
repaired image, so as to make the content generated by the
image generator closer to the real image. )e reconstruction
loss is as follows:

Ll1
� Ipre d − Igt

�����

�����1
. (19)

)e overall loss function of this module is

Limg � λa dv,2La dv,2 + λguiLgui + λl1
Ll1

, (20)

where λa dv,2 � 0.1, λgui � 0.01, and λl1
� 0.5.

5. Experimental Comparison and Analysis

5.1. Experimental Set-Up. )is network runs under the
Windows10 platform, Intel Xeon E5 is used by the CPU,
NVIDIA RTX 2070 is used by the GPU, the GPU memory
is 8G; the depth learning development frame is PyTorch,
and the CUDA installed version is V10.0. Two networks
are trained by using the mask set offered by Liu et al. [8],
and the image size of the input network is uniformly

Table 3: Network parameters of the image generator.

Layer Inputs (H×W×C) Kernel size Stride Padding Dilation Activation function Outputs (H × W × C)
Conv 256× 256× 4 4× 4 2 1 1 — 128×128× 64
Conv 128×128× 64 4× 4 2 1 1 Leaky ReLU 64× 64×128
Conv 64× 64×128 4× 4 2 1 1 Leaky ReLU 32× 32× 256
Conv 32× 32× 256 4× 4 2 1 1 Leaky ReLU 16×16× 512
Conv 16×16× 512 4× 4 2 1 1 Leaky ReLU 8× 8× 512
Conv 8× 8× 512 4× 4 2 1 1 Leaky ReLU 4× 4× 512
Conv 4× 4× 512 4× 4 2 1 1 Leaky ReLU 2× 2× 512
Conv 2× 2× 512 4× 4 2 1 1 Leaky ReLU 1× 1× 512
DeConv 1× 1× 512 4× 4 2 1 1 ReLU 2× 2× 512
DeConv 2× 2×1024 4× 4 2 1 1 ReLU 4× 4× 512
DeConv 4× 4×1024 4× 4 2 1 1 ReLU 8× 8× 512
DeConv 8× 8×1024 4× 4 2 1 1 ReLU 16×16× 512
DeConv 16×16×1024 4× 4 2 1 1 ReLU 32× 32× 256
DeConv 32× 32× 768 4× 4 2 1 1 ReLU 64× 64×128
DeConv 64× 64× 256 4× 4 2 1 1 ReLU 128×128× 64
DeConv 128×128×128 4× 4 2 1 1 Tanh 256× 256× 3
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adjusted to 256 × 256, and the mask required for each
image was randomly selected from the mask library
published by Liu et al. [8]. )e mask library contained
12,000 irregular masks, and the mask rate was divided into
six categories: (0, 0.1], (0.1, 0.2], [(0.3, 0.4, 0.2, 0.3]], (0.4,
0.5], and (0.5, 0.6]. When the edge repair network is
trained, the batchsize is 8, the Adam optimizer with
parameter: beta1 � 0, beta2 � 0.9 is used for optimization.
)e ratio of the learning rate of the generator to the
discriminator is 0.1. At the beginning of network training,
the learning rate uses 1 × 10−4, and when the loss tends to
be stable, the learning rate is changed to 1 × 10−5, and then
training until convergence is realized. When the image
inpainting network is trained, batchsize is set to 4, and the
remaining training parameters and strategies are con-
sistent with the edge repair network.

Experiments are conducted on three datasets with dif-
ferent styles: Celeba [26], Façade [27], and Places2 [28], and
GL [4] PCONV [8], and PEN-Net [10] are selected to
compare with the proposed model.

5.2. Wavelet Filterbank *eory

5.2.1. Qualitative Comparison. GL performs poorly in color
consistency and structural connectivity when repairing ir-
regular and defective face images. Although two discrimi-
nators are used to evaluate the overall semantic information
and local detailed features of the inpainting results, GL does
not perform targeted filling and inpainting of the defect area
at the feature level, and the performance of GL in the large-
area irregular broken image inpainting is inferior to that in
regular rectangular area. )e content generated by PConv in
the defect area is close to the original image in color, but
there is an obvious blur. Moreover, due to the lack of the
guidance of the marginal prior conditions, there is structural
disorder in the inpainting result. PEN-Net is not stable
enough to repair such irregular face images. It can generate
semantic targets (such as eyes) in the defect area that are not
found in the surrounding background area, but lacking
prerequisite guidance for the edge results in the generated
content with reasonable semantics but disorderly location,

Broken Image GL PConv PEN-Net Ours Original Image

Figure 3: Comparison results on the Celeba.
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which affects the inpainting effect. Taking the edge repair
map as the guiding factor, through the flexible combination
of the feature self-arrangement module and the skip con-
nection, the context feature information is fully used, and
then the clear and reasonable content can be obtained. )e
specific inpainting effect is shown in Figure 3.

)e inpainting result of the image with the complex
structure such as the exterior wall of the building by GL is
relatively blurred. PConv can generate content with similar
structure and color to the raw image in the defect area, but
there are still obvious artifacts. )e attention shift mech-
anism applied by PEN-Net can generate pixel content
similar to the original image at the defect location, and the
artifact is significantly improved. However, due to the lack
of guidance from the edge, the structure connectivity of the
generated content is insufficient. When the algorithm in
this paper repairs such irregular broken images with
complex structures, the edge generation map repaired by
the edge repair network plays a very important guiding

role. Because the edge repair network can generate a well-
structured edge in the defect area, the final inpainting result
avoids structural disorder. )e specific inpainting effect is
shown in Figure 4.

Both GL and PCONV have different degrees of artifacts
in the inpainting of natural images. Pen-Net performs well in
repairing solid color background areas, but the model has
poor performance when processing natural image texture
synthesis, resulting in color distortion and serious blurring,
which generates content with poor structural connectivity
and unreasonable color content. )e edge repair network in
this paper generates reasonable structural information in the
broken area to ensure the structural connectivity of the final
inpainting effect. )rough skip connection and feature
matching rearrangement network, the potential feature
information at all levels is fully utilized to ensure the se-
mantic coherence and color rationality of the final
inpainting effect. )e specific inpainting effect is shown in
Figure 5.

Broken Image GL PConv PEN-Net Ours Original Image

Figure 4: Comparison results on the Facade.
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5.2.2. Quantitative Comparison. In order to objectively
compare the repair effects of this model and other algo-
rithms, mean L1 loss, peak signal-to-noise ratio (PSNR),

and structural similarity index measurement (SSIM) are
adopted to evaluate the inpainting results.)emean L1 loss
is used to compare the L1 distance between the raw image

Broken Image GL PConv PEN-Net Ours Original Image

Figure 5: Comparison results on the Places2.

Table 4: Quantitative comparison of algorithms.

Data set Mask rate
Mean L1 loss† PSNR¶ SSIM¶

GL PConv PEN-Net Ours GL PConv PEN-Net Ours GL PConv PEN-Net Ours

Celeba

10% ∼ 20% 0.035 0.031 0.026 0.012 25.11 26.29 27.69 31.65 0.853 0.885 0.912 0.931
20% ∼ 30% 0.062 0.051 0.041 0.036 23.96 24.21 26.44 30.21 0.811 0.817 0.826 0.839
30% ∼ 40% 0.081 0.055 0.051 0.037 23.64 23.85 23.86 27.03 0.795 0.811 0.811 0.841
40% ∼ 50% 0.101 0.089 0.072 0.065 22.21 21.47 22.37 26.41 0.713 0.786 0.797 0.823

Facade

10% ∼ 20% 0.043 0.033 0.031 0.019 23.08 23.59 24.19 32.36 0.801 0.857 0.841 0.943
20% ∼ 30% 0.047 0.073 0.045 0.044 23.57 23.21 23.91 27.17 0.774 0.863 0.861 0.889
30% ∼ 40% 0.088 0.091 0.073 0.055 21.15 22.19 22.57 25.33 0.766 0.712 0.854 0.871
40% ∼ 50% 0.101 0.113 0.076 0.067 21.67 22.31 21.34 23.57 0.714 0.751 0.836 0.857

Places2

10% ∼ 20% 0.037 0.021 0.023 0.011 21.61 23.61 25.33 30.19 0.784 0.835 0.814 0.919
20% ∼ 30% 0.057 0.054 0.040 0.031 21.17 22.71 24.74 27.47 0.776 0.797 0.804 0.814
30% ∼ 40% 0.051 0.058 0.053 0.046 20.53 22.15 23.87 25.31 0.751 0.779 0.789 0.826
40% ∼ 50% 0.071 0.083 0.075 0.066 20.27 21.94 21.61 22.92 0.737 0.764 0.778 0.793

)e bold values are the experimental results in this paper.
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and the repaired image. PSNR focuses on the difference
between image pixels, and the SSIM is selected to compare
the difference between the two images in brightness,
contrast, and structure. )e quantitative comparison re-
sults are shown in Table 4. )e lower the value of mean L1
loss is, the better. )e higher the value of PSNR and SSIM
are, the better. )e method with the optimal inpainting
effect under different mask rates has been shown in bold (†

indicates that the lower the value is, the better, and ¶ in-
dicates that the higher the value is, the better).

5.3. Model Validity Analysis

5.3.1. Validity Analysis of Edge Repair Network. Under the
condition of given gray information and edge

Broken Image Broken Edge Map Repair Edge Map Ours Original Image

Figure 6: Edge repair network validity test.

Broken image Without edge repair network With edge repair network Original image

Figure 7: Validity test of edge prior conditions.
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information around the broken area, the edge repair
network can extend the edge in the broken area and
generate a partially closed and coherent semantic con-
tour. )e comparison of the broken edge map and the
edge repair map in Figure 6 shows that the edge repair
network can connect the two ends of the broken structure
in the broken area, which fully indicates that the edge
repair network can accurately reconstruct high-fre-
quency structural information. At the same time, the
analysis of the repaired image by the edge repair map
shows that the semantic target structure in the broken
area is highly consistent with that of the edge generated
map in the broken area, which proves the validity of
image inpainting with the edge repair map as a prior
condition.

5.3.2. Validity Analysis of Edge Prior Conditions. With the
edge repair map as a priori condition, the model can
finally generate semantically coherent content in the
broken area. Without the edge repair map as a guide
condition, the model cannot generate content with rea-
sonable semantics and connected structure. It fully il-
lustrates the important role of the edge generated map in
the image inpainting to insure the structural connectivity
and semantic coherence of the inpainting effect, as shown
in Figure 7.

5.3.3. FSM Feature Validity Analysis. Without FSM feature
guiding inpainting, the final inpainting result generated in
this paper is quite distinct from the background region in
color, which does not conform to the human visual char-
acteristics; when the FSM feature guidance is introduced in
the decoding process, the content generated by the model in
the broken area is highly consistent with the background

area in color, and the texture blur in the broken area is
effectively reduced, indicating that the introduction of FSM
features in the decoding process enables the model to
generate content with more reasonable color and clearer
details, as shown in Figure 8.

6. Conclusions

A generative image inpainting model combining edge and
feature self-arrangement module is proposed. )e edge
repair network can effectively reconstruct structural infor-
mation in the broken area and output a highly connected
and semantically coherent edge repair map; the image
inpainting network uses edge generation map as prior
conditions and fuses the encoding features at all levels with
the corresponding decoding features to decode layer by layer
through skip connection, which effectively utilizes the
context feature information in the process of encoding and
decoding, avoiding the loss of part of semantic information
and local details when the context features are transmitted
among convolutional layers; meanwhile, a feature self-ar-
rangement module is proposed to fill the broken area with
effective information at the feature level, and it fuses the
reconstruction features into the decoding process of the
corresponding layer to restrain the subsequent decoding.
Combined with the influence of the above three aspects, the
model of this article can eventually generate the content with
the same semantics, valid structure, and clear texture fea-
tures as the original image.

Data Availability

)e datasets analyzed during the current study are available
from the corresponding author on reasonable request.

Broken image without FSM module with FSM module Original image

Figure 8: FSM feature validity test.
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