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Whether the traditional water equipment is equipped with remote transmission unit depends on whether the power consumption
of the installed equipment can meet the expected life cycle. In the paper, by using intelligent strategies to save the power
consumption of sending data, more sites can be selected to install remote transmitting units. In the process of transmitting data
packet sequence, the remote transmission device needs to perceive the environment, interact with the environment and make
decisions, and adjust the strategy according to the e�ect of the decision actions. �erefore, in this paper, the transmission process
is modeled as Markov sequence decision model. And the real time signal interference noise ratio of the channel and the
transmission delay of the data packet are de�ned as the state space. �e decision action space consists of immediate transmission
and delayed one, and the minimum total power consumption is taken as the objective function. �e model is solved by Proximal
Policy Optimization (PPO) algorithm, and the optimal decision sequence of site selection threshold is obtained.

1. Introduction

Di�erent from solving multi-device game problems through
reinforcement learning, solving single-device decision-
making problems through reinforcement learning can be
modeled as a Markov decision process [1]. When the state
transition probability of a single device is known, the iter-
ative equation of dynamic programming can be used to solve
its decision-making problem. Due to the wireless environ-
ment of the installation point of water equipment, its state
transition probability is often unknown, and reinforcement
learning algorithm can explore the environment through
trial and error, and obtain a good strategy to maximize the
overall expected return. In this paper, a deep reinforcement
learning algorithmwill be used to solve theMarkov sequence
decision problem of a single intelligent device.

2. Literature Review

In recent years, wireless communication technology is de-
veloping rapidly, especially the Internet of �ings

communication technology represented by NB-IoT (Nar-
rowband Internet of �ings) [2], which has the characteristics
of deep coverage, low power consumption, and low remote
maintenance cost, which is very suitable for the water industry,
the deployment location, data transmission, battery power
supply, and other characteristics of the remote transmission
equipment. With the full coverage of the NB-IoT network, a
large number of IoTdevices have been installed or replaced in
the urban water supply and drainage network and copy
collection system. �e number of remote transmission
equipment such as water meters and manhole cover monitors
installed withNB-IoTmodules in urban pipeline networks and
copy collection systems is also rapidly increasing.

�ese remote transmission devices have intelligent features
such as on-demand data reporting, intelligent sleep and access
to the platform, and online detection with the platform. �ese
intelligent devices are mainly composed of three modules,
namely, data acquisition and calculation module, compression
and storage module, and data transmission module. �ese
modules are located in the application layer, storage layer, and
communication layer of the smart device, respectively.
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According to the agreement between the device and the
platform [3], the device collects data at a fixed frequency
every day, and the amount of data accumulated in each time
period is basically fixed.'e sensors of the device collect data
according to certain rules and frequencies. 'e basic data is
the measurement data of the user’s water flow. In addition,
there may be additional data such as water pressure and
water temperature.'e collected data is stored in the remote
transmission device. Metering and sensing accumulated data
to the platform in the form of incremental or absolute
amount through the communication unit on the equipment
at a predetermined time every day. 'e data accumulated
during upload will be split into multiple packets and sent.

After the data is sent on the same day, in order to save
power consumption and prolong the working life, the re-
mote transmission device will power off itself to sleep or
enter the PSM (power save mode) state after sending data,
and wake up on the next day or when data is sent, the unsent
data will continue to be sent the next day.

Most of the equipment of intelligent water affairs is
installed in the weak coverage area of wireless channels such
as corridors and wells. On the coverage benchmark, there
will also be various frequency shifts, random disturbances
generated by interference, and superposition of noises, such
as white noise, occlusion, and co-frequency interference.'e
result of superposition makes the channel quality change
randomly.

'erefore, the channel quality of wireless communica-
tion is jointly determined by signal coverage and noise
interference. Generally, two quantities are used to evaluate
the channel quality: RSRP (Reference Signal Receiving
Power) and SINR (Signal to Interference plus Noise Ratio).

3. Problem definition

Most of the equipment in the urban pipe network system
and the copying system are deployed in underground
pipelines or corridors. 'e remote transmission equipment
is battery powered and power consumption sensitive. Due to
building block reflection or stray interference, the wireless
signal will be greatly attenuated, and the battery life is very
dependent on the installation environment and data
transmission strategy. If the installation location and
transmission strategy are not good, some batteries will be
consumed quickly from the start of the remote transmission
equipment to the use of the battery, which cannot support
the data collection and transmission business needs of a
period of 6–10 years. Since the installed equipment is un-
attended, when the equipment needs to replace the battery, it
generally needs to be manually operated on-site. When the
battery is manually replaced on-site or the traditional
manual reading is used, it is often difficult to enter the home
and the equipment maintenance cost is relatively high.

Due to the relatively high labor cost of replacing batteries
for these devices, from the perspective of investment and
cost, it is expected that these devices can maintain a longer
life cycle and send more data, thus resulting in the problem
of installation and location selection of remote transmission
devices.

'e installation site selection of the remote transmission
equipment depends on two aspects [4]: the wireless signal
coverage quality of the installation point, and the ability of
the equipment to perceive the installation environment.

Before remote transmission equipment is installed, it is
necessary to measure the wireless signal coverage quality at
the installation site to ensure compliance with a certain
threshold. 'e determination of the threshold is related to
the ability of the device to perceive the installation envi-
ronment. 'at is, the stronger the device’s ability to perceive
the installation environment, the lower the requirements for
the quality of wireless signal coverage; on the contrary, the
weaker the device’s ability to perceive the installation en-
vironment, the higher the requirements for the quality of
wireless signal coverage. By improving the device’s ability to
perceive the environment, the requirements of the device on
the quality of on-site signal coverage at the installation point
are reduced, so that more installation points have the
conditions to install remote transmission equipment.

When the channel state changes, the SNR fluctuates. It
will affect the power (power consumption) consumed by the
remote device when sending data. When the signal gets
worse, it takes longer to send data and requires more power
consumption.'e relationship between power consumption
and signal quality presents a nonlinear relationship, that is,
when the signal quality gradually deteriorates, the power
consumption gradually increases. When the signal quality
falls below a certain threshold, the power consumption starts
to increase rapidly.

Based on the above-mentioned nonlinear relationship
between channel quality and power consumption, there is no
clear judgment value, and it is necessary to determine the
best action value that should be taken according to the
environment and a certain strategy. 'at is, the remote
transmission device detects the channel quality of the
wireless communication through the sensor to determine
whether to send the data immediately or temporarily. Under
the condition of a certain battery capacity of the remote
transmission equipment, after all data of the day is sent
correctly, the power consumption is the smallest, so that the
service life of the remote transmission equipment is the
longest. 'erefore, when the life cycle of the equipment is
6–10 years, it is necessary to determine the location range of
whether the remote transmission unit can be installed
according to the amount of data to be sent.

'erefore, the installation site selection and perception
improvement of remote transmission equipment is essen-
tially an optimization problem for smart equipment to adopt
a certain decision-making mechanism in an unknown en-
vironment to minimize the power consumption of the
equipment.

4. System Model

In this paper, the environment-aware decision-making
process of data packets sent by remote equipment is modeled
as MDP [5] (Markov decision process) to describe the state
transition of the system. And the derivation of the process is
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equivalent to the layout and location selection mechanism of
intelligent water remote transmission equipment.

Remote device is divided into n data packets each time,
the data packet set Ti � t1 , t2􏼈 , . . . , tn}, is a sample of task
distribution, and each task sample corresponds to an MDP
process. 'is MDP process is defined by a quintuple
S, A, P, R, c􏼈 􏼉, where S is the state space,A is the action space,
P is the state transition matrix, and R is the state transition
benefit, which c is the forward benefit discount.

4.1. Channel Status. Remote transmission device sends each
data packet in turn. According to the agreement, the amount
of data sent is fixed. However, due to the random charac-
teristics of wireless channels, the channel quality will vary
randomly. Some packets need to be resent if poor channel
quality results in higher BER or packet loss.

'e signal-to-noise ratio (SINR) of the channel obeys a
small-scale Rayleigh distribution, and its probability density
function [6] is expressed as

p(snr) �
1

snr
exp −

snr

snr
􏼒 􏼓. (1)

Among them, snr the threshold value set of SINR is snr

expressed, and the expectation of SINR is expressed. 'e
NB-IoT network snr divides the channel quality into N
grades according to the value, and sets a total of N -1 signal
quality thresholds, snr � snr1, snr2, . . .，snrN−1􏼈 􏼉.
According to the snr threshold, the channel quality can be
divided into N states, C � c0, c1, . . . cN−1􏼈 􏼉. 'e channel state
probability is

pc ci( 􏼁 � 􏽚
snri+1

snri

p(snr)d(snr). (2)

Assuming that the next moment of the channel can only
be transferred to the adjacent interval, the state transition
probability of the channel [6] is

pc ci, ci+1( 􏼁 �
N snri+1( 􏼁∗Tf

pc ci( 􏼁
， i ∈ 0, 1, . . . , N − 2{ },

pc ci, ci−1( 􏼁 �
N snri( 􏼁∗Tf

pc ci( 􏼁
， i ∈ 1, 2, . . . , N − 1{ }.

(3)

Among them, N(snri) �

�������������

2∗ π ∗ snri/snr

􏽱

, ∗, fD ∗
exp(−snr/snr), fD is the maximumDoppler frequency shift.

4.2.DeviceLatencyStatus. Device latency status of the device
is described by the total delay after the device sends the i-th
data packet, and the total delay corresponds to the power
consumption. Suppose the sending time of the first data
packet is, and the sending time of t0 the i-th data packet is ti.
Obviously, the total delay after the device transmits the i-th
data packet is not only related to the immediate decision, but

also depends on the delay accumulation of the previous i−1
data packets. 'e solution of the total transmission delay of
the i-th packet can be transformed into a combination of
immediate decision-making and solution of the total delay of
the i-1-th packet.

τi � τi−1 + Δτi + Tf, (4)

where the device latency status is τ � τ1, . . . , τn􏼈 􏼉, Δτi

denote the waiting time determined by the immediate de-
cision is related to the channel state and τi−1 depends on the
state of the previous i -1 data packets, Tf is a constant which
is the transmission time of one data packet.

4.3. System Status. System state S can be defined as the
combined state of the channel state and the device delay
state, i.e., S≜C⊗ τ. 'e above equation is a recursive process
and cannot be solved by dynamic programming because the
transition probability is unknown.

4.4. Action. A denotes the remote transmission device taken
when the new data packet is to be transmitted and it can be
expressed as A≜ 0, 1{ }: When a� 0, it means to transmit
immediately; when a� 1, it means to suspend transmission.

5. MDP Process Analysis of Remote Equipment

5.1. System State Transition. When the remote transmission
device sends data packets in sequence in a queuing manner,
according to the channel state, the remote transmission
device may choose to send the data packets immediately.
'is strategy works in the connected state, corresponding to
the instantaneous SINR, and uses the transmit power to
transmit with a certain probability. And transfer to the new
channel state and device delay state.

'e remote device may also adopt a policy of suspending
sending a packet.'is strategy waits in an idle state, expecting
a better channel state to transmit, and the smart device Δτi

continues to transmit after an interval according to the change
of the channel state. After waiting for transmission, the system
state transitions to the new channel state and in-device delay
state. Since each data packet is small, the time to transmit a
data packet is very short compared to the waiting time, which
is defined as one frame Tf.
Δτi set as the single-step delay time of the i -th data

packet, which is randomly determined Δτi by the intelligent
device according to the environmental state. It is the pause
waiting time. 'is waiting will cause the overall delay of the
time for the device to complete the transmission of all data
packets Δτi . τi is the total delay of sending the first i data
packets. ti In order to send the time to be transmitted for the
i - th data packet, the delay before the i-1 data packet ti−1 − t0
is to be transmitted is
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τi−1 �
ti−1 − t0 + Tf, sentting the(i − 1)th Packets immediately,

ti−1 − t0 + Δτi−1 + Tf, suspending the (i − 1)th packet,
⎧⎨

⎩ (5)

the ith data packet is decided, the recursive formula of the
delay state of the device is

τi �
τi−1 + Tf, sentting the ith Packets immediately,

τi−1 + Δτi + Tf, suspending the ith packet.
⎧⎨

⎩

(6)

Set τ0 � 0. 'en, the one-step delay of the i -th packet is

Δτi � int
N − snri

snrN − snr1/N( 􏼁
􏼢 􏼣􏼨 􏼩∗ δ. (7)

SINR is related to the delay. 'e better the SINR, the
smaller the delay. δ In order to suspend the parameter of the
minimum time segment, this paper assumes that the channel
quality remains unchanged in theminimum time segment to
ensure that the retransmission is an incoherent channel, and
N is the number of states. And int is a rounding operation
function.

5.2. System Benefits and Costs. After the device sends a data
packet, if it does not receive the confirmation message from
the platformwithin a certain period of time, it will resend the
data packet. Due to the different acknowledgment mecha-
nisms of different platforms, the additional power consumed
by the device to resend the data packet is different.'erefore,
an equivalent model is established: in different environ-
ments, the device increases the transmit power to ensure the
same bit error rate during the transmission and transmission
of data packets.

NB-IoT network adopts two rates to transmit data
according to the SINR, corresponding to BPSK modulation
(Binary Phase Shift Keying) and Q PSK modulation
(Quadrature Phase Shift Keying). When the channel quality
is relatively poor, the NB - IoT network uses the BPSK
modulation method to obtain the minimum transmit power
consumption when the bit error rate requirements are met
under different channel states [7],

Pber si( 􏼁≤ 0.5∗ erfc

��������

snri ∗Pi
′)

σ

􏽳

⎛⎝ ⎞⎠, (8)

where Pber(si) � beri/σ is the bit error rate probability and
erfc(x) � 2/

��
π

√
∗ 􏽒

x

0 e−η2dη is the Gaussian error function.
Ber is the allowable bit error rate of the wireless channel,

σ is interference noise power. It is the Pi
′ equivalent transmit

power that guarantees no packet loss or retransmission when
the bit error rate is met. When the channel quality is rel-
atively good, the NB-IoT network uses the QPSK modula-
tion method to obtain the minimum transmission power
consumption when the bit error rate requirements are met
under different channel states, namely,

Pber si( 􏼁≤ 0.2∗ exp
−1.6∗ snri ∗Pi

′

3∗ σ
􏼠 􏼡. (9)

When the device suspends sending the first i data packet,
the power consumption is I0 ∗Δτi + Pi

′/v∗Tf, where I0 is
the idle state working current of the device, and when the
device is in the waiting state, the idle state current of the I0
device withinΔτi the time is. v is the device voltage and Tf is
the length of time in the connected state to transmit a data
packet.

When the device sends immediately, Δτi � 0, the power
consumption of a single packet is

Wi � Δτi ∗ I0 +
Pi
′

v
∗Tf. (10)

After sending each data packet of all samples, the total
power consumption of one day can be expressed as

Wday � 􏽘
M

m

􏽘

n

i�1
Δτi ∗ I0 +

Pi
′

v
∗Tf􏼠 􏼡. (11)

Among them, M is the number of samples sent in one
day, each sample is the data to be sent once agreed in the
protocol, and n is the number of data packets corresponding
to one sample. 'e goal of the system is to find the most
efficient decision to send packets for maximum benefit, i.e.,
minimum total power consumption.

Defined ti immediate reward function is the negative
value of the power consumption of a single data packet, that
is, Ri � −Wi, the immediate reward function of the amount
of data sent per day is the negative value of the total power
consumption, i.e., Rday � −Wday.

5.3. LocationRangeofEquipment. 'e expected life days that
the remote device can use is d, and the battery capacity is set
to be Wtotal, then d � Wtotal/Wday, the expected life years
D � d/365.

If the remote device only has data to be sent once a day,
the location decision can be calculated by the following
formula

Wtotal � 􏽘

d

j�0
􏽐
n

i�1
Δτi ∗ I0 +

Pi
′

v
∗ τ0􏼠 􏼡. (12)

Since the battery capacity of the device Wtotal is a known
value, when the expected number of days or years of use is
given, an optimal environment-aware decision chain needs
to be obtained to obtain the optimal Δτi sum Pi

′ scheduling.
Under the condition that the battery capacity, expected

service life, and data volume of the device are all determined,
whether a remote transmission device can be installed at an
installation point depends entirely on Δτi and Pi

′ there is a
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feasible solution. In order to delay the service life of the
equipment, it is also necessary to seek the optimal strategy A
to obtain the optimal solution.

According to the data collection and transmission rules
of the device and the platform, each time data is sent every
day during actual operation, it will be divided into n data
packets and sent in a sequence. During the sample learning
period, data can be sent continuously forM times, parameter
training can be performed, battery power consumption can
be measured, and it can be converted into whether the
battery life meets the expected number of years.

6. Optimal Decision-Making Based on Deep
Reinforcement Learning

For the above MDP problem, this paper will use deep re-
inforcement learning algorithm to solve. In the random and
aligned MDP process, the state s and the decision action a
have randomness and can π(a|s) be represented by a
conditional distribution, representing π the mapping from
the state to the decision action a, that is, the policy. 'e
following defines a class of neural networks to fit policies.

6.1. Sequence Representation of Neural Networks. 'e smart
device divides the data sent each time into n data packet
sequences to send, and needs to make a sending decision on
the n data packets in turn to form a decision sequence. 'is
paper uses seq2seq (sequence-to-sequence) [8] neural net-
work to express the above process sequence, that is, input a
sequence and output a sequence. 'e network structure is
shown as Figure 1.

Seq2Seq neural network consists of an encoder and a
decoder, both of which are R NN networks (Recurrent
Neural Network, recurrent neural network). Assuming that
the parameters of the neural network are θ, then when the
state s is input, the conditional probability of outputting the
optimal decision a can be rewritten πθ(a|s). According to
the input ti, the neural network first encodes the learning
andmemory through the encoder, and then outputs through
the decoder according to the memory of the network dj, and
then passes through two different activation functions,
corresponding to the output state value function v(s) and
decision sequence probability πθ(a|s).

In order to reflect the characteristics of the data to be
sent, the sequence of data packets can be converted into a
sequence of embedded vectors and input to the neural
network. Input ti � [data packet sequence number i, data
packet size], which is a 2-dimensional vector. For different
types of devices, the amount of data to be sent each timemay
be different, so the size of the data packet is different.'e size
of the last data packet of each device is also different from the
previous n−1 data packets, which is the margin of the data
amount divided by n−1.

Denote the encoder and decoder [9] as,fdec, respectively,
fenc, then.

'e output of the encoding part is

ei � fenc ti, ei−1( 􏼁. (13)

'e output of the decoding part is

dj � fdec zj, sj−1, aj−1􏼐 􏼑. (14)

'e input of the decoder consists of 3 parts [10], in-
cluding the weighted sum of the output of the encoder zj,
and the decision execution result of the previous step
sj−1, aj−1. zj is the context of the decoder in step j, which
contains the attributes of the data to be sent.

Seq2seq neural network is an n -dimensional vector d.
After nonlinear activation of this vector, an n -dimensional
probability vector πθ and a value function v, (si), respec-
tively, are obtained.'e probability vector corresponds to πθ
the probability that the decision action takes a certain a, and
the sum is 1. 'en, the decision action of the
aj � argmaxa(πθ)jth step can be obtained through the
greedy algorithm.

6.2. Parameter Update and Optimal Decision. To update the
neural network parameters, this paper adopts the PPO2 [11]
algorithm (Proximal Policy Optimization, proximal policy
optimization). 'e remote transmission equipment may
send 1 or more samples per day, and the daily objective
function can be defined as

J � ERday. (15)

Based on the sequence representation of neural network,
the objective function J for each sample (θm) can be re-
written as

J θm( 􏼁 � Eθ Rday θm( 􏼁􏼐 􏼑. (16)

According to the law of large numbers,

J θm( 􏼁 ≈ 􏽘
M

m�1
R θm( 􏼁( 􏼁 � E −Wday􏼐 􏼑, (17)

where M is the number of samples, the data volume of each
sample is divided into n data packet sequences and sent,m is
the sample sequence number, that is, the data packet se-
quence. R(θm) is the power consumption of each sample,
namely,

R θm( 􏼁 � 􏽘
n

i�1
min ωi ∗Ai, clip

1+Δ
1−Δ ωi( 􏼁∗Ai􏼐 􏼑, (18)

Δ is the clipping constant, and the trend function [12] is

Ai � 􏽘
n−i+1

j�0
c∗ωi( 􏼁

j ∗ ri+j + c∗ vπ si+j+1􏼐 􏼑 − vπ si+j􏼐 􏼑􏼐 􏼑. (19)

Among them, c is the advantage function discount
coefficient, r is the immediate return, and vπ is the state value
function. ω are the adjustment coefficients for variance and
bias,

ωi �
πθm

ai|si( 􏼁

πθ0m
ai|si( 􏼁

. (20)
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According to the formula (10), ti+j the immediate reward
function that can be obtained is

ri+j � E −Wi+j􏼐 􏼑. (21)

gradient update formula of the neural network param-
eters is

θi
′ � θi + α∗∇θi

J θm( 􏼁( 􏼁. (22)

Among them, α is a training coefficient, which is the
learning rate, that is, the gradient descent factor. When the
neural network parameters converge iteratively, the output
of seq2seq is the optimal decision.

7. Experiment and Result Analysis

'e list of simulation parameters used in this paper is as
follows, including model parameters and algorithm pa-
rameters. In the simulation process, a sample is divided into
10, 12, 15, and 20 data packet sequences for training. In
order to reduce the channel correlation, the minimum delay
time segment of data packet transmission is taken as 5 s.

'e water model and neural network, as well as the
parameter settings of PPO2 are shown in Table 1.

After encoding the delay state and channel state, re-
spectively, they are input into the neural network. Figure 2
shows the change of the device delay state. When the de-
cision is to send immediately, the delay is much smaller than
the delay caused by suspending transmission. Figure 3 shows
the change of the channel state. 'e channel state, as the
environment in which the smart device is located, is rela-
tively stable when the signal-to-noise ratio is good, and is
more likely to change randomly when the signal-to-noise
ratio is poor.

Each time the far-transmission device sends a data
packet, it may either suspend the sending or send it

immediately. 'e transmit power each time a data packet is
sent is related to the state and environment it is in. Figure 4
shows the power when different data packets are trans-
mitted, and the different power levels reflect the equivalent
model of repeated transmission. 'e power consumption of
suspending the transmission of data packets is related to the
idle current and the waiting time.'e power consumption of
sending a packet immediately is related to the transmit
power/device voltage, and the transmit duration. 'e im-
mediate return in Figure 5 is the negative value of power
consumption, and the minimum power consumption is
equivalent to the maximum return.

After the water MDP model is established, it is solved by
the PPO2 algorithm. For the sake of convenience, the ref-
erence objective function value is -6 in the experiment, and

Table 1: Simulation parameters.

Parameter Value description
Number of packets n� {10, 12, 15, 20}
Suspend the smallest time segment δ� 5 s
Packet transmission time Tf � 1 s
Packet size <200 bytes
SNR threshold snr� [1.28 3.28 5.28 6.28]
Equipment voltage V� 3
Device idle current I0 � 250μA

Number of samples M� 5
Expected life cycle d� 10 ∗ 365 days
Learning rate α� [0.002, 0.005]
Return discount factor c � 0.9 _
Advantage function discount factor ϕ� 0.95
Clipping constant Δ� 0.2
Number of neurons unit s� 2 56;
Overfitting factor 0.5 _
Hidden unit Layers� 256
Coding layer Layer 1� 2
Decoding layer Layer 2� 2

υ (s1) πѲ (a1∣s1)

Context Vector
d1

e1

t1 t2 tn

e2
en

d2 dn
Decoder

Encoder

…

…

…

s0 s1 sn–1

Z

Figure 1: Architecture of the seq2seq neural network.
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the difference between the training objective and the ref-
erence objective value is defined as the loss function.. 'e
parameters of the neural network converge as the number of
iterations increases, and the strategy is also more optimized.
When the loss function is stable, the parameters of the neural
network converge to the optimal, and the corresponding
strategy is the optimal expression of the neural network.
Figure 6 is the parameter iteration process when the learning
rate is 0.002, and Figure 7 is the parameter iteration process
when the learning rate is 0.0005. When the learning rate is
increased, the convergence is faster, but the oscillation is also
larger.

'e agreement between the water remote transmission
equipment and the platform stipulates that a single data
should be less than 200 bytes, so when the amount of sample
data to be sent is large, it will be split into more data packets.

On the other hand, when the amount of data to be trans-
mitted is constant, the more data packets are split, that is, the
smaller the data packets, the lower the cost of retrans-
mission, which is more suitable for the requirements of the
narrowband Internet of 'ings. At this time, the loss
function is smaller and easier to converge. Figures 6 and 7
are, respectively, the convergence of neural network pa-
rameters for 10, 12, 15, and 20 data packets.

Figure 8 randomly distributes the full connection bias
range of the neural network from 0 to 1. After adjusting to a
normal random distribution, the convergence of the loss
function will be more oscillating due to the increase in the
dynamic range.

As mentioned above (Figure 5), if the perception model
and algorithm in this paper are not used, the power con-
sumption of one data packet is 0.04mAh. If 20 data packets
are sent every day and the life cycle of 10 years is calculated,
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the required battery capacity is 0.04 ∗ 20 ∗ 365 ∗ 10�

2920mAh. Generally, the medium battery capacity is
5000mAh, which can support the device to send 1.71
samples per day, and each sample includes 20 data packets.
After adopting the perception model and algorithm in this
paper, the average power consumption of a data packet in
Figure 5 is 0.018mAh, which can support the device to send
3.7 samples per day. With the increase in the amount of data
collected by equipment, the perception model and algorithm
in this paper can support more installation point equipment
with remote transmission units.

8. Conclusion

Starting from the actual problem of the layout and location
mechanism of remote transmission equipment of intelligent
water affairs, this paper establishes a system model based on
MDP, namely, the Markov sequence decision model. 'e
state, action, and reward function definitions of the model
are given in this paper, and the simulation results of these
definitions are given in the experimental part. 'e sequence
decision is expressed based on the Seq2Seq neural network,
and the PPO2 algorithm is used to solve the MDP sequence
decision problem. 'e solution process and results are given
in the experimental part. And when the model and method
are applied to the actual water management problem, based
on the life cycle of the remote equipment and the battery
capacity value, the application scope of the equipment layout
and location selection is solved.
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