
Research Article
A New Hierarchical Temporal Memory Algorithm Based on
Activation Intensity

Dejiao Niu , Le Yang , Tao Cai , Lei Li , Xudong Wu, and Zhidong Wang

Department of Computer Science and Telecommunication Engineer, Jiangsu University, Zhenjiang 212013, China

Correspondence should be addressed to Dejiao Niu; djniu@ujs.edu.cn

Received 29 July 2021; Revised 11 October 2021; Accepted 4 January 2022; Published 24 January 2022

Academic Editor: Yu-Ting Bai

Copyright © 2022 Dejiao Niu et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As a human-cortex-inspired computing model, hierarchical temporal memory (HTM) has shown great promise in sequence
learning and has been applied to various time-series applications. HTM uses the combination of columns and neurons to learn the
temporal patterns within the sequence. However, the conventional HTM model compacts the input into two naive column
states—active and nonactive, and uses a fixed learning strategy. +is simplicity limits the representation capability of HTM and
ignores the impacts of active columns on learning the temporal context. To address these issues, we propose a newHTM algorithm
based on activation intensity. By introducing the column activation intensity, more useful and fine-grained information from the
input is retained for sequence learning. Furthermore, a self-adaptive nonlinear learning strategy is proposed where the synaptic
connections are dynamically adjusted according to the activation intensity of columns. Extensive experiments are carried out on
two real-world time-series datasets. Compared to the conventional HTM and LSTMmodel, our method achieved higher accuracy
and less time overhead.

1. Introduction

Hierarchical temporal memory [1] is a machine learning
algorithm that simulates the structure and biological
functionality of the neocortex and is particularly suitable for
sequence learning and prediction. It not only advances our
understanding of how the brain may solve the sequence
learning problems but also has been applied to various
practical implications, such as anomaly detection [2], dis-
crete [3] and continuous sequence modelling [4], face
classification [5], handwritten digits recognition [6], and
sequence prediction [7].

Compared to the existing machine learning algorithms,
HTM exhibits properties that are closer to the working of the
human neocortex. It is an emerging brain-inspired cognitive
and computing model derived from the discoveries of
neuroscience and brain science [8]. Classic artificial intel-
ligence (AI) and artificial neural networks (ANNs) generally
are designed to solve specific types of problems rather than
proposing a general theory of intelligence. In contrast, HTM
tends to seek solutions that are universal in that they apply to

every sensory modality. +erefore, HTM is a theoretical
framework for both biological and machine intelligence [9].

As the name implies, HTM is fundamentally a memory-
based system. It is trained on lots of time-varying data and
relies on storing a large set of patterns and sequences. +e
implementation of HTM mainly involves two modules:
spatial pooler (SP) and temporal memory (TM). +e SP
algorithm converts the input data into sparse distributed
representation (SDR) with fixed sparsity, whereas the TM
algorithm learns sequence and makes context-sensitive
predictions.

+e HTMmodel consists of regions or levels arranged in
a hierarchical form. Each region is composed of neurons
known as cells, and multiple cells are aligned vertically to
form a column. +e column and cell are the fundamental
building blocks in HTM. Each cell has a proximal dendritic
segment and multiple distal dendritic segments. Each seg-
ment contains sets of synapses that are characterized by a
scalar permanence value. All cells on the same column share
the proximal segment, whereas the cell on distal segments
receives lateral inputs from nearby cells.

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 6072316, 17 pages
https://doi.org/10.1155/2022/6072316

mailto:djniu@ujs.edu.cn
https://orcid.org/0000-0001-6351-3004
https://orcid.org/0000-0003-3097-7245
https://orcid.org/0000-0003-1423-2710
https://orcid.org/0000-0001-8929-1657
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6072316

+e HTM column has two states: active and nonactive,
and the cell has three states: active, predictive, and non-
active. Each synapse on the shared segment connects to an
input data bit, and multiple columns become active once
the input is read in; that is, the input data are represented as
a set of active columns. +en, some cells (predictive cells at
the previous time step) on the active columns will become
active. All synapses on the distal segments of active cells are
checked, if the presynaptic cell of the synapse is currently
activated, the postsynaptic cell will become predictive now.
+us, the input data under a certain context are repre-
sented by a set of active cells. Finally, the set of predictive
cells is decoded to form the prediction results of the next
time step.

Typically, SDR is the key characteristics of the HTM
model. As the SDR of SP, the active columns encode the
spatial pattern of the input and are sent to TM. However,
using the representation of active columns may lose some
important information of input bits. +e state of active
merely indicates the column is closely related to the current
input. More detailed information, such as the closeness of
the connection and its effect on the subsequent TM learning,
is ignored. Moreover, the conventional HTM, both the SP
algorithm and TP algorithm, uses an online unsupervised
Hebbian-style learning rule [10] to adjust the synaptic
connection.+e permanence value of synapse is increased or
decreased by a fixed learning rate, without considering the
impact of various columns and cells but imposing the same
reward or punishment indiscriminately. In general, these
limitations make the HTM model less flexible, weaken its
internal representation ability, and subsequently impede its
performance.

To address the above problems, we propose a new HTM
algorithm based on activation intensity with the aim to
extend the representation capability and improve the HTM
learning. +e activation intensity is introduced to describe
the degree to which the column is associated with the input
pattern. Compared to the conventional column state, acti-
vation intensity enables a fine-grained abstraction on the
input and provides more detailed information of synaptic
connection. Furthermore, an improved self-adaptive
learning strategy that exploits the column activation in-
tensity is proposed for more effective sequence learning.

+e main contributions of our work are as follows:

(1) By introducing the column activation intensity, a
new HTM is proposed to improve the conventional
HTM performance on sequence learning.

(2) To improve the representation capability of HTM,
the activation intensity and the column state are
combined to learn the spatial patterns of the input
data. With the activation intensity, more useful in-
formation is maintained on the column and pro-
vided for more accurate context learning.

(3) To make the training perfectly adapt to various input
contexts, a column-sensitive learning strategy is
proposed for synaptic permanence adjustment. Syn-
aptic connections are adaptively adjusted according to

the activation intensity of columns where they locate.
+us, the cells are able to learn more dynamically and
discriminatively.

(4) +e proposed HTM system is implemented on the
NuPIC open-source platform. +e experimental
results on two time-series datasets, NAB and NYC-
Taxi, show that the proposed HTM is able to improve
the prediction accuracy and significantly reduce the
training time overhead compared with the con-
ventional HTM and the LSTM network.

2. Related Works

2.1.HTM. In recent years, a lot of research efforts have been
devoted to HTM. In [11], novel HTM approaches were
proposed to encode coincidence-group membership (fuzzy
grouping) and to derive temporal groups (maxstab temporal
clustering). Systematic experiments on three line-drawing
datasets have been carried out to better understand HTM
peculiarities and verified that the proposed approaches have
higher accuracy than other traditional pattern recognition
methods. In [12], the prediction accuracy of HTM was
compared with several sequence learning algorithms in-
cluding LSTM, the extreme learning machine [13], the
autoregressive integrated moving average [14], the echo state
network [15], and the time-delayed neural network [16] on
both artificial and real-world data. +e results revealed that
HTM achieves a prediction accuracy that is comparable to or
better than the other state-of-the-art algorithms.

To avoid setting the parameters of HTM, Suzugamine et al.
[17] proposed a self-structured HTM that dynamically adjusts
the number of columns and cells according to the input data.
+e results on time-series test input and real-world power
consumption show the proposed method achieves a higher
prediction accuracy than LSTMandHTM. In [18], a decoder of
internal prediction representation in HTM was proposed. +e
proposed method decodes the representation by utilizing the
relationship between the input data bits and the columns built
during the encoding process, and thus avoids the additional
learning process and achieves smaller prediction error.

To detect machine failures preemptively and reduce
production costs, Malawade et al. [19] proposed a method of
performing online, real-time anomaly detection for pre-
dictive maintenance using HTM and compared with KNN-
CAD, Windowed Gaussian, and other detectors in the
Numenta Anomaly Benchmark [20]. +e proposed method
verified the robustness and adaptability of HTM. In [21],
Jakob et al. proposed HTMRL, a bio-feasible reinforcement
learning algorithm based on HTM, which supports non-
stationary environments. HTMRL performs well on a 10-
armed bandit task and spends less time to adapt to the bandit
suddenly shuffling its arms. Zyarah and Kudithipudi [22]
proposed a comprehensive neuromemristive crossbar ar-
chitecture for the spatial pooler and the SDR classifier
structure for mobile devices and energy-constrained plat-
forms. +e proposed design has high-speed calculation, low
power consumption, and reconfigurability, which verifies
that the HTM architecture can accurately identify images
even in the presence of noise.

2 Computational Intelligence and Neuroscience

Osegi [23] applied HTM into the task of short-term load
forecasting using spatial pooler and a temporal aggregator,
which transform SDRs into a sequential bivariate repre-
sentation and makes temporal classifications from the SDRs.
+ey verified that HTM has stronger noise resistance and
can outperform most existing artificial intelligence neural
technologies in short-term load forecasting tasks. Hawkins
et al. [24] proposed a framework based on location infor-
mation to describe the function of the new cerebral cortex,
which verified that HTM can also show higher performance
and advantages in the face of multiprediction tasks.

+e above research studies show that HTM has better
performance than traditional machine learning algorithms in
many fields. However, few works consider the limitations of
internal representation of HTM learning components and
their affects to the performance of HTM. In this work, we aim
at improving the representation ability of HTM and exploring
a more flexible learning method to increase its performance.

2.2. Hierarchical Temporal Memory Network. A single-level
HTM network structure is illustrated in Figure 1, which
consists of one region. Each region is composed of some
columns colj (j� 1, 2, . . ., ncol) that have multiple cells cei

j

(i� 1, 2, . . ., nce) on it (here ncol � 81, nce � 4). +e cells are
the basic learning opponents that are used to emulate the
functionality of the pyramidal neurons. Each HTM column
shares a proximal dendrite segment (bold black line), and
each cell has a dozen or two distal dendrite segments (not
shown). +e proximal dendrite segment receives feedfor-
ward input, and the distal dendrite segments receive lateral
input from nearby cells through the synapses on each
segment. +e proximal synapses and the distal synapses are
shown in purple and green in Figure 1, respectively.

+e HTM model mainly includes two modules: spatial
pooler (SP) and temporal memory (TM). Each of the
modules is briefly described as follows.

2.3.HTMSpatial Pooler. +emain function of SP in HTM is
learning to recognize certain patterns of the input data such
that for different inputs that possess similar characteristics,
particular attributes in the output are activated [25]. In other
words, SP forms an internal representation of the input data
using SDR, which is characterized by a set of active columns
in the HTM model.

+e SP algorithm contains three phases: initialization,
column activation, and proximal synaptic permanence
learning. Initialization determines the main parameters of
the HTMmodel and builds connections between the column
and the input space through potential synapses on proximal
dendritic segment. Each column colj is connected to the part
of the input space, which refers to as the receptive field (Dj).
Dj is defined either locally or globally. In the local receptive
field, the j-th column synapses will be connected to a pre-
defined region centered at xc

j with a range c, whereas in the
case of the global receptive field, the synapses can be con-
nected anywhere in the input space. +e following equation
represents the potential connections PI (j) between the input
x and j-th column:

PI(j) � z | σ xz; x
c
j, c and pjz ∼ U(0, 1) , (1)

where σ(xz; xc
j, c) � 1, ∀xz ∈ (xc

j, c), and pjz∼U (0, 1) rep-
resents the synapse permanence of the j-th column to the z
bit of the input data and is selected randomly from the
uniform distribution U having range [0, 1]. +ose potential
synapses are considered to be connected if their permanence
value exceeds the threshold θc.

+e column activation process selects a set of active
columns (also called winning columns) to represent the
feedforward input. +e overlap value determines the acti-
vation of SP columns for a given input pattern x and is
calculated by counting its active synapses that associate with
the active bits of input data as shown in the following
equation:

oj � βj
z

Bjzxz, (2)

where βj is the boosting factor that determines the excit-
ability of each SP column, which is modified during the
training of SP; and B is an indicator matrix with Bjz � 1 if pjz
is greater than the connection threshold θc, while Bjz � 0
otherwise.

In the inhibition, the columns within the inhibition
radius ξ and the overlap value in the top k are activated and
represent the feedforward input, while other adjacent col-
umns will be inhibited, as given by

a colt � k max oj, ξ . (3)

We denote k_max() as a function that implements
k-winner-take-all on the permanence value.

In the learning phase, the synaptic permanence values of
the active columns are updated using the Hebbian learning
rule [10]. +e rule implies that the synapses connected to the
active input bits must be strengthened, increasing their
permanence by ρ+, whereas the synapses connected to the
inactive bits must be weakened, decreasing their perma-
nence by ρ−.

2.4.HTMTemporalMemory. +eHTM TM learns sequence
and forms a representation in the context of previous inputs
based on the active columns, and then makes predictions for
the future input. +e cells of the active columns are involved
in this process. +e TM algorithm mainly includes three
phases: determining the active cells of the columns, distal
synaptic permanence learning, and setting the cells in the
predictive state.

First, TM will activate some cells on the active columns
based on historical information.+e calculation of the active
state is shown as follows:

a
t
ji �

1, if j ∈ a col
t
and πt−1

ji � 1

1, if j ∈ a col
t
and

i

πt−1
ji � 0

0, otherwise

,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

Computational Intelligence and Neuroscience 3

where πt−1
ji denotes the predictive cell at time t-1 on j-th

column i-th cell. For active columns that contain predictive
cells of t− 1, those cells are set to be active of the current time
step. Meanwhile, for active columns that do not have pre-
dictive cells of t− 1, all cells on those columns will be ac-
tivated. Unlike the active columns in SP that characterize the
current input, TM further represents the different contexts
by the active cells on these columns, that is, learning the
temporal dependencies within the data sequence. Even for
the same input under different contexts, the internal rep-
resentation of TM is quite distinct.

Learning in TM and SP is similar, where the Hebbian
rule is used to adjust the permanence values of the distal
synapses. +e learning cells that connected to the active cells
of the previous time step have their dendritic segments
positively reinforced by a larger value ρ+, whereas the cells
connected to the nonactive cells have the segment negatively
reinforced by a small value ρ−:

ΔPd
ij � ρ+Pd

ij ∘A
t− 1

− ρ− Pd

ij ∘ 1 − At− 1
 . (5)

Pd
ij is an M×N matrix denoting the permanence of the d-th

segment of the i-th cell in the j-th column. At is an M×N
binary matrix, where at

ij is the activation state of the i-th cell
in the j-th column. P

d

ij denotes a binary matrix containing
only the positive entries in Pd

ij, that is,

Pd

ij �
1 if Pd

ij > 0

0 otherwise
.

⎧⎨

⎩ (6)

Finally, TM predicts the possible output in the next time
step based on the active cells determined in the first phase.
All distal segments are examined where the segments in the
active state turn their cell in the predictive state unless the

cell is already activated by the feedforward input. Whether
the distal segment is active depends on the number of active
synapse connected to the active cell. Once the number
exceeds the threshold θs, the segment will be in the active
mode.+us, the predictive state of a cell at time step t is given
by

πt
ji �

1, if∃d||DS
d
ji · A

t
||1 > θs

0, otherwise
,

⎧⎨

⎩ (7)

where DSd
ji is the d-th distal segment of the i-th cell within

the j-th column, and At is the matrix on at
ji size of ncol × nce.

+e predictive cells are the output of TM and will then be
decoded into the same format of input using a maximum-
likelihood classifier [12].

2.5. Problems in Conventional HTM. From the above
analysis, we find some potential problems of the conven-
tional HTM.

First, the HTM SP uses the set of active columns as
output to form a sparse distributed representation of the
input data. According to the SP algorithm, HTM picks the
top k columns with the highest overlap value and places
them into the active state. However, this simple processing
method ignores the inherent difference within the active
columns. In fact, the representation capabilities differ be-
tween various active columns.

Figure 2 shows the proximal dendritic segment of three
columns. +e red columns are active because their overlap
values exceed the threshold θo (θo � 2) and are among the
k-highest ones, yet the synaptic connections on the active
columns (column 2 and column 4) differ substantially in
terms of the permanence value and the numbers of

.........

Input

... 1 1

0.8
encoding

0.2 0.20.10.5

1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0

Inactive cell
activated cell
predictive cell
Proximal synapse
Distal synapse

Figure 1: A structure of the HTM region (single level). +e region consists of the column of vertically stacked cells (best seen in colour).

4 Computational Intelligence and Neuroscience

connected synapses. Column 2 has three connected synapses
with permanence 0.37, 0.49, and 0.51, whereas column 4 has
two connected synapses with permanences of 0.79 and 0.88.
Although the two columns are both active, their synaptic
connections with the input are not exactly the same. In this
case, column 4 seems more closely related to the current
input than column 2. Unfortunately, the state of “active” is
inadequate to reflect these subtle distinctions. When input
data arrive, SP should not only select the columns that are
strongly associated with the specific input patterns, but also
keep the detailed information about these associations and
use them to guide the learning.

Second, when TM learns the sequence, the permanence
value between distal synaptic connections is adjusted by a
fixed learning rate. All learning cells apply the same updating
ρ+ and ρ− for strengthening or weakening without consid-
ering the differences of these cells, which may lead to a poor
performance and low flexibility. Intuitively, the synapses of
the active cells that locate on the strongly associated columns
should update more significantly and quickly than those
connected to weakly related columns.

To address the above problems in conventional HTM, we
propose a novel HTM learning algorithm based on acti-
vation intensity. Besides the column state, the activation
intensity, which describes the strength of the synaptic
connection, is introduced and leveraged for input repre-
sentation.+e column activation intensity is able to enhance
the representation ability of SDR in SP. Furthermore, we
explore a self-adaptive training method for TM based on the
activation intensity, where the synapses of learning cells are
adjusted in a column-sensitive manner. +e details of the
proposed method are given as follows.

3. Hierarchical Temporal Memory Based on
Activation Intensity

3.1.Activation Intensity. We expand the state of column and
introduce the activation intensity to further enhance the
learning ability of SP. +e activation intensity refers to the
activation degree under a given input. From Figure 2, we can
find active columns 2 and 4 have different numbers of active
synapses and their permanence values vary substantially.

Combining these factors, the activation intensity is defined
as follows:

AI
t
j � sigmoid

z

Bjzxz + α||pct
j||2

⎛⎝ ⎞⎠, (8)

where AIt
j denotes the activation intensity of the j-th column

at time t, pct
j is the permanence vector of connected synapses

on the j-th column, and α is a coefficient. +e sigmoid
function is used to keep the intensity value in (0, 1).

+e activation intensity includes two parts. +e first part
represents the number of connected synapses on the j-th
column connected to the active input bits. +is is a term
related to the overlap, where the boost factor βj is removed.
For a column, the more valid the synapses are formed, the
more useful the information will be transmitted to the
column. In Figure 2, the activation intensity of column 2 is
higher than that of column 4 because it has more valid
synapses than column 4.

+e second part in the definition concerns the perma-
nence of these synapses, where L-2 norm is imposed on the
permanence vector. For a valid synapse, the greater the
permanence value is, the stronger the connection with the
input will be. Once a column is tightly connected with a
input pattern, the stimuli from the presynapse will be easily
arrived in that column. In Figure 2, column 4 has com-
paratively higher permanence on all valid synapses, while
less connections are built. To combine these two factors and
balance their contribution, a coefficient α is adopted in
activation intensity. Finally, the sigmoid function is used to
restrict the output to the desired range.

3.2. A Self-Adaptive Temporal Memory Learning Algorithm
Based on Activation Intensity. Based on the activation in-
tensity, we further improve the TM algorithm and propose
an adaptive temporal memory algorithm for sequence
learning. +e idea behind it is that the obtained active
columns and their intensities are exploited to update the
synapses on distal dendritic segments.

+e proposed TM learning algorithm uses a
self-adaptive learning strategy to dynamically adjust the

1... ...1 10

1 2 3

encoded input

0.3
7 0.7

90.51

0.
880.49

active bit

permanence

non-active bit

4 5

0 0 01

Active column

Non-active column

Connected synapse

Potential synapse

Figure 2: Two active columns in HTM.

Computational Intelligence and Neuroscience 5

synaptic connections between the cells. Specifically, when
the cells on the active columns are updating their per-
manence, the amount of update is calculated according to
the activation intensity of the column. Cells on high-
intensity columns learn faster than those on lower-in-
tensity columns, thus having their synaptic permanence
updated by a greater extent. On the contrary, cells on the

lower-intensity column should take less update. Other
synapses on the matching segment of nonactive columns
that connects to the active cells of time t-1 are weakened
by a less extent because the postsynaptic cell of that
connection is on the nonactive column. +e following
equation gives the self-adaptive permanence updating
policy:

ΔPs
ij d � φ+

AI
t
j, AI

t−1
col(s) Pd

ij ∘A
t− 1

− φ−
AI

t
j, AI

t−1
col(s) Pd

ij ∘ 1 − At− 1
 , (9)

φ+
AI

t
j, AI

t−1
col(s) � e

− AIt
j
+ω

+ e
− AIt−1

col(s)
+ω

, (10)

φ−
AI

t
j, AI

t−1
col(s) � max 0, e

− AIt
j
+ω

− e
− AIt−1

col(s)
+ω

 , (11)

where ΔPs
ij d represents the adjustment for the s-th synapse

on the d-th segment of the i-th cell within the j-th column.
+e increase and decrease in the permanence value are
calculated by φ+(·) and φ− (·), two nonlinear functions
proposed for dynamic permanence adjustment shown in
(10) and (11), AIt

j and AIt−1
col(s) are the activation intensities at

time t and t-1 for the j-th column and the column where
synapse s locates, respectively, and ω is a tuning parameter,
and we will investigate its sensitivity on the results in the
experiment.

With the new learning strategy, the permanence
updating is performed in a column-sensitive manner.
Unlike the traditional TM learning, which takes a fixed
update for all learning cells, the proposed algorithm gives
each cell an individual update, adjusting the synaptic
connections based on the activation intensity of the column
where the cell locates. Different synapses may take different
updating rates. Meanwhile, the use of a nonlinear function
ensures that the synapse can take different updates at
various time steps. Algorithm 1 summarizes the proposed
TM learning algorithm:

4. Experiments

4.1. Comparison Algorithms. We compare the performance
of the time-series prediction of the conventional LSTM,
HTM, and the proposed HTM. For simplicity, the HTM
based on activation intensity is termed HTM_AI in the
following sections. For the conventional LSTM and HTM,
we utilize the implementations in DeepLearning4j and
NuPIC, respectively.

4.2. Experimental Setting. We implemented the proposed
HTM network on the NuPIC’s open-source HTM frame-
work. To decode prediction values from the output of SDRs
of HTM, we consider two classifiers as in [12]: a simple
classifier based on SDR overlaps and a maximum-likelihood
classifier. For the prediction on SDR representation, we
computed the overlap of the predicted cells with the SDRs of

all observed elements and selected the one with the highest
overlap. For the prediction on continuous scalar value
output, we divided the whole range of scalar value into 22
disjoint buckets and used a single-layer feedforward clas-
sification network.

Tables 1 and 2 show themain parameters of the proposed
model and the baseline method. Besides these parameters,
the real-valued input data are transformed into binary data
bits xt � (xt

1, xt
2, ... , xt

n) with n� 104 bits. +e decoding
classifier for HTM and HTM_AI uses 128 neurons. For the
conventional LSTM, we employed one hidden layer with 32
neurons and mean-squared error was used as the loss
function.

4.3. Datasets. Numenta Anomaly Benchmark (NAB)
provides a standard, open-source framework for evalu-
ating real-time anomaly detection algorithms on
streaming data. It comprises two main components: a
scoring system designed for streaming data and a dataset
with labelled, real-world time-series data. We chose the
vehicle traffic dataset from the Minnesota Department of
Transportation for evaluation. Each item is composed of
time stamp and numerical data. +e data record the
average traffic time of all vehicles in each month in the
Twin Cities area of Minnesota at ten-minute intervals,
with a total of 2500 vehicles. Figure 3 shows the data
distribution.

NYC-Taxi is a public data stream provided by the
New York City Transportation Authority. +e data are
collected in real-world scenarios and contain 10320
continuous data streams. We aggregated the passenger
counts in New York City taxi rides at 30-minute intervals
and took the taxi passenger prediction task to evaluate
the proposed method. Compared with the NAB dataset,
the sequence exhibits rich patterns at different timescales
(see Figure 4). To compare the performance of our
HTM with other sequence learning techniques, we
predict taxi passenger demand five steps (2.5 hours) in
advance.

6 Computational Intelligence and Neuroscience

4.4.EvaluationMetric. As the evaluation metric, we used the
prediction accuracy (Accuracy), which measure the over-
lapping probability between the output SDR at time t and the
SDR of input at time t+1 given by

accuracy � ave
overl SDR

t
o, S DR

t+1
i

SDR
t+1
i

⎛⎝ ⎞⎠, (12)

where SDRt
o and SDRt+1

i represent the SDR output at t and
the SDR input at t+ 1, respectively. +e function overl()
calculates the overlapping ratio of two SDR representations.
ave() gives the average accuracy on all samples. |·| means the
length of SDR vector. In the experiment, we chose 40 active

columns to form the SDR. A large SDR overlapping indicates
a higher prediction algorithm. All the results are reported on
20 runs of the average values.

Besides accuracy, we also take the root mean square error
(RMSE), whichmeasures the difference between the true and
predicted values as the other metric. A small prediction error
indicates a better prediction algorithm. +e RMSE is given
by

RMSE �

����

1
T

T

t�1

y
t

− y
t

2

, (13)

where yt is the actual value of the observation at time t, y
− t

is
the model prediction, and T is the total number of
predictions.

5. Results and Discussion

5.1. Prediction Accuracy on NAB. First, we illustrate the
prediction accuracy of different methods on the NAB
dataset. Figure 5 shows the prediction accuracy under
various running epochs. To examine the impact of col-
umn activation intensity on the prediction accuracy, we
chose four different values, namely ω� 3.5, 4.0, 4.5, and
5.0.

Figure 6 gives the RMSE results on conventional HTM,
HTM_AI, and LSTM. In order to acquire RMSE, a decoder is
used after HTM and HTM_AI implement the TM learning.
We also report the performance of the LSTM network where
the predicted output value is compared with the true value.
For our HTM_AI, different intensity thresholds are chosen
for comparison.

Input: active columns at time t, activation intensity vector at t and t− 1 AIt
j, AIt−1

j

(1) for each column colj in HTM //first phase: cell activation
(2) if colj is active then //predictive cells at t− 1 on active column will become active cell at t
(3) for each cell cei on colj
(4) if cei has activeSegments(t− 1)
(5) activeCells(t)← cei
(6) learningSegments(t)� activeSegments(t− 1)
(7) else //if active column has no predict cells at t− 1, all cells become active cells at t
(8) activeCells(t)← cei ∀i ∈ (1,. . ., nce)
(9) learningSegments(t)� bestMatchingSegment(colj)
(10) for each segment d in learningSegments(t) //second phase: cell synapse updating
(11) for each synapse s on d
(12) if s.presynapticCell in activeCells (t− 1) and//reinforcement
(13) s.permanence+�ΔPs

ij d �φ+(AIt
j, AIt−1

col(s))

(14) else //punishment
(15) s.permanence+�ΔPs

ij d �φ− (AIt
j, AIt−1

col(s))

(16) for each segment d on all columns//third phase: predictive cell selection
(17) for each synapse s on d
(18) if s.presynapticCell in activeCells (t) then
(19) if s.permanence> θc numActiveConnected++
(20) if numActiveConnected> θa
(21) activeSegments(t)← d
(22) predictiveCells(t)← cell(d)

ALGORITHM 1: Temporal memory learning algorithm based on activation intensity.

Table 1: Model parameters for the proposed HTM and baseline
HTM.

Parameter name Value
Number of columns N 2048
Number of cells per column M 32
Number of active columns 40
Dendritic segment activation threshold 4
Initial synaptic permanence 0.2
Connection threshold for synaptic permanence 0.8
Synaptic permanence increment ρ+ 0.1
Synaptic permanence decrement ρ− 0.1
Coefficient α 0.5

Table 2: Model parameters for the LSTM network.

Parameter name Value
Number of hidden layer 32
Learning rate 0.001
Mini-batch 64

Computational Intelligence and Neuroscience 7

From the results, we see that the accuracy and the
prediction error vary with different ω. However, HTM_AI
consistently has a higher accuracy than the conventional
HTM except when the epoch is 4 in Figure 5. After that, the
accuracy of HTM_AI increases continuously. When the
epoch exceeds 30, the prediction accuracy tends to be stable
around 0.98. For different values of ω, the accuracy changes
greatly in the early stage of HTM_AI training. However, as a
general tendency, the accuracy under different ω finally
inclines to be very similar when the training converges.

From Figure 5, we can find the accuracy of conventional
HTM is lower than the proposedmethod, even if the training
is stable after 40 epochs. Because the accuracy in Figure 5 is
calculated based on the SDRs, the decoder classifier can’t
affect the results. For the prediction error, Figure 6 shows
HTM_AI has a lower RMSE value under the same running
epochs. Compared with the LSTM network, HTM_AI is able
to reduce RMSE by up to 8% in the case of epoch� 50 and

ω� 4.5. Even if the decoding classifier is involved in cal-
culating the scalar output, HTM_AI still shows superior
performance than LSTM. HTM_AI also performs better
than the conventional HTM under various parameter
settings.

Next, we also tested the impact of model parameters on
the prediction performance. We give the results with dif-
ferent numbers of columns and neurons. From the pre-
diction accuracy shown in Figure 7, we find the accuracy is
proportional with the column number, more columns
leading to a higher accuracy. When we adopted 2048 col-
umns, both the conventional HTM and the proposed HTM
show the highest accuracy and the performance maintains
stable when epoch exceeds 40. So, for the NAB dataset, 2048
or 1024 columns seems to be a better choice.

As for the number of neurons, we take 8, 16, 24, 32 and
fix the epoch to 50. All results are tested 20 times, and the
average value is finally reported on Table 3.

2015/7/10
14:24

0

200

400

600

800

1000

1200

2015/7/10
17:12

2015/7/10
20:42

2015/7/11
12:43

2015/7/11
18:23

Date

av
er

ag
e t

ra
ffi

c fl
ow

2015/7/13
15:57

2015/7/14
13:11

2015/7/14
17:57

2015/7/15
18:04

2015/7/16
16:39

Figure 3: Data distribution of NAB.

2014/7/1
0:00

0

35000

Date

pa
ss

en
ge

r c
ou

nt
s

2014/7/1
11:00

2014/7/1
22:00

2014/7/2
9:00

2014/7/2
20:00

2014/7/3
7:00

2014/7/3
18:00

2014/7/4
5:00

2014/7/4
16:00

2014/7/5
3:00

2014/7/5
14:00

30000

25000

20000

15000

10000

5000

Figure 4: Data distribution of NYC-Taxi.

8 Computational Intelligence and Neuroscience

+ese results reveal that the HTM with activation in-
tensity can improve prediction performance on irregular
time series. More information obtained from SP can help
temporal dependency learning in TM and thus leads to an
improved model performance.

5.2. Time Overhead on NAB. Here, we discuss the time
overhead on training HTM and HTM_AI. Because LSTM
usually uses an offline training, whereas HTM is trained by
an online manner, we only report the time overhead on
HTM_AI and HTM. In this experiment, the expected ac-
curacy is set to 80%, 85%, 90%, and 95%, respectively. +e

focus is to check how the time overhead changes in order to
meet the desired accuracy.

Figure 8 shows the average time cost. From the results,
we can see that the proposed HTM_AI needs comparatively
less time to reach the desired accuracy. +e gap between
HTM and HTM_AI (ω� 5.0) is not obvious. However, for
HTM_AI (ω� 4.5), the training time is much lower than
HTM. For the NAB dataset, the least time is acquired whenω
is set to 4.5, which is consistent with the result on accuracy
evaluation. +e figure also illustrates that when the accuracy
increases from 0.9 to 0.95, the rising of training time is the
highest, growing nearly 3.7 times. To reach the accuracy of
0.95, HTM_AI can reduce 29% of training time compared to

0
0.7

0.98

Epoch

Ac
cu

ra
cy

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

0.72
0.74
0.76
0.78

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96

HTM_AI(ω=4.5)
HTM_AI(ω=5.0)

HTM
HTM_AI(ω=3.5)
HTM_AI(ω=4.0)

Figure 5: Prediction accuracy on NAB.

0.37

Epoch

RM
SE

10 20 30 40 50

0.39

0.41

0.43

0.45

0.47

0.49

0.51

0.53

HTM
HTM_AI(ω=3.5)
HTM_AI(ω=4.0)

HTM_AI(ω=4.5)
HTM_AI(ω=5.0)
LSTM

Figure 6: Prediction error (RMSE) on NAB.

Computational Intelligence and Neuroscience 9

the conventional HTM. When the accuracy increases,
HTM_AI shows obvious advantage over its counterpart on
time overhead.

+ese results reveal that our HTM can reduce the training
time and make the training reach the desired accuracy much
faster.+e possible reason is that the TM algorithm can utilize
the activation intensity to speed up building connections
between the active cells. Columns that are closely related to
the input pattern will havemore permanence changes on their
synapses. +e results verify this dynamic learning strategy
makes HTM training more efficient.

5.3. Prediction Accuracy on NYC-Taxi. +en, we verify the
effects of the proposed HTM_AI on the NYC-Taxi dataset.
+e dataset exhibits more cyclical patterns compared to
NAB, and the cycle may change from just a few hours to a
day, a week, or even a quarter, making the prediction more
challenging. We reported the prediction accuracy every two
epochs and run totally 52 epochs. +e results are shown in
Figure 9.

+e parameters remain the same as the previous section.
From the results, we can find that at the beginning, HTM
shows the lowest accuracy, whereas the proposed HTM_AI

already has higher accuracy. As the training continues, both
models tend to raise their accuracy. After the training is
more than 40 epochs, the gap between the two models
gradually decreases. On this dataset, the different parameter
values only impact the early stage of training and the optimal
value varies as training goes on. However, in all cases the
proposed HTM_AI shows 0.8%∼1.2% higher accuracy than
the conventional HTM.

+e results reveal that the HTM with activation intensity
is able to improve the prediction accuracy. Even at the initial
stage, it has achieved superior performance than the con-
ventional HTM, which indicates the activation intensity help
HTM learn input patterns more effectively. Due to the
complex cyclic property of the input data, the convergence is
relatively slowly than that of the NAB dataset.

Figure 10 shows the results of prediction error. RMSE
curves are very similar to the results of the NAB dataset. +e
difference is that the lowest error obtains when ω is 5.0
instead of 4.5 in NAB. Compared to LSTM, the prediction
error RMSE reduces by 10%∼14.1%.+e results indicate that
on different datasets, the proposed HTM always outper-
forms the conventional HTM and LSTM.

+en, we also investigate the impact of model size on the
performance. As in the NAB dataset, we set the number of
columns and neurons to 256, 512, 1024, and 2048 and 8, 16,
24, and 32, respectively. +e prediction accuracy is shown in
Figure 11 and Table 4.

We find both HTM and HTM_AI achieve the highest
accuracy when the number of columns is 2048, which is
consistent with that of NAB. +is result also verifies that
HTM is different from popular neural networks, such as
RNNs, of which the optimal model size is problem-de-
pendent. HTM usually adopts a fixed column number, and
2048 is regarded as a good option by all prior research
literature studies [7]. From Table 4, we observe that the
prediction accuracy remains nearly the same with different

0.7

Epoch

Ac
cu

ra
cy

100 20 30 40 50 60

0.74

0.78

0.82

0.86

0.9

0.94

0.98

HTM-2048
HTM-1024

HTM-256
HTM-512

HTM_AI-2048
HTM_AI-1024

HTM_AI-256
HTM_AI-512

Figure 7: Prediction accuracy with different numbers of columns on NAB.

Table 3: Average accuracy (±standard derivation) with different
numbers of neurons on NAB.

Configuration Accuracy
HTM_AI-neurons (8) 0.978 (±0.0021)
HTM_AI-neurons (16) 0.976 (±0.0025)
HTM_AI-neurons (24) 0.977 (±0.0023)
HTM_AI-neurons (32) 0.978 (±0.0022)
HTM-neurons (8) 0.963 (±0.0013)
HTM-neurons (16) 0.962 (±0.0019)
HTM-neurons (24) 0.963 (±0.0021)
HTM-neurons (32) 0.964 (±0.0017)

10 Computational Intelligence and Neuroscience

numbers of neurons on a column. Compared with the
column number, the accuracy is not significantly affected by
the number of neurons.

5.4. Time Overhead on NYC-Taxi. We also report the time
overhead on the NYC-Taxi dataset. +e desired accuracy is
set to 0.8, 0.85, 0.9, and 0.95, respectively. Figure 12 shows
the time for training the conventional HTM and HTM_AI
with different parameters.

Unlike the NAB dataset, NYC-Taxi has more samples
and involves rich patters in terms of cyclic temporal de-
pendency, so the training takes comparatively longer time
than NAB. From the results in Figure 12, it can be seen that

on reaching the same accuracy, HTM_AI needs about 30%–
61% less time than HTM. +e results are consistent with the
accuracy in Figure 9. With the activation intensity, HTM_AI
can achieve higher accuracy since the training starts. For the
NYC-Taxi dataset, a larger parameter value seems benefit for
HTM_AI training. A possible reason may lie in complex
pattern that needs more representative columns and
stronger synaptic connections to learn.

5.5. Long-Term Prediction Results. Finally, we give the long-
term prediction results on two datasets. Figures 13 and 14 show
the transition of the prediction values by the proposed
HTM_AI and the conventional HTM on NAB and NYC-Taxi,

0.69

Epoch

Ac
cu

ra
cy

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

0.71
0.73
0.75
0.77
0.79
0.81
0.83
0.85
0.87
0.89
0.91
0.93
0.95
0.97
0.99

HTM
HTM_AI(ω=3.5)
HTM_AI(ω=4.0)

HTM_AI(ω=4.5)
HTM_AI(ω=5.0)

Figure 9: Prediction accuracy on NYC-Taxi.

0

200

400

600

800

1000

1200

1400

Accuracy (%)

Ti
m

e o
ve

rh
ea

d
(s

)

1600

HTM_AI(ω=4.5)
HTM_AI(ω=5.0)

80 85 90 95

HTM
HTM_AI(ω=3.5)
HTM_AI(ω=4.0)

Figure 8: Training time overhead comparison on NAB.

Computational Intelligence and Neuroscience 11

respectively. For each of the two algorithms, we plotted a
representative result of one run with the closest total prediction
error to the average among the 20 runs. Each figure also gives
the true value in black that must be predicted. From the results,
we can see HTM_AI can achieve a better accuracy than LSTM
from a long-term interval. +e prediction results of LSTM is
not stable and derivate from the true data greatly. Even a
decoder is employed to convert SDR to real value, the predicted
output is still closer to the true data than LSTM.+is indicates
the proposed HTM has higher prediction accuracy, and the
decoder can effectively generate the final output.

0.63

Epoch

A
cc

ur
ac

y

100 20 30 40 50 60

0.66

0.69

0.72

0.75

0.78

0.81

0.84

0.87

0.9

0.93

0.96

0.99

HTM-2048
HTM-1024

HTM-256
HTM-512

HTM_AI-2048
HTM_AI-1024

HTM_AI-256
HTM_AI-512

Figure 11: Prediction accuracy with different numbers of columns on NYC-Taxi.

0.49

Epoch

RM
SE

10 20 30 40 50

0.69
0.67
0.65
0.63
0.61
0.59
0.57
0.55
0.53
0.51

HTM
HTM_AI(ω=3.5)
HTM_AI(ω=4.0)

HTM_AI(ω=4.5)
HTM_AI(ω=5.0)
LSTM

Figure 10: Prediction error (RMSE) on NYC-Taxi.

Table 4: Average accuracy (±standard derivation) with different
numbers of neurons on NYC-Taxi.

Configuration Accuracy
HTM_AI-neurons (8) 0.983 (±0.0031)
HTM_AI-neurons (16) 0.984 (±0.0033)
HTM_AI-neurons (24) 0.981 (±0.003)
HTM_AI-neurons (32) 0.982 (±0.0028)
HTM-neurons (8) 0.971 (±0.0020)
HTM-neurons (16) 0.97 (±0.0017)
HTM-neurons (24) 0.969 (±0.0018)
HTM-neurons (32) 0.972 (±0.0021)

12 Computational Intelligence and Neuroscience

0

500

1000

1500

2000

2500

Accuracy (%)

Ti
m

e o
ve

rh
ea

d
(s

)

3000

HTM_AI(ω=4.5)
HTM_AI(ω=5.0)

80 85 90 95

HTM
HTM_AI(ω=3.5)
HTM_AI(ω=4.0)

Figure 12: Training time overhead comparison on NYC-Taxi.

2015/7/11
13:09

0

500

Date

av
er

ag
e t

ra
ffi

c fl
ow

2015/7/12
10:56

2015/7/13
14:37

2015/7/14
9:10

2015/7/14
15:51

2015/7/14
19:17

2015/7/15
18:34

450

400

350

300

250

200

150

100

50

TRUE
HTM_AI

(a)

Figure 13: Continued.

Computational Intelligence and Neuroscience 13

2015/7/11
13:09

0

500

Date

av
er

ag
e t

ra
ffi

c fl
ow

2015/7/12
10:56

2015/7/13
14:37

2015/7/14
9:10

2015/7/14
15:51

2015/7/14
19:17

2015/7/15
18:34

450

400

350

300

250

200

150

100

50

TRUE
LSTM

(b)

Figure 13: Predicted average traffic flow. True data are shown in black. (a) +e prediction results using HTM_AI, shown in red. (b) +e
prediction result using LSTM, shown in green.

2014/8/10
9:00

0

Date

pa
ss

en
ge

r c
ou

nt
s

3000

6000

9000

12000

15000

18000

2014/8/10
12:30

2014/8/10
16:00

2014/8/10
19:30

2014/8/10
23:00

2014/8/11
2:30

2014/8/11
6:00

TRUE
HTM_AI

(a)

Figure 14: Continued.

14 Computational Intelligence and Neuroscience

5.6. Results on Hyperparameter Tuning. +e proposed self-
adaptive HTM learning algorithm involves some extra
hyperparameters besides the regular ones used in conven-
tional HTM.+e coefficients α and ω are most important for
synaptic permanence update. In this section, we perform
extensive hyperparameter tuning.

To evaluate their effects on the final performance, for α,
which balances the two components in the definition of
activation intensity, we chose five values: 0.1, 0.3, 0.5, 0.7 and
0.9. For ω, we follow the settings in the previous section.
Table 5 shows the prediction results with different config-
urations of α and ω on NAB and NYC-Taxi datasets,
respectively.

From Table 5, we can see that when α is 0.1, the ac-
curacy changes obviously with different values of ω. +e
highest accuracy is achieved when ω� 4.5. When α in-
creases from 0.3 to 0.7, the accuracy of HTM_AI improves
continuously, whereas it decreases when α reaches 0.9.
+is indicates that the two components of activation
intensity should be balanced in order to get a better
performance. So, we set α to 0.5 in the experiment. For ω,
the accuracy under the different values varies on two
datasets. On the NAB dataset, the best accuracy 98.3% is
achieved when α� 0.5 and ω� 5.0, whereas on the NYC-
taxi dataset, the best value 98.7% comes with α� 0.7 and
ω� 4.0. +e reason may be the statistic feature of the two
datasets differs slightly. NYC-Taxi exhibits more cyclicity
than NAB. However, if we choose α to be 0.5, the dif-
ference of accuracy under various ω is not obvious, no
more than 0.5%.

6. Conclusions

To improve the representation capability of HTM and dy-
namically adjust the permanence value of synaptic con-
nections, in this work, we proposed a novel HTM based on

2014/8/10
9:00

0

Date

pa
ss

en
ge

r c
ou

nt
s

3000

6000

9000

12000

15000

18000

2014/8/10
12:30

2014/8/10
16:00

2014/8/10
19:30

2014/8/10
23:00

2014/8/11
2:30

2014/8/11
6:00

TRUE
LSTM

(b)

Figure 14: Predicted passenger counts. True data are shown in black. (a) +e prediction results using HTM_AI, shown in red. (b) +e
prediction result using LSTM, shown in green.

Table 5: Prediction accuracy of different configurations on
hyperparameter.

Accuracy (%)
α ω NAB NYC-Taxi

0.1

3.5 89.5 91.7
4.0 90.1 92.5
4.5 93.1 93.8
5.0 92.9 92.0

0.3

3.5 96.3 96.2
4.0 95.1 94.1
4.5 94.7 96.7
5.0 95.9 95.9

0.5

3.5 97.8 97.9
4.0 98.0 98.1
4.5 98.1 97.7
5.0 98.3 98.4

0.7

3.5 98.0 96.8
4.0 97.3 98.7
4.5 96.7 97.7
5.0 98.1 96.8

0.9

3.5 94.2 94.1
4.0 95.8 93.8
4.5 94.6 92.6
5.0 95.3 93.3

Computational Intelligence and Neuroscience 15

activation intensity. By introducing the activation intensity,
more useful information about the input pattern is main-
tained on the HTM column. During learning the sequence,
we improve the traditional Hebbian learning by presenting a
column-sensitive self-adaptive TM algorithm, which em-
ploys a nonlinear updating strategy and adjusts the per-
manence according to the activation intensity of the column
where the synapse locates. +e experimental results on time-
series input showed that the proposed HTM can better
utilize the characteristics of input data. +e prediction ac-
curacy and error metric indicate our HTM achieved a higher
accuracy than the conventional HTM and LSTM model.
Furthermore, the time overhead revealed the proposed
method can speed up HTM training by 29%–61%.

In future work, we will explore how to avoid the
hyperparameter fine-tuning for various datasets and ap-
plications, and verify the effectiveness of the proposed
method on other sequence learning tasks.

Data Availability

+e Numenta Anomaly Benchmark (NAB) dataset used to
support the findings of this study is available at https://
github.com/numenta/NAB. +e NYC-Taxi dataset used to
support the findings of this study is available at http://www.
nyc.gov/html/tlc/html/about/trip_record_data.shtml.

Conflicts of Interest

+e authors declare no conflicts of interest.

Acknowledgments

+is work was supported by the National Natural Science
Foundation of China (Grant no. 61806086).

References

[1] X. Chen, W. Wang, and W. Li, “An overview of Hierarchical
Temporal Memory: a new neocortex algorithm,” in Pro-
ceedings of the In 2012 Proceedings of International Conference
onModelling, Identification and Control, pp. 1004–1010, IEEE,
Wuhan, China, January 2012.

[2] I. Daylidyonok, A. Frolenkova, and A. I. Panov, “Extended
hierarchical temporal memory for motion anomaly detec-
tion,” in Biologically Inspired Cognitive Architectures Meeting,
pp. 69–81, Springer, Cham, 2018.

[3] A. Irmanova and A. P. James, “HTM sequence memory for
language processing,” in Proceedings of the In Poster Session
Presented at IEEE International Conference on Rebooting
Computing (ICRC), Washington, DC, USA, November 2017.

[4] K. Pal, S. Bhattacharya, S. Dey, and A. Mukherjee, “Modelling
HTM learning and prediction for robotic path-learning,” in
Proceedings of the In 2018 7th IEEE International Conference
on Biomedical Robotics and Biomechatronics (Biorob),
pp. 839–844, IEEE, Enschede, Netherlands, August 2018.

[5] O. Krestinskaya, T. Ibrayev, and A. P. James, “Hierarchical
temporal memory features with memristor logic circuits for
pattern recognition,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 37, no. 6,
pp. 1143–1156, 2017.

[6] D. Fan, M. Sharad, A. Sengupta, and K. Roy, “Hierarchical
temporal memory based on spin-neurons and resistive
memory for energy-efficient brain-inspired computing,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 27, no. 9, pp. 1907–1919, 2015.

[7] J. Struye and S. Latré, “Hierarchical temporal memory and
recurrent neural networks for time series prediction: an
empirical validation and reduction to multilayer percep-
trons,” Neurocomputing, vol. 396, pp. 291–301, 2020.

[8] D. George and J. Hawkins, “A hierarchical Bayesian model of
invariant pattern recognition in the visual cortex,”vol. 3,
pp. 1812–1817, in Proceedings of the In Proceedings. 2005 IEEE
International Joint Conference on Neural Networks, vol. 3,
IEEE, Montreal, QC, Canada, August 2005.

[9] J. Hawkins and S. Ahmad, “Why neurons have thousands of
synapses, a theory of sequence memory in neocortex,”
Frontiers in Neural Circuits, vol. 10, p. 23, 2016.

[10] D. Hebb, “+e organization of behavior: a neuropsychological
theory,” Science Education, vol. 44, no. 1, p. 335, 1949.

[11] D. Maltoni, “Pattern recognition by hierarchical temporal
memory,” SSRN 3076121, University in Bologna, Italy, Uni-
versity in Bologna, 2011 .

[12] Y. Cui, S. Ahmad, and J. Hawkins, “Continuous online se-
quence learning with an unsupervised neural networkmodel,”
Neural Computation, vol. 28, no. 11, pp. 2474–2504, 2016.

[13] N. Nan-Ying Liang, G. Guang-Bin Huang, P. Saratchandran,
and N. Sundararajan, “A fast and accurate online sequential
learning algorithm for feedforward networks,” IEEE Transac-
tions on Neural Networks, vol. 17, no. 6, pp. 1411–1423, 2006.

[14] J. Durbin and S. J. Koopman, “Time series analysis by state
space methods,” Oxford Statistical Science Series, Vol. 38,
Oxford University Press, Oxford, UK, 2nd edition, 2012.

[15] H. Jaeger and H. Haas, “Harnessing nonlinearity: predicting
chaotic systems and saving energy in wireless communica-
tion,” Science, vol. 304, no. 5667, pp. 78–80, 2004.

[16] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and
K. J. Lang, “Phoneme recognition using time-delay neural
networks,” IEEE Transactions on Acoustics, Speech, & Signal
Processing, vol. 37, no. 3, pp. 328–339, 1989.

[17] S. Suzugamine, T. Aoki, T. Aoki, K. Takadama, and H. Sato,
“Self-structured cortical learning algorithm by dynamically
adjusting columns and cells,” Journal of Advanced Compu-
tational Intelligence and Intelligent Informatics, vol. 24, no. 2,
pp. 185–198, 2020.

[18] T. Aoki, K. Takadama, and H. Sato, “Column-based decoder
of internal prediction representation in cortical learning al-
gorithms,” in Proceedings of the In 2020 Joint 11th Interna-
tional Conference on Soft Computing and Intelligent Systems
and 21st International Symposium on Advanced Intelligent
Systems (SCIS-ISIS), pp. 1–7, IEEE, Hachijo Island, Japan,
December 2020.

[19] A. V. Malawade, N. D. Costa, D. Muthirayan,
P. P. Khargonekar, and M. A. Al Faruque, “Neuroscience-
inspired algorithms for the predictive maintenance of
manufacturing systems,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 12, 2021.

[20] A. Lavin and S. Ahmad, “Evaluating real-time anomaly de-
tection algorithms-the Numenta anomaly benchmark,” in
Proceedings of the In 2015 IEEE 14th International Conference
on Machine Learning and Applications (ICMLA), pp. 38–44,
IEEE, Miami, FL, USA, December 2015.

[21] J. Struye, K. Mets, and S. Latré, “HTMRL: Biologically
Plausible Reinforcement Learning with Hierarchical Tem-
poral Memory,” 2020, https://arxiv.org/abs/2009.08880.

16 Computational Intelligence and Neuroscience

https://github.com/numenta/NAB
https://github.com/numenta/NAB
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://arxiv.org/abs/2009.08880

[22] A. M. Zyarah and D. Kudithipudi, “Neuromemrisitive ar-
chitecture of HTM with on-device learning and neuro-
genesis,” ACM Journal on Emerging Technologies in
Computing Systems, vol. 15, no. 3, pp. 1–24, 2019.

[23] E. N. Osegi, “Using the hierarchical temporal memory spatial
pooler for short-term forecasting of electrical load time se-
ries,” Applied Computing and Informatics, 2020.

[24] J. Hawkins, M. Lewis, M. Klukas, S. Purdy, and S. Ahmad, “A
framework for intelligence and cortical function based on grid
cells in the neocortex,” Frontiers in Neural Circuits, vol. 12,
p. 121, 2019.

[25] J. Hawkins and S. Blakeslee,On Intelligence, pp. 156–158, New
York St. Martins Griffin, 2004.

Computational Intelligence and Neuroscience 17

