Hindawi

Computational Intelligence and Neuroscience
Volume 2022, Article ID 6170245, 11 pages
https://doi.org/10.1155/2022/6170245

Research Article

@ Hindawi

PIS-YOLO: Real-Time Detection for Medical Mask Specification in

an Edge Device

Zuopeng Zhao,"? Xiaofeng Liu ,12 Kai Hao ?,"? Tianci Zheng (1),

Junjie Xu ,2 and Shuya Cui 1,2

1,2

!School of Computer Science and Technology & Mine Digitization Engineering Research Center of Ministry of Education
of the People’s Republic of China, China University of Mining and Technology, Xuzhou 221116, China
2School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China

Correspondence should be addressed to Xiaofeng Liu; liuxf@cumt.edu.cn

Received 12 May 2022; Revised 20 September 2022; Accepted 17 October 2022; Published 17 November 2022

Academic Editor: Paolo Crippa

Copyright © 2022 Zuopeng Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Wearing masks in a crowded environment can reduce the risk of infection; however, wearing nonstandard cloud does not have a
good protective effect on the virus, which makes it necessary to monitor the wearing of masks in real time. You only look once
(YOLO) series models are widely used in various edge devices. The existing YOLOv5s method meets the requirements of inference
time, but it is slightly deficient in terms of accuracy due to its generality. Considering the characteristics of our driver medical mask
dataset, a position insensitive loss which is cloud extract shared area feature in different categories and half deformable con-
volution net methods with cloud concern noteworthy features were introduced into YOLOvV5s to improve accuracy, with an
increase of 6.7% mean average in @.5 (mAP@.5) and 8.3% in mAP®@.5:.95 for our dataset. To ensure that our method can be
applied in a real scenario, TensorRT and CUDA were introduced to reduce the inference time in two edge devices (Jetson TX2 and

Jetson Nano) and one desktop device, whose inference time was faster than that of previous methods.

1. Introduction

With the emergence of SARS-Cov-2 variants, the mean value
of RO, an indicator reflecting infectivity, has evolved from
initial 2.79 to 5.08 [1], indicating a considerable increase in
its infectivity, and it has become necessary for people to wear
medical masks correctly in public places. However,
breathing discomfort caused by wearing the medical masks
results in a nonstandard wear phenomenon, that is, the
exposure of the wearer’s nose or mouth, and this phe-
nomenon intensifies the spread of the virus, particularly in
crowded public places with poor ventilation, such as public
transport. The detection of the quality of medical masks in
these cases is particularly important, and detection may be
performed for both passengers and supervisors.

Object detection based on deep learning, which exceeds
traditional methods in many areas [2, 3], has been widely used.
Lie et al. detected the wear condition of medical mask target
locate person face and the categories of wear condition. We

divided the categories into mask, no mask, and incorrect wear,
which can promote the protection of passenger themselves and
reduce infection risk. The current object detector can be di-
vided into two categories. On the one hand, two-stage object
detection is based on the propose-classfy approach, such as the
family of R-CNN [4-6]. The two-stage algorithm has high
accuracy but slow detection speed. On the other hand, one-
stage object detection algorithms treat the detection task as a
regression problem, such as SDD [7] and YOLO series [8-12].
Due to its excellent detection speed and small volume of model,
it is more widely used for the edge device.

In addition to algorithm selection, selecting a proper
device for model to work normally is important. Patrikar et al.
conducted a detailed review on anomaly detection with video
surveillance [13] and considered anomaly detection to be a
time-critical application of computer vision. In this study, the
transfer of video stream from a mobile terminal to the central
server and the subsequent analysis of the results was not
feasible in terms of time. Additionally, the costs of video data

mailto:liuxf@cumt.edu.cn
https://orcid.org/0000-0002-4517-4413
https://orcid.org/0000-0003-3566-1573
https://orcid.org/0000-0002-2968-7999
https://orcid.org/0000-0003-4892-6390
https://orcid.org/0000-0002-2921-4331
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6170245

and transmission remain unaffordable. Thus, we used a re-
mote edge device, which saved considerable network re-
sources, for videos. However, the energy consumption,
volume, cost, and other factors of edge equipment limit edge
device wide application and deployment. With the contin-
uous development of hardware resources, the computing
performance of Jetson AGX Xavier for mobile detection has
become more enhanced than that of GTX 1080TI, which is
often used on a desktop to train models. Although its in-
ference cost is considerably high, several edge devices with
high computational ability make real-time detection feasible.

Although in our previous study [14] the medical mask
wearing condition could be detected using the you only look
once (YOLOv4) [8] algorithm, researchers did not use any
model acceleration tools to make full use of the current
device and only employed python, an interpretive language
with low performance, which limits its use in real-world
applications. Moreover, YOLOV4 is inferior in performance
to YOLOV5 [9]. Therefore, in this study, to target these
defects, we mainly focused on the following:

(1) Introduce position insensitive loss (PIS) into
YOLOV5 to improve detection quality, especially the
category with few samples

(2) Introduce the half deformable convolution net
(HDCN) module into YOLOV5 to extract features
located in half part of the feature map, while
maintaining the computing cost

(3) Compare and evaluate multiple networks in multiple
edge devices with model acceleration tools

2. Related Work

Presently, YOLO series are the most popular one-stage object
detector. In view of its excellent performance, it is used for
real-time detection of various tasks. The same goes for mask
detection. Su et al. proposed an algorithm, which integrates
transfer learning and efficient-Yolov3 [15] based on RMFD
[16] dataset and MAFA [17] dataset, for face mask detection
task. Liu Againan used YOLOv3 [18] to complete the task.
Loey et al. [19] employed YOLOv2 [10] and ResNet [20] for
medical face mask detection. Liu et al. [21] used YOLOv3 and
simple CNAPs to improve the classification performance of
real-time mask detection. Cao et al. [22] proposed a mask
detection namely MaskHunter based on YOLOv4. Kumar
et al. [23] improved tiny YOLOv4 with spatial pyramid
pooling (SPP) module and used the tiny YOLOv4-SPP net-
work for face mask detection. Although all of them achieved
high performance in mask detection, the performance of
YOLOV2-v4 was inferior to that of YOLOV5 [9].

Zhang et al. [24] determined whether a person was wearing
a mask using VGG19 [25]; however, they ignored the category of
incorrect wearing and the computing cost of VGG19 with large
computation. Alguzo et al. [26] used multigraph convolutional
networks (MGCNss) to accurately detect people wearing masks.
This caused mask wearing detection to not be limited to CNN.

Zhang et al. used the convolutional neural network
(CNN) to detect whether a driver was holding a phone [27]
based SSD [7]; this scenario is similar to our task of detecting

Computational Intelligence and Neuroscience

whether the driver is wearing a mask. Liu et al. conducted a
survey of deep neural network architectures and their ap-
plications [28], which could facilitate our design of network
architecture. Ahmad et al. unsupervised real-time anomaly
detection for streaming data [29], which provided novel
solutions for sample shortage and imbalance.

Algorithms are important for mobile devices and hard-
ware. MobileNet [30] proposed by Google is a classic light-
weight network. MobileNet is usually combined with (single-
shot multibox detector) SSD [7] for object detection.
MobileNet-SSD is one of the main demos provided by some
hardware manufacturers or deep learning inference frame-
works (such as PaddleLite [31] and RKNN ([32], which is a
model inference tool for Rockchip products) for object de-
tection. It is usually used to compare and evaluate hardware or
inference framework benchmarks, but its accuracy and speed
are insufficient in current context. Although two-stage re-
gions with CNN features (R-CNN) series [4-6] network can
achieve a high accuracy, its detection speed is not ideal for
edge devices. With the continuous development and opti-
misation of various models in terms of the accuracy and
speed, the YOLO series [8-12] models have gradually gained
popularity in practical industrial applications.

YOLOVS5 remains an active project. On 12 October 2021,
YOLOV5-v6 was published; thus, although both of them are
YOLOVS5, the structure of YOLOvS5 described in our paper is
different from that described in [3]. YOLOvV5 uses two
scaling factors to control the depth and width of the network,
resulting in different YOLOVS5 structures that meet the trade-
off between the calculated cost and accuracy. From
YOLOv5n, YOLOv5s, YOLOv5m, and YOLOV5] to
YOLOV5x, both the accuracy and computing cost have
continuously increased. YOLOv5n, the abbreviation of
YOLOV5 nano, was proposed in YOLOv5-v6. Similar to
YOLOV3, YOLOV5 can be used to predict four position
parameters, namely, t,, t, t,, and t,, which are closely
related to our proposed method.

Figure 1 shows the component of YOLOvV5-v6, and our
research is based on this. C3 is an abbreviation for the CSP
bottleneck with three convolution layers, which omits one
convolution module, one batch normalisation layer, and one
activation function on the basis of the CSP bottleneck, re-
ducing the number of parameters. C3 also takes an extra
parameter to control the number of times the bottleneck
module repeats, as shown in the left side of Figure 1; the
larger is the number of repetitions, the stronger is the ability
of the network to extract depth features. The right top of
Figure 1 is the 6 version proposed spatial pyramid pooling
fast (SPPF), which is faster than existing SPP [33].

Above all, although approximately half of the previous
mask detection is based on YOLO studies, and YOLO is widely
used in various applications, it still have to consider some
points. On the one hand, they use a lower version of YOLO
with lower performance, and on the other hand, they are
limited to using relevant deep learning frameworks to measure
network speed, without considering practical applications
such as in edge devices. Our research based model use recent
versions and related acceleration measures to reduce the
detection time and improve the accuracy simultaneously.

Computational Intelligence and Neuroscience

Backbone

1xBottleneck

3xBottleneck

1x64x128%128
1x64x128x128

1
1
1
1
1
1
*J_ !
1x128x32x32 !
1x128x64x64
Upsample !
& H 1><158><64><64 :
1
=
1
1
1
1
1
1

Yolov5s-v6

TTTTTTTTTTTTTTmmr e N
/

1x]128x64x64

concat

—

'
1
1
1
1
I
I
1
1
1
1
1
I
I
1
1
1
1
1
I
I
1
1
1
1
1
I
I
1
1
1
1
1
I
I
I
1
1
1
1
I
I
I
1
1

1
1
1
1
1
1
1
1
1x128x64x64 | :
1
N
[
o e a
! 1x512x32%32 /
3xBottleneck 200002 1 PelPeEs [Detect] [Detect S e ’
1x256x32x32 oy 1x256x32x32
I \ ‘|‘
e
: 1 1x256x32x32 1x512x16x16 \
| concat € i
H 1 1%256%32x32 1x512x16x16 1
Loy 1><256><16le6 ' i ‘
1x512x16x16 1
IxBottleneck |00 G ! Upsla;n x32x32 S 4 -
1x512x16x16 1 : : l/ \
I i |
1 1
HE concat concat 1! Cony Kernel size Cony Kernelsize :
| 1 : 1x1 3x3 |
b PN J
/

FIGURE 1: Version of the Yolov5-v6 structure and specific dimensional transformations on Yolov5s. The upper left and lower right corner
represent the input and output dimensions of the current module, respectively.

zozo-11-10 [N
25knsh 117 . I 341 I
L]

RS

2020-11-10

.
Okn h_ 117 I 34
|

zozo-11-13 GG
32knh 117 I 31 N
|

9 198

=
£ 0201
=
15
&
£ 015
0.10 A
B no mask
0.05 B mask
. . . . mask incorrect
400 600 800 1000 (c)
index of image

(b)

FIGURE 2: (a) Partial sample of the driver mask dataset. (b) Object proportion for the driver mask dataset. (c) Category proportion for the
driver mask dataset.

3. Materials and Methods dataset consists of 2360 images with three categories, and its
resolution is 1280 x 720. We randomly selected 1888 images
(80%) as the train set, while the rest 472 images (20%) were
used as the test set. Our previous study described our col-
lected driver medical mask dataset, but it did not describe

the bounding box distribution and proportion of categories.

3.1. Datasets. We first introduced the Driver Mask dataset
[14] with the categories of mask, no mask, and incorrect
mask. A total of 2360 images with the pixel of 1280 x 720
have been divided into train set and test set. The Driver Mask

Computational Intelligence and Neuroscience

FIGURE 3: Partial sample of the safety helmet dataset contains various scenarios.

Figure 2(a) shows our dataset. We divided it into three
categories (from left to right) such as incorrect mask, mask,
and no mask. We randomly extracted 1000 objects to measure
the proportion of the object to the entire image from
Figure 2(b). Different from our previous research, we removed
some incorrectly marked samples and the samples from the
MAFA dataset. We inferred that the smallest object occupied
approximately 5% pixel in the entire image, which indicated
that there were few small objects in COCO [34] definitions
(objects with an area of <327 were categorised as small objects,
objects with an area of 32°-96> were categorised as medium
objects, and the rest were categorised as large objects).

In order to prove that our method also has a good
performance in other detection tasks, we introduced the
Safety Helmet [35] dataset with the categories of person and
hat. A total of 6056 images with different pixel have been
divided into train set and val set. The train set of Safety
Helmet contains 4845(80%) images, and the test set contains
1211(20%) images, including construction site photos,
surveillance video images of a university, and ordinary scene
photos, and the detection task was to correctly identify
whether the person in the image is wearing a helmet. Figure 3
shows a partial sample of the dataset.

3.2. Proposed Methods. According to the distribution of our
datasets, we extracted two facts: (1) all the three categories
shared the same position features and (2) the features that the
network should distinguish are limited in the half bottom of
anchors. Inspired by these two facts, we proposed PIS loss to
make the network learn extra position features, and the HDCN
to make the network learn the features in the half bottom of the
bounding box rather than the whole feature map.

3.2.1. PIS Loss. Similar to the previous YOLO series, YOLOv5
also simultaneously predicts the object classes and position. In
addition to two direct explicit predictions for a user, the

predicted IOU or object parameter cloud makes the model
rapidly converge. To make full use of object position features of
all classes rather than those of one particular category, we
proposed PIS loss to allow the network focus on position
features, which could improve the mAP of category with few
samples in the premise of all categories that shared the uniform
position features. In equal 1, «, 3, and y are hyperparameters,
and #; represents the number of iterations of model forward.
The right part of equal 1 represents the detailed composition of
n;. nb is the constant, which is the number of batch size;
symbols epoch and 7 are variables, which represent the index of
the current epoch and index in this epoch.

Thus, if the »; is odd, the current iteration deprecates
position loss and retain class and object loss; otherwise, the
current iteration retains all losses. We used fine-grained n;
rather than b;, which represents the index of the current
batch size, because it can accelerate model convergence.
Because the index starts with zero, the model first learns
complete features. Both the hyperparameter and constant
are fixed during training:

“Lclass + ﬁLobj + thbox’
aLclass + /';Lobj>

n; =i+ nb * epoch.

n; is even,

n;is odd, (1)

Equal 1 proposed PIS Loss.

3.2.2. HDCN. The top half of the bounding box (Figure 2(a))
is occupied by people’s eyes and eyebrows; however, all of
these features are not related to the medical mask detection
task in categories; that is, the mask detection task does not
require the position feature of the whole face but only the
desired part of the face for classification.

Convolution operator samples the fixed position of the
input feature map. To focus on the features located in the
half bottom of the feature map, rather than the whole feature

Computational Intelligence and Neuroscience

T T el
I I
ol Lo Lo L] 18l

I | | ! | [] |
! I I I I I [I
! ,,‘L,,L,,‘L,,L,,‘L,,;,,} L,,;,,,‘ __

I I |
| leee L]
T [P R [I
[®®®: 1
P IP I el
I I

9 e e 11 @
L,,L,,‘L,,},,,‘L,,‘L,,;,,} ‘L,,L ,‘L —

I
} | } | } | } | :_ ;
7777777 IR S) S S R g N
A O B
I I
Lol Ll L _L__L__l LC__L__L__L__

FIGURE 4: (a) Ordinary convolution operator. (b) Deformable convolution net. (c) Deformable convolution net with restrained offset.

(d) Our proposed HDCN.

YOLOV5-v6 -
HDCN-
Backbone

1xBottleneck

3xBottleneck

3xBottleneck

1xBottleneck

~

o —————————————

1x256x32x32

[l g

PIS Loss

YOLOV5-v6 Dect

YOLOv5-v6
Neck&Head

FiGure 5: Overall architecture: proposed YOLOv5s-v6-HDCN with PIS loss.

map, a feasible solution is that a deformable convolution
[36] operator should accept the complete input tensor and
restrain the offset predicted by an extra convolution net.
However, this method may require high computational cost.
Another possible solution is to cut the input tensor into two
sections as shown in Figure 4: the top half part can be
handled by the convolution operator, and the half bottom
part can be handled with the deformable net. This slicin
tensor methodology is applied in the focus module in the 5"
version of YOLOV5, which reduces the computational cost
and improves the model accuracy.

The position of the HDCN module in the network must
be studied. If this module is used to extract the deep feature
of the model with a small feature map, the ability of

distinguishing feature in similar datasets will be interference;
that is, the smaller the feature HDCN handles, the less are
the advantages of HDCN. In addition, it is seen that the
HDCN could reduce computational cost when compared
with ordinary DCN. Figure 5 presents a detailed structure of
our proposed YOLOv5-HDCN-PIS.

4. Experiment

4.1. Experimental Set. In this study, the experimental plat-
form was an Intel Core 17 10700KF processor, with 32 GB
memory, NVIDIA GeForce RTX 3090 24 GB memory with
PyTorch 1.8.1, Python 3.8, and the Ubuntu 20.04 operating
system. Because the official DCNv2 does not work on high

Computational Intelligence and Neuroscience

TaBLE 1: Experiment results of the comparison between original YOLOvV5-v6 and our proposed YOLOv5s-v6-HDCN with PIS loss on the
driver mask dataset. “Epoch*” denotes the real num of epoch using early stopping. “Epoch” is the num of epoch manual setting. “” is used

to show the improvement rate over YOLOV5s-v6.

Model Imgsz Bs Epoch Epoch Class mAP@.5 mAP@.5:.95
All 0.877 0.639
No_mask 0.905 0.631
YOLOvV5s-v6 224 64 300 151 Mask 0.992 0.726
Mask_incorrect 0.734 0.56

All 0.944 16.7% 0.722 18.3%

No_mask 0.919 11.4% 0.671 14.0%

Yolov5s-v6-HDCN-PIS 224 64 300 242 Mask 0.994 10.2% 0.756 13.0%

Mask_incorrect 0.920 T18.6% 0.738 T17.8%

version PyTorch, which supports RTX30 series devices, we
used MMCYV [37] to support this operator. This configu-
ration was also appropriate for measuring the inference
time, as discussed in Section 5.

For the environment mentioned in Section 3.1, we
trained our models with different datasets and batch sizes.
The size of all the input images was fixed to 224%, and mosaic
data enhancement was used to improve model performance.
To accelerate training, we employed early stop; that is, when
100 epochs were attained without improvement, training got
stopped. All the training epochs were fixed to 300, and the
symbol epoch* was used to indicate the actual epoch trained
by the model. In addition, to improve model accuracy, we
used the official supportedYOLOV5-v6 pretrained weight.

4.2. Experimental Results. Table 1 presents the experiment
results. We extracted the original YOLOv5-v6 and our
proposed YOLOv5s-v6-HDCN with PIS loss. The T symbol
suggests that our proposed method, in relation to the
existing methods, presents the improvement of mAP@.5 and
mAP@®@.5:.95 indicators (Table 1). On the model Yolov5s-v6,
the incorrect mask category shows the lowest accuracy for
both mAP@.5 and mAP@.5:.95 indicators because the in-
correct mask category has the least samples. In addition,
from the number of actual training epochs, we can infer that
the original method is easier to converge, and our proposed
module requires more time to training.

The highest improvement in accuracy of 18.6% and
17.8% is observed for the incorrect mask category. The
lowest improvement in accuracy of 1.4% and 4% is obtained
for the mask category. We can conclude that the lesser the
samples in a category, the more the accuracy of that category
cloud can be improved through PIS loss. After HDCN
module and PIS loss, the accuracy of the incorrect mask
category was close to that of the other two categories. The
accuracy increased for all the categories largely depends on
categories with the least samples. Besides the experimental
results shown in Table 1, YOLOv5s-v6 takes 7018216 pa-
rameters, and Yolov5s-v6-HDCN takes 7266973 parameters.

4.3. Ablation Experiment. In this section, targeting both our
methods can improve the accuracy to detect whether the
driver is wearing a medical mask. We mainly discuss the
effects of our proposed PIS and HDCN based on ordinary

YOLOv5s-v6 (Table 2). Because mAP@.5:.95 is less than
mAP@.5 in YOLOv5s-v6, after the application of the two
methods, the improved accuracy for mAP@.5:.95 is higher
than that for mAP@.5. The highest improvement in accuracy
is obtained for the incorrect mask class in the model
YOLOvV5s-v6-HDCN, and the mAP@.5 indicator and
mAP®@.5:.95 improved by 10.5% and 12%, respectively. For
YOLOV5s-v6 with PIS loss, the two accuracies are 6.4% and
12.8%.

In addition, to confirm that our proposed PIS loss works
on other datasets, we extracted the safety helmet dataset,
whose categories are more balanced compared with our
datasets, which showed 1.3% and 1% improvement for
mAP@.5 and mAP®@.5:95, respectively. Experiments
showed that PIS loss may improve accuracy for a part of the
datasets whose categories shared the same position feature
but different class features.

5. Model Deployment

The model deployment target made full use of the current
device and accelerated the inference time. Some deep
learning frameworks, such as PyTorch, TensorFlow, Paddle,
and Caffee, provide both training and inferencing ability, but
all of them export the interface using python. In spite of the
native implementations of performance-sensitive invocation
interfaces, which can be C++, CUDA, or platform-specific
libraries, this cross-language invocation inhibits the com-
piler optimisation strategy, and the python virtual machine
invokes the nonpython code, causing an additional per-
formance penalty and resulting in the inference time being
inferior to that of pure C++ implementations. In addition,
some model acceleration tools launched by hardware
manufacturers or inference frameworks can automatically
optimise the model structure by graph optimisation, etc., in
their products. However, some of them support python.
Although python interfaces are provided in part projects,
they may be suitable only for faster validation. In the end, the
latest supported features or latest fixed exceptions are often
implemented using C++.

It is difficult to deploy a simple complicated model
trained with a high-performance device on an edge device.
On the one hand, different deep learning frameworks export
different format training results; on the other hand, the ARM
architecture is often used in edge devices because of power

Computational Intelligence and Neuroscience

TaBLE 2: Ablation experiment on the driver mask dataset and safety helmet dataset. “Epoch*” denotes the real num of epoch using early
stopping. “Epoch” is the num of epoch manual setting. “1” is used to show the improvement rate over YOLOv5s-v6.

Model Dataset Imgsz Bs Epoch Epochs Class mAP@.5 mAP@.5:.95
All 0.910 73.3% 0.686 14.7%
No_mask 0.897 10.8% 0.638 170.7%
Yolov5s-v6-hdcn 224 64 300 182 Mask 0.994 10.2% 0.740 11.4%
driver mask Mask_incorrect 0.839 T10.5% 0.680 T12.0%
- All 0.897 12.0% 0.688 74.9%
. No_mask 0.899 10.6% 0.651 T2.0%
Yolov5s-v6-pis 224 64 300 217 Mask 0.993 10.1% 0.744 11.8%
Mask_incorrect 0.798 16.4% 0.668 112.8%
Yolov5s-v6 Safety helmet 224 512 300 300 All 0.691 0.432
Yolov5s-v6-pis Y- 224 512 300 300 All 0.704 71.3% 0.442 71.0%
Tensorflow Tensorflow {p Tensorflow Lite
Pytorch Paddle o Paddle Lite
— ONNX —
Paddle Pytorch
Caffe TensorRT RKNN
\

FIGURE 6: Models trained by part deep learning frameworks can be converted into ONNX, and TensorFlow Lite and PaddleLite models must
first be converted to TensorFlow or Paddle models. TensorRT, PaddleLite, TensorFlow Lite, and RKNN are all aimed at the inference and not

the training.

consumption, volume, etc., and some frameworks or soft-
ware work well on an X86 platform, such as Anaconda,
which is one of the most popular data science platforms that
does not fit or partially fits the Advanced RISC Machine
(ARM) platform and limits the correct build environment
for deployment. In addition, the central processing unit
(CPU) is suitable for general computing tasks, and a GPU or
other specific devices, such as Huawei NPU and Rockchip
NPU, are highly suitable for the forwarding of a neural
network. However, the adaptation of operators is a crucial
problem. For PaddleLite, a majority of the operators are
supported on CPUs, followed by GPUs (non-Nvidia devices
are usually indirectly supported through the OpenCL in-
terface), and the specific devices with minimal operators
support the remaining operators. These difficulties limit the
high-performance deployment of the model and require
close coordination between software engineers and hard-
ware engineers.

5.1. Model Conversion. Model conversion is a crucial step of
deployment; it translates the model exported by the deep
learning framework mentioned above into a format suitable
for the target device or platform. Furthermore, torch2trt is a
tool only for a PyTorch model converted to TensorRT; the
alternative method is to convert these models to the ONNX
format indirectly and then converts ONNX to the target
device. Figure 6 shows a sample in which a part of frame-
works is converted in one direction or two directions.
Although a model is converted to the ONNX format
successfully, whether it can be converted to the target

platform remains unknown, and its supported operators
depend on its maintainers rather than on us, making it
difficult to customise our own operators. Furthermore, the
use of an automatic model conversion tool may cause some
problems, such as unsupported operators or inconsistencies
in the converted model’s prediction result and the actual
prediction result, leading to debugging difficulties. To im-
prove the reliability and maintainability of the model and
reduce the debugging cost, Wang-Xinyu maintained the
TensorRTx [38] project on GitHub, which is used to develop
various models, such as YOLOv5, YOLOv3, and YOLOV3-
SPP, by manually calling the TensorRT API to construct the
network structure.

Our proposed HDCN module highly depends on DCN.
Because there is no existing DCN module in the TensorRT
API list, we extracted the implementation of deformable
convolution with TensorRT by using MMCYV and integrated
a source code into the project with CMake. We developed
the HDCN operator plugin and integrated it into the
backbone of YOLOV5.

5.2. Deployment Set. In addition to the training environment
mentioned in Section 3.1, we introduced two types of edge
devices: Jetson TX2 and Jetson Nano. Both of them are
flashed into JetPack 4.6 (with CUDA10.2, OpenCV 4,
TensorRT 8, cuDNN 8). Our program developed with
CMake can run directly on each edge device. However, the
environment that supports our algorithm implementation
by PyTorch is difficult to construct. With docker, we ob-
tained the PyTorch images based on NVIDIA Linux4Tegra

Computational Intelligence and Neuroscience

0st . 666'S . 81 . S99 . 8¢ . 615°0¢ . X NOQH-SSAO[0X
beT 1050 968'¢ 180°0 ST SEV'8 €9/ 9% 691 1z 799°¢ 086'T€ 9S¥'1 - % 9A-SGAO[OX
6€91 . G950 . ¥9 . 8C¢'ql . 01 . 78¥°'6 . ¢ I NDdH-SSAO[0X
6LL1 600°0 /150 9¢0°0 +9 SS0°0 [1ect €1¢°0 96 190°0 65001 89T°0 A 9A-SGAO[OX
Sdd sseooixdysogq premrog ssaoorxdary g sseooidisog premiog ssaooxdory §dg ssaooidisog premiog ssadoxdaig

060¢€ XY oueN Uos}af TXI, uos)df az1s 8wy DDV [PPON

012

*S00) 9)BIS[220E ISN 0} ISYJAYM 2OUIJUT Y] $2J0Udp DDV, "WIOHe[dNUI U0 W) OUIJU :¢ TIAV],

Computational Intelligence and Neuroscience

FIGURE 7: Detection result with PyTorch implementation and TensorRT implementation. We manually removed all the sensitive in-

formation after an image was processed by these frameworks.

(L4T) from the Nvidia GPU Cloud (NGC). Setting up a
deployment environment on an edge device with the ARM
platform is time consuming. Because of the performance of
the device, we ran the container and installed MMCV
through source code compilation and the residual depen-
dency by pip on Jetson TX2. Then, we moved the container
to Jetson Nano, which reduced the environment develop-
ment time and maintained environment consistency. We
took the float precision for both the platform and
environment.

We mainly measured inference time in various devices.
The size of all the input images was fixed to 2242 and all the
max batch sizes were fixed to 1. In addition to the two edge
devices, we introduced the RTX 3090 for training the model.
We measured not only the forward time but also the pre-
processing time (such as image enhancement or format
conversion) and postprocessing time (such as NMS or
mapping detection results to the original image); all of these
times were measured in milliseconds. Both preprocessing
and postprocessing did not include read images from the
disk or write images to the disk, which can avoid the in-
terference of the storage device type on the experimental
results. The ACC column with a tick denotes that the current
line’s result was handled using accelerate tools, such as
TensorRT and CUDA, and the ACC column without a tick
indicates that the current line’s result was handled with
PyTorch and other python tools, whose detail configuration
is discussed in Section 3.1. We extracted approximately 200
images from the driver mask dataset as the test set; we took
the average of preprocess and postprocess time for different
devices and models but with the same model accelerate
strategy and showed the inference time separately.

5.3. Deployment Result. As inferred from Section 4.2, al-
though the parameter of Yolov5s-HDCN is slightly more
than Yolov5s-HDCN, its inference time is not proportional
to parameters in some situations. Different from the ac-
curacy, the inference time measured in devices is susceptible
to current temperature, CPU or GPU scheduling policy, and

the other application process the device may execute, which
results in randomness. Moreover, the inference time is af-
fected by program quality and the program interface call
mode. As the convolution operator is one of the most widely
used operators, it has undergone considerable optimisation;
however, our coding ability limits the full use of current
devices.

Table 3 presents that the preprocess time with acceler-
ation can become 2-5 times faster compared with python
implementation; the postprocess time with acceleration can
become 55-153 times faster compared with python imple-
mentation; and the forward time with acceleration can
become 3-10 times faster compared with python imple-
mentation. In edge devices, the whole time can become three
times faster with acceleration compared with python
implementation. The most significant improvement is seen
in the postprocess time because the NMS in postprocess is
implemented with pure python in the PyTorch environment,
which is slower than implementation by C++. The max FPS
of the Yolov5s-v6 model on Jetson TX2, Jetson Nano, and
RTX 3090 are 96, 64, and 1779, respectively, and the max
FPS of the Yolov5s-HDCN model on JetsonTX2, Jetson
Nano, and RTX 3090 are 102, 64, and 1639, respectively. The
forward time requires the highest time in all the devices and
models. Copying the tensor from the host memory to device
memory and copying the forward result from the device
memory to host memory can be considerably time con-
suming. Although the large GPU memory implied that this
device could handle multiple images simultaneously, setting
the batch size to 1 corresponds to the application of actual
scenarios, such as real-time surveillance video analysis,
which limits its throughput.

The first row of Figure 7 shows the detection result in the
case of PyTorch; the last row of Figure 7 presents the de-
tection result in the case of accelerated by TensorRT and
CUDA. The three columns present the three categories of
our Driver Medical Mask dataset, which from left to right are
incorrect mask, mask, and no mask. The images suggest after
acceleration, the detection accuracy did not suffer large
deviation.

10

6. Conclusions

In our research, deep learning technology was applied for
medical mask detection. Based on YOLOV5s-v6, a highly
accurate driver medical mask detection method with the PIS
loss and HDCN modules, which fully consider the charac-
teristics of our datasets, was proposed, resulting in an increase
of 6.7% in mAP@.5 and 8.3% in mAP@.5:.95 for our Driver
Medical dataset with a small loss of speed. In addition, PIS loss
was introduced into public Safety Helmet dataset with shared
location features among various categories, which resulted in
an increase of 1.3% in mAP@.5 and 1% in mAP@.5:.95. If the
introduced HDCN module cloud cannot be afforded, the PIS
loss can result in an increase of 2% in mAP@.5 and 4.9 in
mAP@.5:.95 in the Driver Mask dataset.

In addition, to make our algorithm suitable for real world
application, we introduced Jetson Nano and Jetson TX2 as edge
devices. The model accelerated tools to decrease inference time
and increase throughput in the deployment environment,
which resulted in a three times faster inference time than the
time in the development environment developed with docker.
Thus, a practicable model was successfully run on the two
devices, which could contribute to mask detection tasks.

7. Future Work

Due to the limitation of our coding ability, the HDCN
operator can still be improved to reduce the inference time.
We will optimise the operator to speed up the inference time
of the model. The expression form of PIS loss can be
optimised and freed from the even or odd notion. Our model
can be encapsulated with a docker container, and the
container size can be reduced. The use of models in nu-
merous edge devices will be promoted in the future research.

Data Availability

Code will be available from https://github.com/entropyfeng/
yolov5-hdcn.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Acknowledgments

This research was supported by the National Natural Science
Foundation of China (no. 51874300) and Xuzhou Key R&D
Program (no. KC18082).

References

[1] Y. Liu, A. A. Gayle, A. Wilder-Smith, and J. Rocklov, “The
reproductive number of COVID-19 is higher compared to
SARS coronavirus,” Journal of Travel Medicine, vol. 27, no. 2,
p- 021, 2020.

[2] L. Guo, D. Wang, L. Li, and J. Feng, “Accurate and fast single
shot multibox detector,” IET Computer Vision, vol. 14, no. 6,
pp. 391-398, 2020.

Computational Intelligence and Neuroscience

[3] J. Yao,]. Qi,]. Zhang, H. Shao, J. Yang, and X. Li, “A real-time
detection algorithm for kiwifruit defects based on YOLOV5,”
Electronics, vol. 10, no. 14, p. 1711, 2021.

[4] S. Ren, K. He, R. Girshick, J. Sun, and R.-C. N. N. Faster,

“Faster R-CNN: towards real-time object detection with re-

gion proposal networks,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-

1149, 2017.

R. Girshick, “Teee. Fast R-CNN,” in Proceedings of the IEEE

International Conference on Computer Vision, pp. 1440-1448,

Santiago, Chile, July 2015.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Ieee. Rich

feature hierarchies for accurate object detection and semantic

segmentation,” in Proceedings of the 27th IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 580-

587, Columbus, OH, USA, June 2014.

[7] W. Liu, D. Anguelov, D. Erhan et al., “SSD: single shot
MultiBox detector,” Computer Vision - ECCV 2016, vol. 9905,
pp. 21-37, 2016.

[8] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “YOLOv4:
optimal speed and accuracy of object detection,” 2020, https://
arxiv.org/abs/2004.10934, Article ID 10934.

[9] Github, “Yolov5,” 2021, https://github.com/ultralytics/yolov5.

[10] J. Redmon and A. Farhadi, “YOLO9000: better, faster,
stronger,” 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6517-6525, 2017.

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “Teee. You
only look once: unified, real-time object detection,” in Pro-
ceedings of the 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 779-788, Seattle, WA, USA,
July 2016.

[12] J. Redmon and A. Farhadi, “YOLOV3: an incremental im-
provement,” 2018, https://arxiv.org/abs/1804.02767, Article
ID 02767.

[13] D. R. Patrikar and M. Rajram Parate, “Anomaly detection
using edge computing in video surveillance system: review,”
2021, https://arxiv.org/abs/2107.02778, Article ID 02778.

[14] Z. Zhao, K. Hao, X. Ma et al, “SAI-YOLO: a lightweight
network for real-time detection of driver mask-wearing
specification on resource-constrained devices,” Computa-
tional Intelligence and Neuroscience, vol. 2021, Article ID
4529107, 15 pages, 2021.

[15] X. Su, M. Gao, J. Ren, Y. Li, M. Dong, and X. Liu, “Face mask
detection and classification via deep transfer learning,”
Multimedia Tools and Applications, vol. 81, no. 3, pp. 4475-
4494, 2022.

[16] Z. Wang, G. Wang, B. Huang et al., “Masked face recognition
dataset and application,” 2020, https://arxiv.org/abs/2003.
09093, Article ID 09093.

[17] S.Ge,].Li, Q. Ye, and Z. Luo, “Teee. Detecting masked faces in
the wild with LLE-CNNSs,” in Proceedings of the 30th IEEE/
CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, April 2017.

[18] S.Liu and S. S. Agaian, “COVID-19 face mask detection in a
crowd using multi-model based on YOLOv3 and hand-
crafted features,” in Proceedings of the Conference on Multi-
modal Image Exploitation and Learning, Electr Network, April
2021.

[19] M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa,
“Fighting against COVID-19: a novel deep learning model
based on YOLO-v2 with ResNet-50 for medical face mask
detection,” Sustainable Cities and Society, vol. 65, 2021.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in Proceedings of the 2016 IEEE

[5

[6

https://github.com/entropyfeng/yolov5-hdcn
https://github.com/entropyfeng/yolov5-hdcn
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://github.com/ultralytics/yolov5
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2107.02778
https://arxiv.org/abs/2003.09093
https://arxiv.org/abs/2003.09093

Computational Intelligence and Neuroscience

Conference on Computer Vision and Pattern Recognition

(CVPR), IEEE, Las Vegas, NV, USA, June 2016.

R. Liu and Z. Ren, “Application of Yolo on mask detection

task,” in Proceedings of the 2021 IEEE 13th international

conference on computer Research and Development (ICCRD),

pp. 130-136, IEEE, Beijing, China, January 2021.

Z. Cao, M. Shao, L. Xu, S. Mu, and H Qu, “MaskHunter: real

time object detection of face masks during the COVID-19

pandemic,” IET Image Processing, vol. 14, no. 16,

pp. 4359-4367, 2020.

[23] A.Kumar, A. Kalia, and A. Sharma, “A hybrid tiny YOLO v4-

SPP module based improved face mask detection vision

system[J],” Journal of Ambient Intelligence and Humanized

Computing, pp. 1-14, 2021.

E. Zhang, “Teece. A REAL-TIME deep transfer learning model

for facial mask detection,” in Proceedings of the Integrated

Communications Navigation and Surveillance Conference

(ICNS), Electr Network, Dulles, VA, USA, April 2021.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional

networks for large-scale image recognition,” Computer Sci-

ence, Article ID 1556, 2014, https://arxiv.org/abs/1409.1556.

A. Alguzo, A. Alzu’bi, and F. Albalas, “Masked face detection

using multi-graph convolutional networks,” in Proceedings of

the 12th International Conference on Information and Com-
munication Systems (ICICS), pp. 385-391, Electr Network,

Valencia, Spain, May 2021.

Z. Zhao, Z. Zhang, X. Xu, Y. Xu, H. Yan, and L. Zhang, “A

lightweight object detection network for real-time detection

of driver handheld call on embedded devices,” Computational

Intelligence and Neuroscience, vol. 2020, Article ID 6616584,

9 pages, 2020.

[28] W.Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their ap-
plications,” Neurocomputing, vol. 234, pp. 11-26, 2017.

[29] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised
real-time anomaly detection for streaming data,” Neuro-
computing, vol. 262, pp. 134-147, 2017.

[30] A.G. Howard, M. Zhu, B. Chen et al., “Efficient convolutional
neural networks for mobile vision applications,” 2017, https://
arxiv.org/abs/1704.04861, Article ID 04861.

[31] Github, “PaddleLite,” 2021, https://github.com/
PaddlePaddle/Paddle-Lite.

[32] Github, “Rknn,” 2021, https://github.com/rockchip-linux/
rknn-toolkit.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling
in deep convolutional networks for visual recognition,”
Computer Vision — ECCV 2014, vol. 8691, pp. 346-361, 2014.

[34] T.-Y. Lin, M. Maire, S. Belongie et al., “Microsoft COCO:
common objects in context,” Computer Vision - ECCV 2014,
vol. 8693, pp. 740-755, 2014.

[35] Yanxishe, “Safety HelmetDataset,” 2022, https://god.yanxishe.
com/12.

[36] J. Dai, H. Qi, Y. Xiong et al., “Ieee. Deformable convolutional
networks,” in Proceedings of the 16th IEEE International
Conference on Computer Vision (ICCV), pp. 764-773, Venice,
Italy, June 2017.

[37] Github, “Mmcv,” 2021, https://github.com/open-mmlab/
mmcv.

[38] Github, “Tensorrtx,” 2021, https://github.com/wang-xinyu/
tensorrtx.

[21

[22

[24

[26

[27

11

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://github.com/PaddlePaddle/Paddle-Lite
https://github.com/PaddlePaddle/Paddle-Lite
https://github.com/rockchip-linux/rknn-toolkit
https://github.com/rockchip-linux/rknn-toolkit
https://god.yanxishe.com/12
https://god.yanxishe.com/12
https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mmcv
https://github.com/wang-xinyu/tensorrtx
https://github.com/wang-xinyu/tensorrtx

