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Industrial quality detection is one of the important �elds in machine vision. Big data analysis, the Internet of �ings, edge
computing, and other technologies are widely used in industrial quality detection. Studying an industrial detection algorithm that
can be organically combined with the Internet of �ings and edge computing is imminent. Deep learning methods in industrial
quality detection have been widely proposed recently. However, due to the particularity of industrial scenarios, the existing deep
learning-based general object detection methods have shortcomings in industrial applications. �is study designs two isomorphic
industrial detection models to solve these problems: T-model and S-model. Both proposed models combine swin-transformer
with convolution in the backbone and design a residual fusion path. In the neck, this study designs a dual attention module to
improve feature fusion. Second, this study presents a knowledge distiller based on the dual attention module to improve the
detection accuracy of the lightweight S-model. According to the analysis of the experimental results on four public industrial
defect detection datasets, the model in this study is more advantageous in industrial defect detection.

1. Introduction

Quality detection is an important task in the industrial
production process, which is of great signi�cance to protect
the personal safety of users and avoid economic losses. In
industrial quality detection, big data analysis technology, the
Internet of �ings, edge computing, and other technologies
are widely used. Studying an industrial detection algorithm
that can be organically combined with the Internet of�ings
and edge computing is imminent. Early machine vision
algorithms used manual feature selection and trained clas-
si�ers to identify defect features. �is approach relies too
much on the robustness of the extracted features, resulting in
much time-consuming development.

In recent years, convolutional neural networks (CNNs)
have rapidly developed in image classi�cation, object de-
tection, and image segmentation. However, due to the
particularity of industrial defect detection scenarios, deep
learning has not been applied widely. As shown in Figure 1,
the brightness, colour, object size, and background dis-
crimination of industrial pictures di�er from natural scenes.

Speci�cally, the industrial surface defect detection datasets
scale is relatively small, unlike large-scale general datasets
such as ImageNet, PASCAL VOC2007/2012, and COCO in
classical computer vision tasks. Moreover, the industrial
datasets di�er signi�cantly from the public datasets in the
number of samples, sample scale, and proportion of positive
and negative samples. �is di�erence leads to less applica-
tion of general-purpose object detectors in industrial
product surface defect detection. In addition, most industrial
detection scenarios are o�ine and require a light model,
while existing general object detection models are chal-
lenging to meet actual needs.

�is study proposes a novel surface defect detection
model for industrial products. �e model consists of two
submodels, T-model and S-model. T-model has a large
depth and high detection accuracy and is suitable for sce-
narios with no obvious requirements for speed. S-model has
a small depth and high speed and is more suitable for edge
computing scenarios with high-speed requirements. Both
models consist of a backbone, neck, and detector. In the
backbone, this study combines CNN and swin-transformer.
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CNN extracts local information in shallow features, swin-
transformer extracts global information in deep layers, and
each layer outputs weighted features through a unified re-
sidual path. In neck, this study designs a dual attention
structure to focus on the features of object regions. In de-
tector, this study designs multiple predictions heads on
T-model and S-model.

In order to improve the detection effect of the light-
weight S-model, a knowledge distiller is presented in this
study. It contains the foreground attention-guided distilla-
tion of objects and global distillation.+e knowledge distiller
can significantly improve the detection accuracy of the
S-model without extra overhead.

Overall, this study organically combines some existing
techniques to create two detection models. An attention
module is independently designed inside the model, and a
knowledge distiller is designed to transfer the teacher net-
work’s knowledge for the lightweight network’s guided
training. +e detection model designed in this study can not
only be used for defect detection but also has a wide range of
application scenarios in the direction of processing a large
amount of image data in the cloud platform combined with
the Internet of +ings.

+emain contributions of this study are listed as follows:

(1) +is study proposes a novel model for surface defect
detection of industrial products. Compared with the
traditional CNN-based target detection methods, the
model combines CNN and swin-transformer, which
significantly improves the accuracy and can be used
for application deployment in many image data
analyses, edge computing, and other scenarios.

(2) +is study designs two isomorphic object detection
models. In backbone, this study extracts local and
global important features by combining CNN and

swin-transformer and designs a unified residual path
to fuse features at different levels. In the neck, the
attention module is designed to improve the effect of
feature fusion. At the same time, this study designs
the attention module to the decoupling detection
head to improve detection accuracy.

(3) +is study designs a novel attention-guided distil-
lation strategy. +e distiller uses the dual attention
module to guide the generation of attention region
features. +e distiller transfers the knowledge of the
T-model into the S-model, instructing the S-model
to learn the T-model. +e distiller in this study can
obtain a lightweight, high-accuracy, and fast in-
dustrial quality detection model.

2. Related Work

2.1. Object Detection. In recent years, CNN-based object
detection algorithms have been used in many domains.
CNN-based object detection algorithms are generally di-
vided into two categories: one stage and two stage. One-stage
algorithms include YOLO [1–6], SSD [7], RetinaNet [8], and
DSSD[9]. +emethods are to directly divide the input image
into multiple 1× 1 grids, where each cell is responsible for
detecting objects whose centre points fall within the grid.
+e methods significantly improve the detection speed, but
the accuracy is slow. +e two-stage algorithms include Rcnn
[10], FastRcnn [11], FasterRcnn [12], and MaskRcnn [13].
+ese detection algorithms generate boxes via RPN, and the
second-level detector uses boxes to conclude. +e methods
are better at detecting, but the speed is very low.

+e one-stage object detector usually contains three
parts: backbone, neck, and detector. +e backbone is gen-
erally composed of multiple groups of convolutions for
feature extraction. +e well-known backbones include
ResNet [14], ResNext [15], VGG [16], DenseNet [17],
MobileNet [18], CSPDarkNet [19], and EfficentNet [20], etc.
+e neck fuses feature maps at different levels in the
backbone to enhance the semantic and fine-grained features.
Typical structures of neck mainly include FPN [21], PANet
[22], Bi-FPN [20], etc. Two types of detectors commonly
used in one-stage object detection are as follows: coupled
and decoupled.

2.2. Attention. +e attention mechanism is to make the
network pay more attention to the area of the object and
ignore the unimportant areas. Its essence is to use the rel-
evant features to learn the weight distribution and then apply
the learned weight to the original features. Attention makes
the network pay more attention to the target object. Classical
attention networks include SENet [23], SKNet [24], ResNext
[15], CBAM [25], and self-attention [26].

2.3. Vision-Transformer. +e transformer [26] is an atten-
tion-based encoder-decoder architecture in deep learning.
Compared with CNN, vision transformer (Vit) [27] can
obtain more refined global attention features and achieve
good performance on multiple benchmarks such as

Figure 1: Comparison of industrial detection dataset with COCO
dataset. +e first row is the picture of the PCB defect dataset. +e
second row is the COCO dataset pictures.+e third row is a picture
of aluminium defects. It can be seen that in the field of industrial
quality detection, there are many types of small objects, and the
positive and negative samples are not balanced, making detection
difficult.
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ImageNet, COCO, and ADE20k. However, it also has some
drawbacks. First, the range of object scales for visual de-
tection varies greatly, and the performance of the Vit [27]
may not be optimal in different scenarios. Second, if the
image resolution is high, transformer [26] requires much
computation. Swin-transformer [28] solves this problem by
shifting window partitions to calculate self-attention.

2.4. Knowledge Distillation. Knowledge distillation is a
widely used method for model compression. Knowledge
distillation is to transfer the knowledge of the T-model into
S-model to improve the accuracy of lightweight models
without adding extra computation. Knowledge distillation
methods can be roughly categorized into response based
[29–32], feature based [33, 34], and relation based [35].
Response-based methods use the output of the last layer of
the teacher network to imitate the teacher’s final prediction.
+is method is simple and efficient, but it relies on the
output of the last layer and cannot make the student model
obtain the supervision of the middle layer of the teacher
model. Feature-basedmethods use the features in the middle
layer of the teacher model to guide the student network to
perform feature selection. However, two drawbacks need to
be solved urgently. One is choosing the intermediate layer,
and the other is matching the feature representation between
the intermediate layer and the guiding layer if the layers’
sizes are different. Relation-based methods take advantage of
the inner product of the features between the two layers and
employ the teacher structure as knowledge to guide the
student model.

2.5. Application in Big Data, Industrial Internet of 0ings,
Defect Detection, and Other Scenarios. Wang et al. proposed
a deep learning model [36] combining GRU and LSTM and
modeled the crack width of the dam, which can effectively
predict the change of dam defects. Chen et al. proposed a
training method for CNN and proposed a two-layer parallel
training (BPT-CNN) architecture [37] in a distributed
computing environment. BPT-CNN effectively improves the
training performance of CNN, saves training time while
maintaining accuracy, and has wide application fields.

In addition, there are many excellent survey proposed in
the fields of big data, industrial Internet of things, etc. Pu
et al. proposed an automatic fetal ultrasound standard plane
recognition (FUSPR) [38] based on deep learning in an
Industrial Internet of +ings (IIoT) Environment. Cao et al.
proposed a novel BERT-based deep space network (BDSTN)
[39] to learn the demand pattern of taxis. Chen et al.
combined CNN and LSTM to propose multiple closed
spatiotemporal CNNs (MGSTC) [40] for traffic flow pre-
diction; Wang et al. [41] proposed the application of big data
technology to data mining, data analysis, and data sharing in
large amounts of data, and to create huge economic benefits
by using the potential value of data. Zhang et al. [41]
summarized the existing blockchain-based systems and
applications, which have broad application prospects in
different data processing and transmission scenarios. Zhang
et al. proposed a combined method of Weber local

descriptor (WLD) and local binary pattern (LBP) for seam
carving forgery detection [42]. To sum up, some detection
methods can be combined with existing technologies such as
CNN, not only in defect detection scenarios, but also in
different application scenarios such as IoT and big data
analysis.

3. Method

+e flowchart of the proposed model is shown in Figure 2.
+e model consists of two submodels: T-model and
S-model. In order to improve the detection effect of the
lightweight S-model, this study designs a knowledge distiller
and a dual attention module. By generating attention fea-
tures from the pretrained T-model, the S-model training
process is guided to learn the features from the T-model. In
this way, the S-model reaches or even exceeds the detection
effect of the T-model.

+e structure of the T-model and S-model is shown in
Figure 3. Both models propose a novel backbone combining
convolutional layers with swin-transformer [28] to extract
finer-grained image features. +is study also adds weighted
residual connection paths in the backbone. In the neck, a
double-tower structure and dual attention modules are
designed to improve the effect of feature fusion. Finally,
multiple decoupled detectors are used to detect objects of
different scales.

+e main formula symbol table used in the rest of the
method of this study is annotated as Table 1.

3.1. S-Model and T-Model

3.1.1. Backbone. Most general-purpose object detectors are
based on CNN and employ large-scale convolution kernels in
the first layer of the backbone to increase the receptive field.
However, more detailed information will be lost with the
increase of convolutional layers. Swin-transformer [28] uses
window self-attention to significantly reduce computation
load and extract small-scaled features. +erefore, this study
designs a novel backbone based on swin-transformer [28].

As shown in Figure 3, our backbone includes block-B,
block-S, SPP, and weighted residual fusion paths. +e first
layer selects a 3×3 convolution kernel to extract fine-scaled
features. Block-B comprises three YOLOv5 C3, and three
Conv cascaded. Block-S consists of swin-transformer [28],
Conv cascade. +e structure of the swin-transformer [28] is
shown in Figure 4. In swin-transformer [28], the input features
are divided into windows and encoded with relative position.
+e final output is obtained through multiple images down
sampling (patch merging) and swin-block. In the steel surface
classification experiment of swin-transformer [28], the effect
of swin-transformer [28] with relative position encoding is
better than that of swin-transformer [28] without it.+erefore,
this study adds relative position encoding to block-S.

In order to further improve the detection of small ob-
jects, this study designs a unified weighted residual path
(Figure 3) and performs fusion of features from the back-
bone. +e fusion formula is as follows:
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F � f 􏽘
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􏽐
n
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⎛⎝ ⎞⎠, (1)

where xi is the original input feature and w is the adaptive
learnable weight, 􏽐

n
1 wj � 1. xiconvolves with a 3× 3 kernel

to adjust the feature size, a 1× 1 to integrate the channel, and
then multiplies expwi/􏽐

n
1 expwi before fusion.

3.1.2. Neck. +e neck is designed to use better the features
extracted by the backbone. In this study, the SPP structure is
designed to enhance the invariance and robustness of image
features. Figure 5 shows the structure of block-N in the top-
down path and the bottom-up path in the neck. In block-N,
this study designs a dual attention module, which will be
introduced in detail in Section 3.2.

3.1.3. Decoupled Detector. In object detection, the role of the
head in CNN is to regress the generated features to the
bounding box and classified into some categories. Most
methods use one head for classification and regression. +is
solution has limitations because classification relies more on

fine-grained features, while regression relies more on se-
mantic information to locate the object.

To stress the issue, YOLOX proposes the decoupled
detector, which divides classification and regression into two
types of problems. In this study, the decoupled detector is
innovated (Figure 6), and a dual attention module is added
to the classification branch. In our proposal, 6 decoupled
detectors are used to detect features of the T-model, and four
decoupled detectors to detect features of the S-model. +e
dense stacking of multiple decoupled detectors helps the
models to detect objects of different scales.

3.2. Attention Module. Attention is usually embedded in
CNNs and used to generate attention matrices to optimize
features. CBAM [25] is a classic attention module that
combines channel and spatial attention. Specifically, a
1× 1×C feature map will be obtained by pooling in channel
attention, and a H×W× 1 feature map will be obtained by
pooling in spatial attention. However, pooling leads to much
information being lost. Amutual mapping between the three
dimensions in a C×H×W image is crucial to extracting
attention.

Data

Data
Processing

geometric
distortion

Luminosity
distortion

T-model

Knowledge
Distiller

S-model

Attention Feature map

Attention Feature map

Figure 2: +e flowchart of the model in this study. First, the dataset is expanded and enhanced by geometric and photometric trans-
formations. +en, the data is input into the pretrained T-model and S-model, respectively, and the T-model output features guide the S-
model training.

Input image
Conv

Conv

B1
B2
B3
S1
S2
S3
S4

SPP

SPP

N4

N3

N2

N1 N8

N7

N6

N5 Detector
Detector

Detector

Detector

Detector

Detector

Detector

Detector

DetectorConv

Input image
Conv

Conv

B1
B2
S1
S2

SPP

SPP

N2

N1

N3

N4

Conv

S-modelT-model

Figure 3: T-model and S-model. +e twomodels are similar in structure, and the depth of the S-model network is much smaller than the T-
model. +e blue block-B is the Conv layer, the red block-S is the swin-transformer layer, the purple block-N is the feature fusion layer with
the dual attention module added, and the detector is the decoupling detection head.
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+e attention structure proposed in this study (Figure 7)
includes channel and spatial attention. +e resulting at-
tention features are multiplied by input features as their
features are combined. In terms of channel attention, this

study first uses 1× 1 convolution instead of pooling to
achieve channel interaction and information integration. It
then inputs the features into a two-layer neural network
(MLP) to amplify the relationship between channels and

Table 1: +e main formula symbol used in the rest of the method.

Formula symbol annotation Location
xi: the original input feature

Formula (1)wi: the learnable weight of a single feature map
wj: the weight of any feature map to be accumulated.
F: original input feature

Formulas (2)–(4)
Mc(F): channel attention
MS(F): spatial attention
F′: the superposition of channel attention and spatial attention and multiplied by the original input F.
⊗ : multiply by bit
FT

i,j,k: the characteristics of teachers

Formula (5)
FS

i,j,k: the characteristics of students
f: converting FS

i,j,k to the same data dimension as FT
i,j,k

H, W: specify the height and width of the feature
C: channels
x, y: the horizontal and vertical coordinates of the area object Formula (6)
GT: the area position of the real frame
M(F): the process of generating attention

Formulas (9) and (10)F: the original feature map
T: distillation temperature, T� 20
Lfg: the distillation loss of foreground and background

Formula (11)

Masky,z: foreground mask
(1 − Masky,z): background mask
ScaleMasky,z: scale mask
AttentionMask: attention mask
|FT

x,y,z − f(FS
x,y,z)|2: the difference between teacher feature and student feature

M F( T
x,y,z): the attention feature map of the teacher model

Formula (13)
M(f(FS

x,y,z)): the attention feature map of the student model

Lfg: the distillation loss of foreground and background

Formula (17)

LA: attention mask loss
LG: distillation loss of the entire feature map
QFL: QFocal loss
LCIOU: CIou loss
α, β, c, δ, ε: the weight parameters of the balance loss
W: the updated weight parameter

Formula (18)wk: the weight parameter before the update
Li: the value of each loss
n: the number of weight parameters

3*C3

Conv Conv

Block-B Block-S

Swin-Transformer

Swin-Transformer layer

2*Swin-Block
Patch Merging

Embeeding
window patch

MLP MLP

LN LN

LNLN

W-MSA SW-MSA

2 successive Swin-Blocks

Figure 4: Structure of block-B and block-S.
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spatial dimensions. +e number of neurons in the first layer
in MLP is C/r (r is the reduction ratio, r� 16), the activation
function is Relu, and the number of neurons in the second
layer is C. In this study, the attention structure introduces
BN to reduce the gradient dispersion and speed up the
convergence speed. +is study uses two dilated convolutions
(d� 4, r� 16) identical to BAM [43] for spatial information
integration to focus on spatial information.

+e attention extraction formula in this study is as follows:

Mc(F) � sigmoid(BN(Conv(MLP(Conv(F))))), (2)

MS(F) � sigmoid(BN(Conv(Conv(F)))), (3)

F′ � Mc(F) + Ms(F)( 􏼁⊗F, (4)

where Mc(F) denotes channel attention, Ms(F) denotes
spatial attention, and F′ denotes the superposition of
channel attention and spatial attention and multiplied by
the original input F.

3.3. Knowledge Distillation Module. +e lightweight model
has speed and memory consumption advantages, but the de-
tection effect is challenging to meet the requirements.
Knowledge distillation is an effective method to improve the
detection accuracy of small models. +e general knowledge
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Figure 5: Block-N structure in neck, and block-N is reversed in the top-down and bottom-up paths.
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distiller focuses on the extraction of the overall features. +e
formula is as follows:

LD �
1

CHW
􏽘

C

i�1
􏽘

H

j�1
􏽘

W

k�1
F

T
i,j,k − f F

S
i,j,k􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, (5)

where FT/i, j, k and FS/i, j, k denote the characteristics of
teachers and students, respectively, and f denotes converting
FS/i, j, k to the same data dimension as FT/i, j, k. H, W

specify the height and width of the feature, and C denotes the
channel.

+is study uses knowledge distillation to improve the
S-model’s performance. +e image’s foreground and
background are distilled separately. +e positive and neg-
ative samples are separated by separating the foreground and
background, which solves the imbalance of positive and
negative samples in the image. +is study also designs an
attention module to generate attention regions, forcing the
student model to learn the vital features of the image.

In the distillation method of foreground and back-
ground, this study first sets the binary mask of foreground
segmentation (the real position of the object frame) and sets
objects within the ground truth box to 1 and objects outside
the ground truth box to 0. It is expressed as follows:

Maskx,y �
1, (x, y ∈ GT),

0, otherwise,
􏼨 (6)

where x and y denote the horizontal and vertical coordinates
of the area object and GTdenotes the area position of the real
frame. When the position of x, y falls in the real frame area,
it is set to 1; otherwise, it is 0.

Due to the large-scale variation of objects in industrial
detection datasets and the uneven distribution of positive and
negative samples of objects, these will adversely affect the dis-
tillation effect. For this reason, this study uses the scalingmask to
balance the object scale with reference to FGD [44] to solve the
problemof an unbalanced object scale.+e formula is as follows:

ScaleMaskx,y �

1
Hx,y × Wx,y

, (x, y ∈ GT),

1
􏽐

H
x�1 􏽐

W
y�1 1 − Maskx,y􏼐 􏼑

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

where GT is the region of the ground truth. In this study, the
scaling mask is used to normalize the foreground and
background pixels. When there are two objects in an image,
the bounding box of the large object may cover small object.
In this study, when small objects and large objects are in a
bounding box, the following formula is used:

Mask � min (GT), (8)

where GT represents the real box of the object. When a small
object is surrounded by the box of a large object, the smallest
bounding box is preferentially selected.

After separating the foreground and background, this
study uses the designed dual attention module to generate
the attention mask.+e attention mask formula is as follows:

M(F) � Mc(F) + Ms(F)( 􏼁⊗F, (9)

AttentionMask(F) � softmax
M(F)

T
􏼠 􏼡, (10)

where M(F) denotes the process of generating attention, F

denotes the original feature map, Mc(F) denotes channel
attention, Ms(F) denotes spatial attention, T denotes dis-
tillation temperature, T � 20, and softmax is used to process
features graph weights.

In the distillation process of foreground and back-
ground, binary mask, scale mask, and attention mask are
used for attention-guided distillation. +e loss function is as
follows:

Lfg � 􏽘
C

x�1
􏽘

H

y�1
􏽘

W

z�1
Masky,zScaleMasky,zAttentionMask F

T
x,y,z − f F

S
x,y,z􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ 􏽘
C

x�1
􏽘

H

y�1
􏽘

W

z�1
1 − Maskx,y􏼐 􏼑ScaleMaskx,yAttentionMask F

T
x,y,z − f F

S
x,y,z􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
,

(11)

where Lfg, Masky,z, (1 − Masky,z), ScaleMasky,z,

AttentionMaskare the distillation loss of foreground and
background, foreground mask, background mask, scale
mask, attention mask, respectively, and |FT

x,y,z− f(FS
x,y,z)|2 is

the difference between teacher feature and student feature.
In addition, this study uses the attention loss function to

let the student model learn the attention mask of the teacher
model. +e loss formula is as follows:

LA � SmoothL1 AttentionMask
T
, AttentionMask

S
􏼐 􏼑, (12)

where LA is the attention mask loss function,
AttentionMaskT denotes the teacher’s attention mask, and
AttentionMaskS denotes the student’s attention mask.

In the feature distillation of the foreground, this study
uses the designed attentionmodule to distil the entire feature
map. +e loss formula is as follows:
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LG � M F
T
x,y,z􏼐 􏼑 − M f F

S
x,y,z􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, (13)

where LG is the distillation loss function of the entire feature
map, M(FT/x, y, z) is the attention feature map of the
teacher model, and M(f(FS/x, y, z)) is the attention feature
map of the student model.

3.4. Loss Function. In order to solve the unbalanced positive
and negative samples in the PCB dataset, this study uses
QFocal loss as the classification and confidence losses of the
T-model and S-model. +e formulas are as follows:
QFL(σ) � −αt ×|y − σ|

β
×[(1 − y)log (1 − σ) + ylog(σ)],

(14)

where y is the smoothed label in [0, 1] and σ is the prediction
result. Focal loss introduces two factors αt and |y − σ|β,
where αt � y × α + (1 − y) × (1 − α) is used to balance
positive and negative samples, and |y − σ|β is used to stress
difficult detected samples. In addition, this study introduces
CIoU Loss as the prediction box regression loss of T-model
and S-model. +e formula is as follows:

LCIOU � 1 − IOU + RCIOU Bpd, Bgt􏼐 􏼑, (15)

whereRCIOU is the penalty term for the prediction boxBp d and
the object box Bgt. CIoU loss considers the overlapping area,
centre point distance, and aspect ratio in the prediction frame
regression, which solves the problem of inconsistency between
the real frame and the predicted frame during object detection.
+e normalized distance and penalty term between the centre
points of the two bounding boxes are defined as follows:

RCIOU �
ρ2 b, bgt􏼐 􏼑

C2 + α
4
π2 arctan

wgt

hgt
− arctan

w

h
􏼠 􏼡

2

, (16)

where b, bgt denote the centre points of Bp d, Bgt respectively,
ρ(x) is the Euclidean distance, and C is the diagonal length
of the smallest bounding box covering these two boxes. α is a
positive trade-off parameter. w, h are the width and height of
the prediction box. In the selection of anchors, this study
uses K-means to filter the anchors that meet the criteria.

In summary, the total loss function proposed in this
study is as follows:

Total Loss � αLfg + βLA + cLG + 2δQFL + εLCIOU, (17)

where Lfg, LA, LG, QFL, LCIOU denote the distillation loss of
foreground and background, attention mask loss, distillation
loss of the entire feature map, QFocal loss, cIou loss, re-
spectively, α, β, c, δ, ε are the weight parameters of the
balance loss, respectively. In this study, an adaptive weight
updater is designed to adjust the weight adaptively. +e
formula is as follows:

W �
exp Li( 􏼁

􏽐
n
i�1 exp Li( 􏼁

× n × wk, (18)

where W denotes the updated weight parameter, wk denotes
the weight parameter before the update, Li denotes the value
of each loss, and n denotes the number of weight parameters.

In this study, each weight parameter is set to one before the
training starts, and then in each training round, the weight
parameter is updated according to the proportion of each
loss value in the total loss. In this way, the loss with a large
value will get a large weight in the next round of optimi-
zation, and the weight with a small value will be further
reduced. At the end of the training, all tasks can be optimized
almost simultaneously.

4. Experiments and Analysis

In this section, experiments are carried out on the PCB
defect dataset, the NEU surface defect dataset, and the al-
uminium defect dataset.

4.1. Experimental Environment and Parameter Settings.
+is article implements the code in the PyTorch framework,
version 1.9.0. CUDA version 11.4, cuDNN version 8.0. +is
study’s model training and inference are performed on
NVIDIA RTX 6000×1 and Intel i9-9900k@5GHz× 1. Ex-
perimental platforms are GPU memory of 24GB and CPU
memory of 32GB. +e IDE used in the experiment is
Pycharm 2019 Professional Edition.

In the training process, this study uses YOLOv5 as the
baseline to build the T-model, uses the pretraining weights
of YOLOv5 in the initial training of the T-model, and saves
T-model weights after training. +is study uses T-model for
pretraining, loads the pretraining weights of the T-model to
S-model for training, and uses knowledge distillation during
the training process. Unless otherwise specified, the network
in this study is trained with Adam for 300 iterations with an
initial learning rate of 0.001, and the learning rate is adjusted
using cosine annealing. +is article uses a weight decay of
0.0001 and a momentum of 0.9. Also, the input image is
resized to 640 × 640. +e batch of the model in this study is
eight during training, the batch is one during inferencing,
and TensorRT is not used.

4.2. Object Detection and Evaluation Indicators. FPS [45]: in
this study, the model inference is carried out under the same
equipment conditions. +e same size image is used to cal-
culate FPS and evaluate the model’s processing speed.

IOU [45]: object detection uses the IOU to calculate the
degree of coincidence between the predicted box and the
ground-truth box, which further measures the accuracy of
detecting the corresponding object in a specific dataset.

mAP [45]: mAP is the sum of the average precision of all
categories divided by the number of all categories. mAP@.5
is the model accuracy index when the IOU is 0.5. mAP@.5:
.95 is obtained by calculating an mAP every 0.5 from IOU
from 0.5 to 0.95 and finally averaging these maps.

4.3. Experiments on the Aluminium Defect Dataset. +e al-
uminium defect dataset is the images of aluminium surface
defects published by Baidu AI (Figure 8). It contains 412
images in total. +ere are four types of defects, i.e.,
Zhen_kong, ca_shang, zang_wu, and zhe_zhou, and one
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image may contain different types of defects. In this study,
the dataset is processed with photometric and geometric
distortion. Specifically, this study brightens the picture and
then flips and pans the picture to expand the dataset, in-
creasing the number of pictures in the dataset to 1236. +en,
the extended images are divided into a training set, vali-
dation set, and test set with a ratio of 8 :1:1. It can be seen
from Figure 8 that the surface defect scale of aluminium
material varies greatly, which brings difficulties to the
detection.

4.3.1. Comparative Experiments. Table 2 lists the compari-
son experiment results of aluminium defect datasets. It can
be seen that the T-model of this study surpasses most classic
object detection models, indicating that the model is more
suitable for the field of industrial detection. T-model size is
smaller than YOLOv5X, YOLOv4, YOLOR-P6, Faster-R-
CNN, etc. +e F1-score and mAP of the T-model are all in
the leading position. T-model surpassed the newly proposed
YOLOR 1.13% on mAP@.5, and F1-score exceeded 0.05.
YOLOX has better detection performance than T-model, but
T-model accuracy is close to YOLOX. However, due to the
swin-transformer, the FPS advantage of the T-model is not
apparent. In contrast, the S-model is lighter, the reasoning
speed is fast, and the accuracy after knowledge distillation is
close to the T-model.

In order to more intuitively show the detection effect of
the T-model, Figure 9 shows the detection results of 16
pictures.

4.3.2. Ablation Experiments. Table 3 lists the ablation ex-
periments performed with YOLOv5S as the baseline. In the
ablation experiment of the backbone, this study uses the B4,
S3, and SPP outputs in the backbone as the input of
YOLOv5S neck for experimenting. +e results in the second
row show that when using the backbone of the T-model,
mAP@.5 is 0.63% higher than that of YOLOv5S, and the
other indicators are also slightly improved. On the neck
ablation experiment, this study experiments with three C3s
in the YOLOv5S backbone with one SPP output as the neck
input. +e third row shows that the detection effect is im-
proved when introducing the neck in this study.

+is paper also conducts ablation experiments with
T-model as the baseline to verify the residual fusion path in

the backbone and the down sampling path in neck. +e
ablation results are listed in Table 4. +e first row shows the
results without weighted fusion paths in the backbone and
down sampling paths in neck. +e second row shows that
when adding the residual fusion path to the backbone,
mAP@.5 increases by 0.58%, and the F1-score increases by
0.02. +e third rows show that when introducing the down
sampling path in neck, mAP@.5 is improved by 0.52%, and
the F1-score is improved by 0.02. In general, the residual
fusion path and the down sampling path are beneficial to
industrial detection scenarios with drastic changes in scale.

4.3.3. Experiments on the Detector. +is study examines
several different detectors, including coupled detector,
decoupled detector, and decoupled detector with added dual
attention module. +is study conducts experiments with
T-model as the baseline. Specifically, this study experiments
with these detectors on T-model, and the results are listed in
Table 5. +e experimental results in the second row show that
the mAP@.5 and F1-score of decoupled detector are improved
by 0.78% and 0.05, respectively, compared with coupled de-
tector. +e third line shows that the detection accuracy is
further improved when adding the dual attention module to
the classification branch of decoupled detector, indicating that
the dual attention module improves the classification accuracy.

4.3.4. Experiments on the Dual AttentionModule. +is study
analyses the features of CBAM. As shown in Figure 10, it is a
heat map comparison between CBAM and the dual attention
module. It can be seen that the dual attention module pays
more attention to object areas such as wrinkles.

+is study uses T-model as the baseline for experiments
on the dual attention module (DA).+e experimental results
are listed in Table 6. It can be seen that the dual attention
module effect surpasses CBAM.

4.3.5. Knowledge Distillation. +is study conducts experi-
ments related to knowledge distillation on lightweight models.
+e experiments are performed on isomorphism object de-
tectors and heterogeneous object detectors, respectively. On
isomorphic object detectors, this study experiments T-model
and S-model, Efficientdet-d7, and Efficientdet-d3. +is study
experiments with faster-R-CNN-ResNet50, faster-R-CNN-

Figure 8: Example of aluminium defect.
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Table 2: Comparative experiment of the aluminium defect dataset.

Approach Backbone mAP@.5 (%) mAP@.5-.95 (%) Precision (%) Recall (%) F1 Model size (M) FPS
SSD VGG-16 86.58 35.2 99.8 62.5 0.77 99.76 67
Faster-rcnn ResNet-50 92.35 42.3 73.88 97.5 0.84 523 16
YOLOv3 DarkNet-53 95.9 54.4 94.7 95.7 0.95 234 19
YOLOv5S CSPDarkNet 97.2 56.6 96.4 96.8 0.97 26 50
Efficientdet-d3 EfficientNet-B3 93.52 50.2 91.85 90.91 0.91 14.78 20
YOLOv5X CSPDarkNet 94.3 54.9 95.1 94.7 0.95 167 21
Centrenet Hourglass-104 60.3 38.6 51.09 60.61 0.55 124.61 48
Retinanet ResNet-101 96.52 46.7 94.79 93.32 0.94 144.84 20
YOLOv4 CSPDarkNet-53 94.13 59.1 83.38 96.01 0.89 245.53 29
YOLOR-P6 CSPDarkNet 97 53.1 88.3 97.8 0.93 140.88 61
YOLOX-s Darknet-53 99.2 58.2 98.91 99.3 0.99 34.2 41
T-model Our backbone 98.53 58.8 98.85 98.38 0.98 81.6 19
S-model Our backbone 97.82 55.86 97.83 96.87 0.97 25.1 36

Figure 9: Effect of aluminium defect detection.

Table 3: Ablation experiment with YOLOv5S.

Approach and improvement mAP@.5 (%) mAP@.5-.95 (%) Precision (%) Recall (%) F1
YOLOv5S 97.2 56.6 96.4 96.8 0.97
+Our backbone 97.83 56.94 97.84 96.87 0.97
+Our neck 97.71 57.13 97.1 97.38 0.98

Table 4: Ablation experiment with the T-model.

Approach and improvement mAP@.5 (%) mAP@.5-.95 (%) Precision (%) Recall (%) F1
T-model 97.91 57.43 97.24 97.87 0.97
+Residual fusion path 98.02 57.57 98.16 98.47 0.99
+Residual fusion path + down sampling path 98.53 58.8 98.85 98.38 0.98
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VGG16, YOLOv4, and YOLOv4-tiny on heterogeneous object
detectors. In addition, this study also experimentedwith output
layer knowledge distillation on T-model and S-model as a
comparative experiment. Table 7 lists the experimental results
of various classic object detectors. It can be seen that knowledge
distillation improves the detection performance of the S-model,
especially when T-model and S-model are isomorphic. It
proves that the knowledge distiller can improve the detection
accuracy of small models without increasing the number of
parameters.

4.4. Experiments on the PCB Defect Dataset. +e PCB defect
dataset has 1386 images, and its annotation files contain the
object location information and classification. It contains six
defects: missing hole, mouse bite, open circuit, spur, short,
and spurious copper. Each image may contain multiple de-
fective objects of the same type (missing holes in Figure 11). In
the experiments in this study, 900 images of different defect
types are selected for training (mainly minor defects that are
difficult to identify). In our experiment, images and

annotations are divided into the training set, validation set,
and experiment set according to the ratio of 6 : 2 : 2.

+is study conducts a comparative experiment on the
PCB surface defect dataset, omitting FPS since the input size
is still 640. It should be noted that the effect of the S-model is
the result of distillation through the knowledge distiller. +e

Table 5: Experiments on three detectors.

Detector mAP@.5 (%) mAP@.5-.95 (%) Precision (%) Recall (%) F1
Coupled detector 97.24 57.05 86.4 97.31 0.93
Decoupled detector 98.02 57.7 98.16 98.47 0.98
Decoupled detector + attention 98.53 58.8 98.85 98.38 0.98

(a) (b) (c)

Figure 10: (a) Original image. (b) CBAM heatmap. (c) Dual attention module heatmap. +e darker the yellow, the higher the attention.

Table 6: Comparison experiment between CBAM and dual attention module.

Approach mAP@.5 (%) mAP@.5-.95 (%) Precision (%) Recall (%) F1
T-model without DA 97.52 57.2 96.75 97.87 0.97
+DA 98.53 58.8 98.85 98.38 0.98
+CBAM 96.68 53.15 95.75 96.83 0.96

Table 7: Knowledge distiller experiments.

Models mAP@.5 (%) mAP@.5-.95 (%) Precision (%) Recall (%)
S-model 95.76 54.23 95.82 95.25
S-model with KD 97.82 55.86 97.83 96.87
Faster-rcnn-VGG16 87.22 36.18 77.42 88.84
Faster-rcnn-VGG16 with KD 87.87 36.26 87.46 86.67
Efficientdet-d3 93.52 50.2 91.85 90.91
Efficientdet-d3 with KD 95.8 51.34 91.88 96.78
YOLOv4-tiny 84.43 35.79 80.46 86.01
YOLOv4-tiny with KD 84.94 35.6 80.44 86.9

Figure 11: Missing hole.
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comparison experiments are listed in Table 8. It can be seen
that most of the classic object detection models are not
effective for small object detection, and the T-model in this
study shows a better performance.

In order to more intuitively show the detection effect of
the T-model, Figure 12 shows the detection results of 16
pictures.

4.4.1. Ablation Experiment. Table 9 lists the ablation ex-
periments performed in this study with YOLOv5S as the
baseline. +e experimental operations are consistent with

the experiments on the aluminium defect dataset.+e results
in the second row show that after using the backbone of the
T-model in this study, mAP@.5 is 3.68% higher than that of
YOLOv5S indicating that the backbone in this study is
beneficial for small object detection. +e third line shows
that the detection effect is improved when introducing the
neck of the T-model. +e dual attention module makes the
network pay more attention to the object and improves the
small object detection effect.

+is study also uses T-model as the baseline to conduct
ablation experiments to verify the residual fusion path in the
backbone and the down sampling path in the neck. +e

Table 8: Comparative experiment of PCB surface defects.

Approach Backbone mAP@.5 (%) mAP@.5-.95 (%) Precision (%) Recall (%) F1
SSD VGG-16 17.1 10 19.93 54.64 0.29
Faster-rcnn ResNet-50 78.33 50.24 67.74 74.51 0.7
YOLOv3 DarkNet-53 73.32 47.50 90.85 52.66 0.67
YOLOv5S CSPDarkNet-53 91.2 51.8 81.82 92.12 0.86
Efficientdet-d3 EfficicientNet-B3 71.8 35 99.44 49.51 0.66
YOLOv5X CSPDarkNet-53 91.8 50.7 95.2 91.3 0.93
Centrenet Hourglass-104 43.4 14.53 43.79 52.2 0.48
Retinanet ResNet-101 13.18 5 66.67 4.31 0.08
YOLOv4 CSPDarkNet-53 81.2 50.06 89.37 94.78 0.92
YOLOR-P6 CSPDarkNet 94.7 54.5 93.1 93.1 0.94
YOLOX-s Darknet-53 95.84 62.03 87.16 93.73 0.91
T-model Our backbone 94.79 58.02 88.14 95.65 0.91
S-model Our backbone 92.51 56.98 83.79 92.33 0.88

Figure 12: PCB defect dataset detection results.
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experimental operations are consistent with the experiments
on the aluminium defect dataset. +e ablation test results are
listed in Table 10. +e first row shows the results without
weighted fusion paths in the backbone and down sampling
paths in neck. +e second row shows that when adding the
residual fusion path to the backbone, the effect is significantly
improved, indicating that the residual path can better fuse the
fine-grained features in the backbone. +e third row shows
that by introducing the down sampling path in neck, mAP@.5
is improved by 2.4%, and the F1-score is improved by 0.03. It
shows that the down sampling path is beneficial for small
object detection because more fine-grained feature

information is fused into neck. Overall, the residual fusion
and the down sampling paths can improve the detection
effect.

4.5. Experiments on the NEU Surface Defect Dataset.
North-eastern university releases the NEU surface defect
dataset. +is dataset collects six typical defects on the surface
of the hot-rolled strip: rolled-in scale, patches, crazing, pitted
surface, inclusion, and scratches. Each image has several
defects of the same type. +e label file marks the category
and specific location of the defective object.

Table 9: Ablation experiment with YOLOv5S.

Approach and improvement mAP@.5 (%) mAP@.5-.95 (%) Precision (%) Recall (%) F1
YOLOv5S 91.2 51.8 81.82 92.12 0.86
+Our backbone 91.98 52.48 96.05 92.46 0.94
+Our neck 92.05 53.09 96.62 93.6 0.95

Table 10: Ablation trials with T-model.

Approach and improvement mAP@.5 (%) mAP@.5-.95 (%) Precision (%) Recall (%) F1
T-model 92.39 54.21 91.71 89.84 0.88
+Residual fusion path 93.65 56.44 89.94 94.43 0.92
+Residual fusion path + down sampling path 94.79 58.02 88.14 95.65 0.91

rolled-in scale patches crazing pitted surface inclusion scratches

Figure 13: Example of surface defects in steel.
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Table 11: Comparative experiments on NEU defect datasets.

Approach Backbone mAP@.5 (%) mAP@.5-.95 (%) Precision (%) Recall (%) F1
SSD VGG-16 66.73 26.6 87.27 34.52 0.5
Faster-rcnn ResNet-50 76.95 39.9 44.14 87.86 0.59
YOLOv3 DarkNet-53 68.9 33.5 72.2 65.9 0.7
YOLOv5S CSPDarkNet-53 70.9 35.6 78.4 64.3 0.35
Efficientdet-d3 EfficicientNet-B3 65.65 34 84.76 48.44 0.77
YOLOv5X CSPDarkNet-53 72 37.7 66.8 72.5 0.69
Centrenet Hourglass-104 39.24 13.5 55.5 18.2 0.29
Retinanet ResNet-101 66.54 31.9 81.73 44.62 0.57
YOLOv4 CSPDarkNet-53 68.73 32.9 95.6 40.54 0.56
YOLOR-P6 CSPDarkNet 76.52 38.3 50.86 83.37 0.63
YOLOX-s Darknet-53 79.38 40.23 53.73 84.88 0.66
T-model Our backbone 75.56 39.68 53.45 83.16 0.65
S-model Our backbone 74.41 39.2 49.05 82.28 0.62

Figure 14: Steel defect detection effect.

Figure 15: Example of bottom mould point data.
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Figure 13 shows different kinds of steel defects. +e
categories’ defects have significant differences in appearance.
Such scratches (last column) could be horizontal, vertical,
slanted, etc. At the same time, each category has similarities
in defects, such as rolled-in scale, crazing, and pitted surface.
In addition, due to the influence of lighting and specific
materials, the grey value of each category of defect images
will also change. Object detection in the NEU surface defect
dataset contains three difficulties: intraclass defects have
significant appearance differences, interclass defects have

similar aspects, and defect images are affected by changes in
lighting and specific materials. According to the observation
of the dataset, some cracks are concentrated in one direction
because the steel is slender, and scratches are in any di-
rection. Cracks and scratches are very similar, so scratches in
specific directions are easily identified as cracks. +erefore,
this study increases the data enhancement of cracks, rotates,
splices crack pictures, and reduces the recognition error rate.

In order to show the generalization ability of this model
in industrial detection, this study conducts a comparative

Table 12: Comparative experiments on NEU defect datasets.

Approach Backbone mAP@.5 (%) mAP@.5-.95 (%) Precision (%) Recall (%) F1
SSD VGG-16 70.44 32.52 78.94 49.48 0.5
Faster-rcnn ResNet-50 83.62 38.73 74.89 75.4 0.59
YOLOv3 DarkNet-53 91.37 40.66 84.39 92.33 0.7
YOLOv5S CSPDarkNet-53 93.21 62.1 85.19 91.44 0.35
Efficientdet-D3 EfficicientNet-B3 86.39 55.67 67.49 89.9 0.77
YOLOv5X CSPDarkNet-53 98.4 64.8 91.47 99.04 0.69
Centrenet Hourglass-104 68.51 43.18 84.14 48.74 0.29
Retinanet ResNet-101 80.79 49.89 66.28 77.56 0.57
YOLOv4 CSPDarkNet-53 96.1 50.06 89.37 94.78 0.56
YOLOR-P6 CSPDarkNet 99.3 59.9 53.5 99 0.63
YOLOX-s Darknet-53 99.55 70.68 80.32 99.9 0.66
T-model Our backbone 99.36 69.53 81.1 99.5 0.89
S-model Our backbone 98.1 65.2 79.44 98.91 0.89

Figure 16: Glass bottle bottom mould point recognition effect.
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experiment on the NEU surface defect database, where the
S-model is the result of knowledge distillation. +e com-
parative test results are listed in Table 11. It can be seen that
the T-model and S-model still have better performance,
indicating that the object detection model of this study has a
particular generalization ability in multiple industrial de-
tection datasets. Figure 14 shows the different steel defect
recognition results; it can be seen that all the defects are
accurately identified.

4.6. Experiments on Glass Bottle BottomMould Point Dataset.
+is is a dataset for recognisingmould point sequences at the
bottom of glass bottles, with different permutations repre-
senting different product lot numbers. +e mould point
identification on the bottom of glass bottles is mainly used to
locate the batch of glass products online to trace the product.
+e dataset contains 900 glass bottle bottom mould point
images, each with a native resolution of 800× 780 and 18
types. Each image has a corresponding label file. In this
study, the label files correspond to the images one by one,
and the training set, test set, and validation set are divided
according to the ratio of 6 : 2 : 2.

Figure 15 shows the images of different glass bottle
bottom mould points, and the high similarity between
objects makes detection difficult. In order to demonstrate the
generalization ability of the model in industrial detection,
this study conducts a comparative experiment on the glass
bottle bottom mould point database, where the S-model
results from knowledge distillation. +e comparison test
results are listed in Table 12. It can be seen that T-model and
S-model still have better performance, indicating that the
object detection model in this study has a specific gener-
alization ability on multiple industrial detection datasets.
Figure 16 shows the recognition effect of 16 different model
point images. It can be seen that all model point objects are
accurately recognized and positioned.

5. Conclusions

+is study proposes a deep learning model for industrial
quality detection. +e model consists of T-model and
S-model, which aims to meet detection tasks under different
conditions. +e model uses a combination of swin-trans-
former and convolution to extract the global information of
the image. A dual attention module is designed to improve
the neck’s attention to important areas of the image, thereby
improving the detection effect of the model. +is study also
designs a knowledge distiller using a dual attention module
to improve the detection effect of the S-model. Finally, this
study designs an adaptive loss weight updater to adjust the
loss weights automatically. +e experimental results show
that the T-model in this study has high accuracy and is
suitable for online data processing in scenarios such as IoT
intelligent computing and big data analysis. +e S-model in
this study is fast and suitable for use in scenarios such as edge
computing. In general, the model in this study can meet the
needs of different scenarios and achieve a balance between
accuracy and speed.

Data Availability

Aluminium defect dataset can be obtained from https://
aistudio.baidu.com/aistudio/datasetdetail/13564 PCB defect
dataset can be obtained from https://robotics.pkusz.edu.cn/
resources/dataset/PCB/ and NEU surface defect dataset can
be obtained from http://faculty.neu.edu.cn/me/songkc/
Vision-based_SIS_Steel.html.
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